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Abstract

While the languages of the world vary greatly, linguists have discovered many restric-

tions on possible variation. Semantic universals are restrictions on the range of varia-

tion in meaning across languages. Recently, in several domains—e.g. kinship terms, color

terms—such universals have been argued to arise from a trade-off between simplicity and

informativeness.

In this paper, we apply this method to a prominent domain of functions words, showing

that the quantifiers in natural language also appear to be optimized for this trade-off. We

do this by using an evolutionary algorithm to estimate the optimal languages, systemat-

ically manipulating the degree of naturalness of languages, and showing that languages

become closer to optimal as they become more natural.

Our results suggest that very general communicative and cognitive pressures may shape

the lexica of natural languages across both content and function words.

1 Introduction

While the languages of the world vary greatly, linguists have discovered many restrictions on
possible variation (Croft, 1990; Hyman, 2008; von Fintel and Matthewson, 2008). Semantic
universals are restrictions on the range of variation in meaning across languages. Recently,
in several domains—kinship terms, color terms—such universals have been argued to arise
from a trade-off between simplicity and informativeness (Kemp and Regier, 2012; Kemp et al.,
2018). Roughly: a language cannot be both maximally simple (in terms of, e.g. cognitive load)
and at the same time maximally informative. Intuitively, a maximally simple language would
have a single term, which could not be used to convey significant information. A maximally
informative language, on the other hand, would contain individual expressions for every possible
thought to be expressed; such a language is highly complex, relying on significant memorization.
The general claim: the semantic systems of the world’s languages optimally balance these two
competing pressures.

While the aforementioned case studies apply to domains of content words, the historically
most prominent domain of semantic universals has been from a domain of function words,
namely determiners (Barwise and Cooper, 1981; Peters and Westerst̊ahl, 2006). In particular,
the quantifiers expressed by determiners have been argued to have properties like monotonicity,
quantitativeness, and conservativity. Recent work has offered a different explanation for these

∗Many thanks to Milica Denić, Iris van de Pol, and Jakub Szymanik for helpful discussions and to three
anonymous reviewers for the Amsterdam Colloquium for helpful comments. Special thanks are due to Wouter
Posdijk; the results presented here originate in his ILLC masters thesis, which I had the pleasure of supervising.
He wished to not be part of publishing these results in order to focus on an electronic music career. The author
has received funding from the European Research Council under the European Unions Seventh Framework
Programme (FP/20072013)/ERC Grant Agreement n. STG 716230 CoSaQ.

Proceedings of the 22nd Amsterdam Colloquium 513



Quantifiers optimize the simplicity/informativeness trade-off Steinert-Threlkeld

universals in quantifiers, namely that they arise from a pressure of learnability: quantifiers
satisfying the universals are easier to learn than those that do not, and therefore get lexicalized
(Steinert-Threlkeld and Szymanik, 2019, 2020). This argument, however, does not rule out the
possibility of explaining these universals in terms of the aforementioned trade-off.

In this paper, we argue that the semantic universals for quantifiers can in fact also be seen
as arising from the trade-off between simplicity and informativeness. In the next section, we de-
velop methods to make this argument, introducing measures for simplicity and informativeness
that can apply to quantifier systems, a method for defining a degree of naturalness for artificial
languages, and a novel technique for estimating the set of optimal languages (i.e. Pareto fron-
tier) via an evolutionary algorithm. This new methodology allows us to perform statistical tests
on the factors influencing the optimality of quantifier systems. Section 3 presents a regression
showing that as languages become closer to being a natural language, they also become closer
to being optimal. We then conclude with a discussion of the consequences of the main result
and future directions.

2 Methods

In order to argue that more natural languages are more optimized for the trade-off, we need
methods for generating artificial languages of varying degrees of naturalness and measuring
how optimal they are. After presenting some preliminary background about quantifiers and
precisely defining the measures of simplicity and informativeness, Sections 2.3 and 2.4 turn to
those two tasks. Code for reproducing all of the results in this paper and carrying out further
experiments may be found at https://github.com/shanest/SimInf_Quantifiers.

We are measuring a degree of naturalness, instead of just comparing actual natural languages
to artifical languages, for two reasons. On the one hand, in the case of quantifiers, unlike the
cases of kinship (Kemp and Regier, 2012) and color (Regier et al., 2015), there is not yet an
existing catalog of the quantifier systems of any significant number of natural languages. On the
other hand, even in the cases where such data does exist, finding a correlation between a degree
of naturalness and optimality provides more information and may strengthen the argument
by linking to language change/evolution. As languages have changed over time, they became
‘closer’ to our current natural languages; a correlation result of the kind we are developing shows
that during this process, they also become closer to optimally trading off the two competing
pressures.

2.1 Preliminaries

We represent quantifiers—the denotations of determiners like all, some, most, etc.—as sets
of models 〈M,A,B〉 containing a domain of discourse and two distinguished subsets for the
restrictor and nuclear scope (equivalently: a binary relation between those sets) (Barwise and
Cooper, 1981; Peters and Westerst̊ahl, 2006; Szymanik, 2016). For example:

JeveryK = {〈M,A,B〉 : A ⊆ B}

Jat most 3K = {〈M,A,B〉 : |A ∩B| ≤ 3}

JmostK = {〈M,A,B〉 : |A ∩B| > |A \B|}

In what follows, a language is a set of quantifiers. For computational reasons—namely because
of the exponential growth of the space of possible models—we restrict ourselves to all models
up to size 10 in the remainder of this paper.
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2.2 Measuring Simplicity and Informativeness

Boolean Set-Theoretic Numeric

∧, ∨, ¬ ∩,∪,⊂, | · | /,+,−, >,=,%

Table 1: The operators in the grammar for gen-
erating quantifiers.

Our measure of cognitive simplicity relies
on representing quantifiers in a Language of
Thought (Feldman, 2000; Piantadosi et al.,
2016), i.e. using formulas in a logical language
containing operations for set union, intersec-
tion, and complementation, as well as for
measuring cardinalities and comparing, mul-
tiplying, and dividing them. Table 1 shows
the entire set of operators used in this paper. The complexity of a quantifier is the length of
the shortest formula in this language that denotes the quantifier. We found the shortest such
formula by exhaustively enumerating all formulas with up to 12 operations and comparing the
truth-values across all models up to size 10.1,2 The complexity of a language is the sum of the
complexities of the quantifiers in it. We specify an upper bound on the number of possible
quantifiers in a language (10 in our experiments) and divide the sum by this number.

Our measure of informativeness stems from notions of communicative success: a speaker
has an intended model that they want to communicate to a listener using the quantifiers in
their language (Skyrms, 2010; Kemp et al., 2018). This is captured by the following:

I(L) :=
∑

M

P (M)
∑

Q∈L

P (Q|M)
∑

M′∈Q

P (M′|Q) · u(M′,M)

The prior over models, as well as the conditional distributions, are assumed to be uniform where
defined (e.g. P (Q|M) = 1/n if M ∈ Q, 0 otherwise, where n = |{Q ∈ L : M ∈ Q}| is the number
of quantifiers in L containing M).

This measure captures the following communicative scenario: a speaker has a model (M) in
mind, that it wishes to communicate to a listener. To do so, they can use the quantifiers in the
language L. The speaker’s behavior is captured by P (Q|M). The listener then guesses a model
(M′) that the speaker has in mind, with probability P (M′|Q).

The utility u(M′,M) measures how good it is for the listener to guess M′ when the speaker
had in mind M. We base this on a measure of the distance between models, capturing the
notion that non-exact matches can still be better or worse (Jäger, 2007; O’Connor, 2014).
More precisely:

u(M′,M) =
1

1 + d(M′,M)
where d(M′,M) =

∑

X∈A\B,A∩B,B\A,M\(A∪B)

max{0, |X| − |X ′|}

Intuitively, this measure is inversely proportional to how many elements one has to move to
transform the listener’s guessed model into the sender’s model (by summing this value across
the four ‘zones’ in a model of the form 〈M,A,B〉).3 For example, suppose M has 3, 4, 2, and
1 elements in A \B,A∩B,B \A,M \ (A∪B) respectively, and M

′ has 2, 4, 3, and 1 elements

1For memory reasons, we collapse isomorphic models, representing a model 〈M,A,B〉 by the cardinalities of
the four sets A ∩ B,A \ B,B \ A,M \ (A ∪ B). This prevents us from capturing quantifiers like the first three

which do not satisfy the universal known as Quantity (Steinert-Threlkeld and Szymanik, 2019). Future work
will explore methods that relax this assumption while simultaneously addressing the resulting combinatorial
explosion.

2Using length only is equivalent to using the probability of generating an expression with a PCFG that
assigns equal weight to all productions from the same non-terminal.

3The addition of 1 in the denominator both prevents division by zero and makes distance-0 models have
maximal utility of 1.

3
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in the same zones. We then have that d(M,M′) = 1, since moving one element from A \ B to
B \A will make the four zones have the same size in the two models.

2.3 Sampling Languages

To answer the question of whether natural languages optimize the trade-off between these two
measures, we need to (i) define artificial languages, (ii) identify the natural languages, and (iii)
compare how well each does at this optimization. For (i) and (ii), we systematically control ‘how
natural’ a language is by biased sampling. A completely random language can be generated by
randomly sampling a specified number of quantifiers from the space of all quantifiers generated
by our grammar.

While there is no existing dataset of quantifiers across a large set of natural languages, a
major cross-linguistic study (Keenan and Paperno, 2012; Paperno and Keenan, 2017) found
that all natural language quantifiers belonged to three classes:

• Generalized existential: depending only on |A ∩B|.

For example: Jat least threeK = {〈M,A,B〉 : |A ∩B| ≥ 3}.

• Generalized intersective: depending only on |A \B|.

For example: JeveryK = {〈M,A,B〉 : |A \B| = 0}.

• Proportional: comparing |A ∩B| and |A \B|.

For example: JmostK = {〈M,A,B〉 : |A ∩B| > |A \B|}.

We call a quantifier quasi-natural if it can be expressed in one of the three forms above. And
a language will be considered natural if it contains only quasi-natural quantifiers.

Our complete sampling procedure, then, worked as follows: for each number of words be-
tween 1 and 10, we generated 8000 languages. Each language of size n was chosen to havem ≤ n
quasi-natural quantifiers, with m chosen uniformly from {0, . . . , n}. All remaining quantifiers
were chosen randomly from the set of all quantifiers whose minimal formula has 12 or fewer
operators. We refer to m/n as the degree of naturalness of a language. Thus, a language that
has only quasi-natural quantifiers will have a degree of naturalness of 1 (and a language that
has no quasi-natural quantifiers will have a degree of naturalness of 0).

2.4 Measuring Optimality

For (iii), we need a measure of optimality for a language, to see how it relates to the degree
of naturalness. To do this, we measure how close a language is to the Pareto frontier, the
set of languages which are not dominated (i.e. which have no language both simpler and more
informative). The Pareto frontier contains the fully optimal languages: they cannot be made
less complex or more informative without becoming worse on the other dimension. Writing P
for the Pareto frontier, we define the optimality of a language as

optimality(L) := 1− min
L′∈P

d(L,L′)

where d is the Euclidean distance between points in the plane. This measure takes the closest
point on the Pareto frontier to a given language. If a language is on the frontier, i.e. is optimal,
that minimum distance will be 0, and so the degree of optimality will be 1. Because both
communicative cost and complexity range from 0 to 1, the theoretically largest value for the

4
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minimum distance is 1, and so optimality also ranges from 0 to 1. To summarize: the degree
of optimality of a language increases as it gets closer to the Pareto frontier, the set of optimal
languages.

A complication arises when trying to apply this measure: because the space of possible lan-
guages is enormous, we cannot exhaustively enumerate it and thereby uncover the true Pareto
frontier. Moreover, our sampling procedures from the previous section are not guaranteed to
uncover the Pareto frontier. Because of this, we need a method to estimate the Pareto frontier
without being able to calculate it directly.

To estimate the true Pareto frontier, we used an evolutionary algorithm (Coello et al., 2007).
Such algorithms take inspiration from evolutionary processes in that points in a space change
over a sequence of generations, with ‘children’ arising via ‘mutation’ from previous points.
More importantly, such algorithms are explicitly designed to solve multi-objective optimization
problems. Since the Pareto frontier can be seen as the set of solutions to the problem of simul-
taneously optimizing multiple objectives (simplicity and informativeness), these algorithms are
well-suited to estimating it.

Our algorithm—provided in full detail in Algorithm 1 in the Appendix—can be intuitively
described as follows. We start with an initial seed of randomly generated languages. For some
specified number of ‘generations’ we select the dominant languages among the current set of
languages. Each language then has an equal number of ‘children’ languages (enough to maintain
the size of the pool of languages). A child arises from a parent language by some small sequence
of ‘mutations’. In our case, this was between 1 and 3 mutations, where a mutation could be: (i)
deleting a quantifier from the parent language, (ii) adding a quantifier to the parent language,
or (iii) swapping a quantifier in the parent language (i.e. deleting one and adding a new one).

(1) Apply evolutionary algo-
rithm to simultaneously op-
timize the two objectives.

(2) Find the dominating
points among those from (1)
and from the sampling pro-
cedure.

(3) Interpolate between all
points.

Figure 1: The overall Pareto frontier estimation algorithm, in three steps. The red points are
the languages sampled as described in Section 2.3. The black points in panel (3) constitute the
final estimate of the true Pareto frontier.

After running the above algorithm for some specified number of generations, we then take
the dominant languages from the pool together with the languages we previously sampled, and
then linearly interpolate between all of the points to form a smooth and dense frontier.4 This
entire process is depicted in Figure 1.

4More sophisticated evolutionary algorithms specify a convergence criterion. We leave the explorations of
these refinements to future work.
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3 Results

The main results can be seen in Figure 2. In this figure, the x-axis is communicative cost, which
is 1 − I(L), and the y-axis is complexity. Each point represents a possible language, with the
color of a point corresponding to degree of naturalness. The black line is the estimated Pareto
frontier, i.e. the set of languages that optimally trade-off between these two factors.

A few things can be observed right away. All of the sampled points that were found to lie on
the estimated Pareto frontier (i.e. which dominate all languages both sampled and discovered
by the evolutionary algorithm) appear to have a very high degree of naturalness. These are the
yellow points on the black frontier, where no brown or blue points (less natural languages) are
to be found. Moreover, this seems to be a general trend: it appears that languages with a high
degree of naturalness tend to be closer to the Pareto frontier than those with low degrees of
naturalness.5

Figure 2: Languages in the space of communicative cost and complexity, colored by their degree
of naturalness. Languages with more quasi-natural quantifiers appear to be closer to optimal,
as measured by closeness to the (estimated) Pareto frontier, depicted in black.

In virtue of the methods described in the previous section, we can test this appearance
statistically: a regression reveals that there is a significant positive correlation between the
degree of optimality and degree of naturalness of a language (β = 0.30, t = 88.95, p ≈ 0, 95%
CI: [0.293, 0.307]). In other words, as languages become more similar to natural languages with
respect to their quantifiers, they come closer to optimally trading off between the competing
pressures of cost and complexity.

5A possible exception to the general trend lies in the bottom-right corner. Exploring the properties of those
languages remains for future work. Thanks to an anonymous referee for this suggestion.
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4 Discussion

The languages of the world do not express all logically possible meanings, but only a restricted
subset thereof. The results of this paper show that in the domain of quantifiers, natural lan-
guages appear to be optimizing a trade-off between simplicity and informativeness. We demon-
strated this by estimating the Pareto frontier and finding a significant correlation between the
degree of naturalness of a language and its closeness to the frontier. This suggests that very
general communicative and cognitive pressures may shape the lexica of natural languages across
both content and function words (Chemla et al., 2019).

Much work remains to be done. Directly concerning the results in the present paper, a
few natural directions emerge. Firstly, while we argued that the statistical analysis presented
here provides more information than simply comparing natural and artificial languages, more
detailed and systematic documentation of the quantifier systems of the actual languages of
the world would provide a stronger empirical foundation for the theory. Secondly, at several
junctures, we made concrete modeling choices (e.g. what operators to use in our grammar,
the size of models and of languages, the parameters of the evolutionary algorithm). While on
quick inspection our main result seems robust, a more detailed analysis of sensitivity to those
parameters would be welcome. Thirdly, alternative methods for measuring naturalness can be
developed. For instance, Carcassi et al. (2019) provide an information-theoretic measure of the
degree of monotonicity of a quantifier, which extends naturally to other universals as well. This
raises the question: are more monotone quantifiers closer to the Pareto frontier than less mono-
tone ones? Finally, alternative methods of sampling languages should be explored. Figure 2
shows that our evolutionary algorithm explores a region of the space that the naive sampling
procedures do not discover (e.g. in the top-left corner). Because exhaustive enumeration is not
feasible, more sophisticated sampling methods that sufficiently explore low-density regions of
the space6 will help make the results more robust.

Most generally, this work raises a number of interesting questions about how to distinguish
between alternative explanations for semantic universals. The present results contribute to a
body of literature arguing that semantic variation can be explained in terms of the simplicity/in-
formativeness trade-off, across a range of domains (Kemp and Regier, 2012; Regier et al., 2015;
Kemp et al., 2018; Gibson et al., 2019). At the same time, a growing body of literature argues
that semantic typology—often in the same domains (e.g. quantifiers, color terms)—reflects rel-
ative ease of learning (Steinert-Threlkeld and Szymanik, 2019, 2020; Steinert-Threlkeld, 2019;
van de Pol et al., 2019; Saratsli et al., 2019; Maldonado and Culbertson, 2019). Future studies
can and should be developed to probe whether these explanations are in conflict and, if so,
which is to be preferred (while remaining open to the possibility that different factors may
explain the typological facts in different domains). One promising avenue for this work comes
from integration with explicit models of language change and evolution. If, for example, as
languages change, they appear to be regularly and continuously optimizing one of the above
factors but not the other, that would provide evidence in its favor.

A Estimating the Pareto Frontier

The complete algorithm for estimating the Pareto frontier, described in Section 2.4, appears
as Algorithm 1. It is a simplified version of the non-dominated genetic sorting algorithm

6For example: while executing the evolutionary algorithm, we can store all of the languages that are gener-
ated, in addition to the pool that constitutes the current generation.
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Algorithm 1 Estimating the Pareto Frontier

Parameters: num generations, num langs

Inputs: set of languages L, Pareto dominance method find dominant, interpolate method

function genetic estimate(num generations, num langs)
languages← sample random languages(num langs)
for i = 1, . . . , num generations do

dominant languages← find dominant(languages)
languages← sample mutated(dominant languages, num langs)

end for

return languages

end function

function sample mutated(languages, amount)
amount per lang, amount random← amount/|languages|
mutated languages← []
for language ∈ languages do

for i = 1, . . . , amount per lang do

Add mutate(language) to mutated languages

end for

end for

for i = 1, . . . , amount random do

language← random choice(languages)
Add mutate(language) to mutated languages

end for

return mutated languages

end function

function mutate(language)
mutated language ← language

num mutations← random choice([1, 2, 3])
for i = 1, . . . , num mutations do

mutation← random choice(
{add quantifier,remove quantifier, swap quantifier})

mutated language← mutation(language)
end for

return mutated language

end function

estimate← genetic estimate(num generations, num langs)
pareto frontier← find dominant(estimate ∪ L)
pareto frontier← interpolate(pareto frontier)

(Srinivas and Deb, 1994). There are two main parameters: how many generations to run
the algorithm for (num generations), and how large a pool of languages to maintain at each
generation (num langs). For the experiments in this paper, we set num generations to 100 and
num langs to 2000. The set of languages L is the full set that we sampled according to the
procedures described in Section 2.3.
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The three final lines in the algorithm correspond to the three steps described in Figure 1
above. The method genetic estimate contains the basic loop over generations. For finding
dominant languages, we used the pygmo library’s non dominated front 2d method (Biscani
and Izzo, 2019). sample mutated generates the new population at each generation by giving
each dominant language its offspring. The function mutate performs the mutation of a single
language, by choosing a number of mutations to apply and then randomly choosing from the
available mutations.
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