An interpolation theorem for first-order formulas with relational access restrictions

Balder ten Cate
LogicBlox & UC Santa Cruz

on the occasion of Johan van Benthem’s retirement
Craig Interpolation

- **William Craig (1957)**: For all first-order formulas ϕ, ψ, if $\phi \models \psi$, then there is a first-order formula χ with $\text{Voc}(\chi) \subseteq \text{Voc}(\phi) \cap \text{Voc}(\psi)$ and $\phi \models \chi \models \psi$. Moreover the formula χ in question can effectively constructed from a proof of $\phi \models \psi$.

- Various extensions and variations have been proved (e.g., Lyndon interpolation, many-sorted interpolation, Otto interpolation).

- **Van Benthem (2008)**: “Craig’s Theorem is about the last significant property of first-order logic that has come to light. […] It seems fair to say that after Craig’s theorem, no further significant properties of FOL have been discovered.”
Relational Access Restrictions

• A **database** is a (finite) relational structure over some schema $S = \{R_1, \ldots, R_n\}$

• **Relational access restrictions**: restrictions on the way we can access the relations R_1, \ldots, R_n.
First Example: View-Based Query Reformulation

• **Road network database**: Road(x,y)

• **Views**:

 • $V_2(x,y) = \exists \text{ path of length 2 from } x \text{ to } y = \exists u \text{ Road}(x,u) \land \text{Road}(u,y)$

 • $V_3(x,y) = \exists \text{ path of length 3 from } x \text{ to } y = \exists u,v \text{ Road}(x,u) \land \text{Road}(u,v) \land \text{Road}(v,x)$

 • ...

• **Observation**: V_4 can be expressed in terms of V_2.

• **Puzzle** (Afrati’07): can V_5 be expressed (in FO logic) in terms of V_3 and V_4?
Classic Results

• Querying using views has been around since the 1980s. E.g.,

• **Theorem** (Levy Mendelzon Sagiv Srivastava ’95): there is an effective procedure to decide whether a conjunctive query is rewritable as a conjunctive query over a set of views.

• **Open problem** (Nash, Segoufin, Vianu ‘10): is there an effective procedure to decide if a conjunctive query is answerable on the basis of a set of conjunctive views (a.k.a., is “determined” by the views)? if so, in what language can we express the rewriting?
Access Restrictions

• **View-Based Query Reformulation:**

 • *Can I reformulate* Q *as a query using only* V_1, ..., V_n?

 • *I.e., is* Q *equivalent to a query that only uses the symbols* V_1, ..., V_n *(relative to the theory consisting of the view definitions)?*

• **Query Reformulation w.r.t. Access Methods** *(more refined):*

 • *Can I find a plan to evaluate* Q *using only allowed access methods (possibly relative to some theory)?*

• First theory work by Chang and Li ’01, followed by work of Nash, Ludaescher, Deutsch, …
Access Methods

• **Access method**: a pair (R,X) where R is an n-ary relation and X⊆{1, …, n} is a set of “input positions”

 • “Relation R can be accessed if specific values are provided for the positions in X.”

• **Examples**:

 • (Telefoongids(name,city,address,phone#), {1,2})

 • (R,∅) means **free (unrestricted) access** to R.

 • (R,{1, …, n}) means only **membership tests** for specific tuples.

• There may be any number of access methods for a given relation.
Access Methods “Used” by a Query

- \text{BindPatt}(\phi) \text{ is the set of access methods “used” by } \phi.

\[
\begin{align*}
\text{BindPatt}(T) & = \text{BindPatt}(x = y) & = & \emptyset \\
\text{BindPatt}(R(t_1, \ldots, t_n)) & = & \{(R, \{1, \ldots, n\})\} \\
\text{BindPatt}(\neg \phi) & = & \text{BindPatt}(\phi) \\
\text{BindPatt}(\phi \land \psi) & = & \text{BindPatt}(\phi) \cup \text{BindPatt}(\psi) \\
\text{BindPatt}(\phi \lor \psi) & = & \text{BindPatt}(\phi) \cup \text{BindPatt}(\psi) \\
\text{BindPatt}(\exists \bar{x}(R(t_1, \ldots, t_n) \land \phi)) & = & \text{BindPatt}(\phi) \cup \{(R, \{i \mid t_i \not\in \bar{x}\})\} \\
\text{BindPatt}(\forall \bar{x}(R(t_1, \ldots, t_n) \rightarrow \phi)) & = & \text{BindPatt}(\phi) \cup \{(R, \{i \mid t_i \not\in \bar{x}\})\}
\end{align*}
\]

- For example \text{BindPatt}(\forall y(Rxy \rightarrow Sxy)) = \{(R,\{1\}), \ (S,\{1,2\}) \}

- A “plan” for a query Q is a reformulation Q’ of Q that only uses allowed access methods.
Motivation

• **Query Reformulation w.r.t. Access Methods** (more refined):

 - *Can I find a plan to evaluate Q using only allowed access methods (possibly relative to some theory)?*

• **Example**: In the road network example, $V_5(x,y)$ admits a first-order plan only the access methods (V_2, \emptyset) and $(V_3, \{1,2\})$.

• **Motivation**:

 - Answering queries using data behind webforms.

 - Query optimization *(if a relation $R(x,y)$ is stored in order sorted on x, access method $(R,\{2\})$ is much most costly than access method $(R,\{1\})$)*

 - ...
The Interpolation-Based Approach to View-Based Query Reformulation
Key concepts

• **Determinacy**: V_4 is “determined by” (or “answerable from”) V_2.

• **Query reformulations**: V_4 “can be reformulated as a query over V_2.”

V_4 is implicitly defined in terms of V_2

$\exists xy.V_2(x,y) \models \exists xy.V_4(x,y)$
View-Based Query Reformulation

• Base relations $R_1 \ldots R_n$, view names $V_1 \ldots V_m$

• View definition theory: $T = \{ \forall x (V_1(x) \leftrightarrow \psi_1(x)), \ldots \}$, query Q

• The following are equivalent:

 1. Q is determined by $V_1 \ldots V_m$ (w.r.t. the theory T).

 2. a certain FO implication $\theta_{T,Q}$ is valid

 3. Q can be reformulated as a FO query over $V_1 \ldots V_m$. In fact, every Craig interpolant of $\theta_{T,Q}$ is such a reformulation.
What is going on?

- *From a proof of determinacy we are obtaining an actual reformulation.*

- This way of using interpolation to get explicit definitions from implicit ones goes right back to Craig’s work.

- Same technique works for arbitrary theories T (not only view definitions).

- In principle this gives a method for finding query reformulations (but FO theorem proving is difficult).
• **Question**: can we do the same for the case with access methods?

• **Answer**: yes, using a suitable generalization of Craig interpolation.
Access Interpolation

• **Access interpolation theorem** (Benedikt, tC, Tsamoura, 2014): for all first-order formulas ϕ, ψ, if $\phi \vdash \psi$, then there is a first-order formula χ with $\text{BindPatt}(\chi) \subseteq \text{BindPatt}(\phi) \cap \text{BindPatt}(\psi)$ and $\phi \vdash \chi \vdash \psi$. Moreover the formula χ in question can effectively constructed from a proof of $\phi \vdash \psi$.

• Can be further refined by distinguishing positive/negative uses of binding patterns.

• Generalizes many existing interpolation theorems (Lyndon, many-sorted interpolation, Otto interpolation)

• Gives rise to a way of testing “access-determinacy” and the existence of reformulations w.r.t. given access methods, as well as a method for finding such reformulations.
Examples in Mathematical Logic

- In set theory, a Δ_0-formula is a formula that only uses access method (\in, $\{2\}$).

- In bounded arithmetic, we study formulas that only use access method (\leq, $\{2\}$).

- The access interpolation theorem generalizes an interpolation theorem for “\leq-persistent” formulas by Feferman (1967).
Summary

Querying under Access Restrictions

1. **View-based query reformulation** (restricting to a subset of the signature)

 This is the setting of the (projective) Beth theorem. We look for a proof of implicit definability ("determinacy") and, from it, compute an explicit definition ("query reformulation") using Craig interpolation.

2. **Query reformulations given access methods** (more refined)

 Same general technique applies, using a suitable adaptation of Craig interpolation: access interpolation.
Three Important Subtleties

1. Databases are finite structures. But Craig interpolation for first-order logic fails in the finite.

2. For practical applications, we need effective algorithms. But first-order logic is undecidable (we cannot effectively decide if the implication $\theta_{T,Q}$ is valid).

3. For practical applications, we don’t want just any query reformulation, we want one of low cost.
Solutions

• The solution for 1 and 2 is to move to a fragment of first-order logic that is **decidable** and that has the **finite model property**, while still being sufficiently expressive.

• Natural candidate: the guarded fragment.
Guaraded Fragment
(Andreka, van Benthem, Nemeti 1998)

• All quantification must be guarded.

\[\phi ::= R(x_1 \ldots x_n) \mid x=y \mid \neg \phi \mid \phi \land \phi \mid \exists y. G(x,y,z) \land \phi(x,y,z) \]

• GF has become an extremely successful and well studied fragment of first-order logic.

• Inherits all the good properties of modal logic (robust decidability, finite model property, …)

• Except Craig interpolation.
Guarded Negation Fragment

• Guarded-Negation fragment (GNFO): a slight further extension of the guarded fragment that does have Craig interpolation.

• Instead of guarding quantifiers we guard the negation.

\[\phi ::= R(x_1 \ldots x_n) \mid x = y \mid G(x) \land \neg \phi(x) \mid \phi \land \phi \mid \exists y. \phi \]

• Note: sentential and unary negation can be trivially guarded by the identity guard \(x = x \).

• GNFO retains all the good properties of GF (Barany, tC, Segoufin 2011),

• It also has (effective) Craig interpolation (Barany, Benedikt, tC 2013; Benedikt, tC, Vanden Boom 2014)
Cost-sensitive Query Reformulation

• Every real-world database management system has a cost-estimate function for query plans (what is the expected execution time).

• We are looking for a proof of $\theta_{T,Q}$ such that the interpolant obtained from it constitutes a plan that has a low cost.

• Idea: explore the space of possible proofs guided by (monotone) plan cost function.

• Under suitable restrictions, it is possible to obtain cost-optimal plans this way.

• Ongoing research, in collaboration between Oxford University (Michael Benedikt) and LogicBlox.

• There will be openings for postdocs at Oxford on this.
Thank you
Solution

• $V_5(x,y) = \exists u \left(V_4(x,u) \land \forall v \left(V_3(v,u) \rightarrow V_4(v,y) \right) \right)$