
The Geometry of Quantification
Climbing the Number Tree and Other Stories of Generalized Quantifiers

Dag Westerst̊ahl

Stockholm University

Celebration event in honour of Johan van Benthem
ILLC and UvA

Amsterdam
September 26–27, 2014

Dag Westerst̊ahl (Stockholm University) Geometry of Quantification Johan van Benthem event 1 / 37

Johan on generalized quantifiers and natural language
1983–89

Some publications (among many):

Determiners and logic (L&P, 1983)

Questions about quantifiers (JSL, 1984)

Semantic automata (in a GRASS volume, 1986)

These and many others collected in the volume

Essays in Logical Semantics (D. Reidel, Dordrecht, 1986)

Also,

Polyadic quantifiers (L&P, 1989)

1 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)

Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)

Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Background

Background on GQ and NL

Late 60’s: Montague realizes that noun phrases denote sets of sets of
subsets of the universe: generalized quantifiers of type 〈〈e, t〉, t〉 (or 〈1〉).

Hence, determiners, which together with nouns form NPs, are generalized
quantifiers of type 〈〈e, t〉, 〈〈e, t〉, t〉〉 (or 〈1, 1〉).

Early 80’s: Some linguists and logicians apply the model-theoretic treatment
of generalized quantifiers—Mostowski (1957) and Lindström (1966)—to
natural language semantics:

Barwise and Cooper, ‘Generalized quantifiers and natural language’
(L&P, 1981)
Keenan and Stavi, ‘A semantic characterization of natural language
determiners’ (L&P, 1986, but written around 1981)
Higginbotham and May, ‘Questions, quantifiers, and crossing’
(Linguistic Review, 1981)

1983–89: Johan takes the logical aspects of this work much further.

2 of 37

Plan

Plan

I will not try to summarize Johan’s numerous significant contributions in the
area of GQ and NL.

Instead I focus on just one detail: how an extremely simple idea for
geometrical representation of quantifiers lead to important insights, many of
which would probably not have been achieved without it.

This is the so-called number tree (or number triangle).

The idea is so simple that you might doubt it has any interesting
consequences.

To convince you of the opposite, I will look at several applications.

3 of 37

Plan

Plan

I will not try to summarize Johan’s numerous significant contributions in the
area of GQ and NL.

Instead I focus on just one detail: how an extremely simple idea for
geometrical representation of quantifiers lead to important insights, many of
which would probably not have been achieved without it.

This is the so-called number tree (or number triangle).

The idea is so simple that you might doubt it has any interesting
consequences.

To convince you of the opposite, I will look at several applications.

3 of 37

Plan

Plan

I will not try to summarize Johan’s numerous significant contributions in the
area of GQ and NL.

Instead I focus on just one detail: how an extremely simple idea for
geometrical representation of quantifiers lead to important insights, many of
which would probably not have been achieved without it.

This is the so-called number tree (or number triangle).

The idea is so simple that you might doubt it has any interesting
consequences.

To convince you of the opposite, I will look at several applications.

3 of 37

Plan

Plan

I will not try to summarize Johan’s numerous significant contributions in the
area of GQ and NL.

Instead I focus on just one detail: how an extremely simple idea for
geometrical representation of quantifiers lead to important insights, many of
which would probably not have been achieved without it.

This is the so-called number tree (or number triangle).

The idea is so simple that you might doubt it has any interesting
consequences.

To convince you of the opposite, I will look at several applications.

3 of 37

Plan

Plan

I will not try to summarize Johan’s numerous significant contributions in the
area of GQ and NL.

Instead I focus on just one detail: how an extremely simple idea for
geometrical representation of quantifiers lead to important insights, many of
which would probably not have been achieved without it.

This is the so-called number tree (or number triangle).

The idea is so simple that you might doubt it has any interesting
consequences.

To convince you of the opposite, I will look at several applications.

3 of 37

Quantifiers

Quantifiers of type 〈1〉 and 〈1, 1〉
A type 〈1〉 (type 〈1, 1〉) quantifier is a class of structures of the form (M,A)
where A ⊆ M (of the form (M,A,B) where A,B ⊆ M).

Equivalently, it is a
functional that for each M yields a unary (binary) 2nd-order relation on M:

QM(A)⇔ (M,A) ∈ Q

QM(A,B)⇔ (M,A,B) ∈ Q

Examples:

〈1〉 ∀M(A)⇔ everythingM(A)⇔ A = M

(∃≥3)M(A)⇔ |A| ≥ 3

(QR)M(A)⇔ |A| ≥ |M − A| (most things, Rescher quantifier)

(Qeven)M(A)⇔ |A| is even

〈1, 1〉 someM(A,B)⇔ A ∩ B 6= ∅
mostM(A,B)⇔ |A ∩ B| > |A− B|
the threeM(A,B)⇔ |A| = 3 and A ⊆ B

IM(A,B)⇔ |A| = |B| (Härtig quantifier)

4 of 37

Quantifiers

Quantifiers of type 〈1〉 and 〈1, 1〉
A type 〈1〉 (type 〈1, 1〉) quantifier is a class of structures of the form (M,A)
where A ⊆ M (of the form (M,A,B) where A,B ⊆ M). Equivalently, it is a
functional that for each M yields a unary (binary) 2nd-order relation on M:

QM(A)⇔ (M,A) ∈ Q

QM(A,B)⇔ (M,A,B) ∈ Q

Examples:

〈1〉 ∀M(A)⇔ everythingM(A)⇔ A = M

(∃≥3)M(A)⇔ |A| ≥ 3

(QR)M(A)⇔ |A| ≥ |M − A| (most things, Rescher quantifier)

(Qeven)M(A)⇔ |A| is even

〈1, 1〉 someM(A,B)⇔ A ∩ B 6= ∅
mostM(A,B)⇔ |A ∩ B| > |A− B|
the threeM(A,B)⇔ |A| = 3 and A ⊆ B

IM(A,B)⇔ |A| = |B| (Härtig quantifier)

4 of 37

Quantifiers

Quantifiers of type 〈1〉 and 〈1, 1〉
A type 〈1〉 (type 〈1, 1〉) quantifier is a class of structures of the form (M,A)
where A ⊆ M (of the form (M,A,B) where A,B ⊆ M). Equivalently, it is a
functional that for each M yields a unary (binary) 2nd-order relation on M:

QM(A)⇔ (M,A) ∈ Q

QM(A,B)⇔ (M,A,B) ∈ Q

Examples:

〈1〉 ∀M(A)⇔ everythingM(A)⇔ A = M

(∃≥3)M(A)⇔ |A| ≥ 3

(QR)M(A)⇔ |A| ≥ |M − A| (most things, Rescher quantifier)

(Qeven)M(A)⇔ |A| is even

〈1, 1〉 someM(A,B)⇔ A ∩ B 6= ∅
mostM(A,B)⇔ |A ∩ B| > |A− B|
the threeM(A,B)⇔ |A| = 3 and A ⊆ B

IM(A,B)⇔ |A| = |B| (Härtig quantifier)

4 of 37

Quantifiers

Quantifiers of type 〈1〉 and 〈1, 1〉
A type 〈1〉 (type 〈1, 1〉) quantifier is a class of structures of the form (M,A)
where A ⊆ M (of the form (M,A,B) where A,B ⊆ M). Equivalently, it is a
functional that for each M yields a unary (binary) 2nd-order relation on M:

QM(A)⇔ (M,A) ∈ Q

QM(A,B)⇔ (M,A,B) ∈ Q

Examples:

〈1〉 ∀M(A)⇔ everythingM(A)⇔ A = M

(∃≥3)M(A)⇔ |A| ≥ 3

(QR)M(A)⇔ |A| ≥ |M − A| (most things, Rescher quantifier)

(Qeven)M(A)⇔ |A| is even

〈1, 1〉 someM(A,B)⇔ A ∩ B 6= ∅
mostM(A,B)⇔ |A ∩ B| > |A− B|
the threeM(A,B)⇔ |A| = 3 and A ⊆ B

IM(A,B)⇔ |A| = |B| (Härtig quantifier)
4 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

Quantifiers

Quantifiers as binary relations between numbers

We require here quantifiers to be closed under isomorphism (Isom).

Type 〈1, 1〉 quantifiers which are Det denotations also satisfy:

Conserv QM(A,B)⇔ QM(A,A ∩ B)

Ext If A,B ⊆ M ⊆ M ′, then QM(A,B)⇔ QM′(A,B)

Fact
A type 〈1, 1〉 quantifier Q is Conserv and Ext iff it is the relativization of a
type 〈1〉 quantifier Q ′ (QM(A,B)⇔ Q ′A(A ∩ B), or Q = (Q ′)rel).

We also assume finite universes (Fin).

Then quantifiers are binary relations between natural numbers:

type 〈1〉 Q(m, n)⇔ ∃M,A s.t. |M−A| = m, |A| = n, and QM(A)

type 〈1, 1〉 Q(m, n)⇔ ∃M,A,B s.t. |A−B| = m, |A∩B| = n, and QM(A,B)

Q and Qrel are the same binary relation.

5 of 37

The number tree

The number tree

So (under these assumptions) quantifiers are subsets of N2:

(0,0) (0,1) (0,2) (0,3) . . .

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)
...

The number tree (triangle): rotate 45 degrees!

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)(3,0)
...

. . .

6 of 37

The number tree

The number tree

So (under these assumptions) quantifiers are subsets of N2:

(0,0) (0,1) (0,2) (0,3) . . .

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)
...

The number tree (triangle): rotate 45 degrees!

(0,0)

(0,1)

(0,2)

(0,3)

(1,0)

(1,1)

(1,2)

(2,0)

(2,1)(3,0)
...

. . .

6 of 37

The number tree

Type 〈1〉 quantifiers in the tree

QM(A)

(0,|A|)

(|M|−|A|,0)

level |M|

7 of 37

The number tree

Type 〈1, 1〉 quantifiers in the tree

QM(A,B)

(0,|A∩B|)

(|A−B|,0)

level |A|

8 of 37

The number tree

Examples

−− +− + +− + + +− + + + +− + + + + +− + + + + + +− + + + + + + +− + + + + + + + +− + + + + + + + + +. .
some (or ∃)

+− +− − +− − − +− − − − +− − − − − +− − − − − − +− − − − − − − +− − − − − − − − +− − − − − − − − − +. .
all (or ∀)

9 of 37

The number tree

More examples

−− +− − +− − + +− − − + +− − − + + +− − − − + + +− − − − + + + +− − − − − + + + +− − − − − + + + + +. .
most (or QR)

+
+ −

+ − +
+ − + −

+ − + − +
+ − + − + −

+ − + − + − +
+ − + − + − + −

+ − + − + − + − +
+ − + − + − + − + −. .

an-even-number-of (or Qeven)

10 of 37

Operations on quantifiers Boolean combinations

Outer negation: Q

Q

11 of 37

Operations on quantifiers Boolean combinations

Outer negation: ¬Q

¬Q

12 of 37

Operations on quantifiers Boolean combinations

Inner negation: Q¬(A,B) ⇔ Q(A,A−B)

(1) Not every critic liked Isabelle.

(2) Every critic didn’t like Isabelle.

As a relation between numbers, Q¬ is the converse of Q:

Q¬(m, n)⇔ Q(n,m)

Q Q¬

13 of 37

Operations on quantifiers Boolean combinations

Inner negation: Q¬(A,B) ⇔ Q(A,A−B)

(1) Not every critic liked Isabelle.

(2) Every critic didn’t like Isabelle.

As a relation between numbers, Q¬ is the converse of Q:

Q¬(m, n)⇔ Q(n,m)

Q Q¬

13 of 37

Operations on quantifiers Boolean combinations

Inner negation: Q¬(A,B) ⇔ Q(A,A−B)

(1) Not every critic liked Isabelle.

(2) Every critic didn’t like Isabelle.

As a relation between numbers, Q¬ is the converse of Q:

Q¬(m, n)⇔ Q(n,m)

Q

Q¬

13 of 37

Operations on quantifiers Boolean combinations

Inner negation: Q¬(A,B) ⇔ Q(A,A−B)

(1) Not every critic liked Isabelle.

(2) Every critic didn’t like Isabelle.

As a relation between numbers, Q¬ is the converse of Q:

Q¬(m, n)⇔ Q(n,m)

Q Q¬

13 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬)

⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!

14 of 37

Operations on quantifiers Number tree applications 1

Application: ‘midpoint’ quantifiers: Q = Q¬ (Keenan)
(1a) Between 35 and 65 percent of the students passed.
(1b) Between 35 and 65 percent of the students didn’t pass.

(2a) Either exactly five or else all but five professors didn’t vote.
(2b) Either exactly five or else all but five professors voted.

Curious exception or common phenomenon? Characterization?

Q Q

Q = Q¬ ⇔ ∃Q ′(Q = Q ′ ∨ Q ′¬) ⇔ ∃Q ′(Q = Q ′ ∧ Q ′¬)

Even with Conserv, Ext, Isom, and finite models, 2ℵ0 many!
14 of 37

Properties of quantifiers Number tree applications 2

Symmetry: Q(A,B)⇒ Q(B ,A)

Q symmetric iff A∩B = A′∩B ′ implies Q(A,B)⇔ Q(A′,B ′)

iff Q(m, n)⇒ ∀k Q(k, n)

So Q looks like this:

15 of 37

Properties of quantifiers Number tree applications 2

Symmetry: Q(A,B)⇒ Q(B ,A)

Q symmetric iff A∩B = A′∩B ′ implies Q(A,B)⇔ Q(A′,B ′)

iff Q(m, n)⇒ ∀k Q(k, n)

So Q looks like this:

15 of 37

Properties of quantifiers Number tree applications 2

Symmetry: Q(A,B)⇒ Q(B ,A)

Q symmetric iff A∩B = A′∩B ′ implies Q(A,B)⇔ Q(A′,B ′)

iff Q(m, n)⇒ ∀k Q(k, n)

So Q looks like this:

15 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k, n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k, n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k, n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k, n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k , n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Anti-symmetry: Q(A,B) ∧ Q(B ,A)⇒ A = B

Q is anti-symmetric iff Q(m, n)⇒ m = 0

iff Q ⊆ every

Asymmetry? (Q(A,B)⇒ ¬Q(B,A))

Q asymmetric iff Q(m, n)⇒ ∀k ¬Q(k , n)

So Q asymmetric ⇒ Q = ∅: no non-trivial asymmetric quantifiers exist.

16 of 37

Properties of quantifiers Number tree applications 2

Transitivity: Q(A,B) ∧ Q(B ,C)⇒ Q(A,C)

Fact (W-hl 1984)
Q is transitive iff there are X = {k1, k2, . . .} and Y = {n1, n2, . . .} such that
X < Y and Q(m, n) ⇔ m+n ∈ X ∨ (n = 0 ∧m ∈ Y).

Thus, transitivity is easily checked in the number tree:

k1
k2

k3

. . .

n1
n2

n3
n4

. . .

For example, it is immediate that anti-symmetry implies transitivity.

17 of 37

Properties of quantifiers Number tree applications 2

Transitivity: Q(A,B) ∧ Q(B ,C)⇒ Q(A,C)

Fact (W-hl 1984)
Q is transitive iff there are X = {k1, k2, . . .} and Y = {n1, n2, . . .} such that
X < Y and Q(m, n) ⇔ m+n ∈ X ∨ (n = 0 ∧m ∈ Y).

Thus, transitivity is easily checked in the number tree:

k1
k2

k3

. . .

n1
n2

n3
n4

. . .

For example, it is immediate that anti-symmetry implies transitivity.

17 of 37

Properties of quantifiers Number tree applications 2

Transitivity: Q(A,B) ∧ Q(B ,C)⇒ Q(A,C)

Fact (W-hl 1984)
Q is transitive iff there are X = {k1, k2, . . .} and Y = {n1, n2, . . .} such that
X < Y and Q(m, n) ⇔ m+n ∈ X ∨ (n = 0 ∧m ∈ Y).

Thus, transitivity is easily checked in the number tree:

k1
k2

k3

. . .

n1
n2

n3
n4

. . .

For example, it is immediate that anti-symmetry implies transitivity.

17 of 37

Properties of quantifiers Monotonicity

Right monotonicity

mon↑: Q(A,B) & B ⊆ B ′ ⇒ Q(A,B ′)

|A|

mon↓:

18 of 37

Properties of quantifiers Monotonicity

Right monotonicity

mon↑: Q(A,B) & B ⊆ B ′ ⇒ Q(A,B ′)

|A|

mon↓:

18 of 37

Properties of quantifiers Monotonicity

Right monotonicity

mon↑: Q(A,B) & B ⊆ B ′ ⇒ Q(A,B ′)

|A|

mon↓:

18 of 37

Properties of quantifiers Monotonicity

Left monotonicity

↑mon: Q(A,B) & A ⊆ A′ ⇒ Q(A′,B)

↓mon:

left cont: A′ ⊆ A ⊆ A′′ & Q(A′,B) & Q(A′′,B)⇒ Q(A,B)

19 of 37

Properties of quantifiers Monotonicity

Left monotonicity

↑mon: Q(A,B) & A ⊆ A′ ⇒ Q(A′,B)

↓mon:

left cont: A′ ⊆ A ⊆ A′′ & Q(A′,B) & Q(A′′,B)⇒ Q(A,B)

19 of 37

Properties of quantifiers Monotonicity

Left monotonicity

↑mon: Q(A,B) & A ⊆ A′ ⇒ Q(A′,B)

↓mon:

left cont: A′ ⊆ A ⊆ A′′ & Q(A′,B) & Q(A′′,B)⇒ Q(A,B)

19 of 37

Properties of quantifiers Monotonicity

Left monotonicity

↑mon: Q(A,B) & A ⊆ A′ ⇒ Q(A′,B)

↓mon:

left cont: A′ ⊆ A ⊆ A′′ & Q(A′,B) & Q(A′′,B)⇒ Q(A,B)

19 of 37

Properties of quantifiers Monotonicity

Left monotonicity

↑mon: Q(A,B) & A ⊆ A′ ⇒ Q(A′,B)

↓mon:

left cont: A′ ⊆ A ⊆ A′′ & Q(A′,B) & Q(A′′,B)⇒ Q(A,B)

19 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon:

↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon:

↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

And four more

↑NEmon: ↑SEmon:

E.g. Q is ↑NEmon iff Q(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ Q(A′,B)

↑NWmon: ↑SWmon:

So e.g.

↑mon = ↑SEmon + ↑SWmon

smoothness =def ↑SEmon + ↑NEmon entails mon↑

symmetry = ↑NEmon + ↑SWmon

20 of 37

Properties of quantifiers Number tree applications 3

Smooth quantifiers

The property of smoothness (↑SEmon + ↑NEmon) seems a very natural
strengthening of (right) monotonicity; cf.

Johan used it early on to explore notions of uniformity, which in turn were
tied to ideas about which quantifiers are logical and which are not.

He also showed (elaborating an idea from Barwise and Cooper 1981) that
smooth quantifiers are ‘easy’, in the sense that they (with their negations)
are exactly the ones with minimal count complexity:

The count complexity of Q is the smallest number of elements in a set A
with n elements one needs to check in order to verify that Q(A,B) holds +
the corresponding number for falsification (this number is always ≥ n + 1).

21 of 37

Properties of quantifiers Number tree applications 3

Smooth quantifiers

The property of smoothness (↑SEmon + ↑NEmon) seems a very natural
strengthening of (right) monotonicity; cf.

Johan used it early on to explore notions of uniformity, which in turn were
tied to ideas about which quantifiers are logical and which are not.

He also showed (elaborating an idea from Barwise and Cooper 1981) that
smooth quantifiers are ‘easy’, in the sense that they (with their negations)
are exactly the ones with minimal count complexity:

The count complexity of Q is the smallest number of elements in a set A
with n elements one needs to check in order to verify that Q(A,B) holds +
the corresponding number for falsification (this number is always ≥ n + 1).

21 of 37

Properties of quantifiers Number tree applications 3

Smooth quantifiers

The property of smoothness (↑SEmon + ↑NEmon) seems a very natural
strengthening of (right) monotonicity; cf.

Johan used it early on to explore notions of uniformity, which in turn were
tied to ideas about which quantifiers are logical and which are not.

He also showed (elaborating an idea from Barwise and Cooper 1981) that
smooth quantifiers are ‘easy’, in the sense that they (with their negations)
are exactly the ones with minimal count complexity:

The count complexity of Q is the smallest number of elements in a set A
with n elements one needs to check in order to verify that Q(A,B) holds +
the corresponding number for falsification (this number is always ≥ n + 1).

21 of 37

Properties of quantifiers Number tree applications 3

Smooth quantifiers

The property of smoothness (↑SEmon + ↑NEmon) seems a very natural
strengthening of (right) monotonicity; cf.

Johan used it early on to explore notions of uniformity, which in turn were
tied to ideas about which quantifiers are logical and which are not.

He also showed (elaborating an idea from Barwise and Cooper 1981) that
smooth quantifiers are ‘easy’, in the sense that they (with their negations)
are exactly the ones with minimal count complexity:

The count complexity of Q is the smallest number of elements in a set A
with n elements one needs to check in order to verify that Q(A,B) holds +
the corresponding number for falsification (this number is always ≥ n + 1).

21 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Immediately ‘visible’ facts

Certain apparently non-trivial facts become immediate in the number tree.

For example, say that Q is quasi-reflexive if Q(A,B)⇒ Q(A,A), or

Q(m, n)⇒ Q(m + n, 0)

E.g. some, at least two-thirds of, every are quasi-reflexive.

More generally, any mon↑ quantifier is quasi-reflexive.

Now the following is immediate in the tree:

Fact
If Q is quasi-reflexive and symmetric, then Q is ∅ or at least n for some n ≥ 0.

(0,n)

at least n

22 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 1

Many common Det denotations exhibit double monotonicity: ↑mon↑,
↓mon↑, etc.

So it is natural to ask e.g:

Which are the ↑mon↑ quantifiers?

Each point (n−k, k) in such a Q determines a trapezoid Qn,k :

Qn,k

(0,k)

n

But after a finite number of steps from such a point you hit the left axis.
Hence (in the tree) Q is a finite disjunction of the Qn,k :

Fact
Q is ↑Mon↑ iff it is a finite disjunction of quantifiers of the form at least k of
the n or more (k ≤ n).

23 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 1

Many common Det denotations exhibit double monotonicity: ↑mon↑,
↓mon↑, etc. So it is natural to ask e.g:

Which are the ↑mon↑ quantifiers?

Each point (n−k, k) in such a Q determines a trapezoid Qn,k :

Qn,k

(0,k)

n

But after a finite number of steps from such a point you hit the left axis.
Hence (in the tree) Q is a finite disjunction of the Qn,k :

Fact
Q is ↑Mon↑ iff it is a finite disjunction of quantifiers of the form at least k of
the n or more (k ≤ n).

23 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 1

Many common Det denotations exhibit double monotonicity: ↑mon↑,
↓mon↑, etc. So it is natural to ask e.g:

Which are the ↑mon↑ quantifiers?

Each point (n−k, k) in such a Q determines a trapezoid Qn,k :

Qn,k

(0,k)

n

But after a finite number of steps from such a point you hit the left axis.
Hence (in the tree) Q is a finite disjunction of the Qn,k :

Fact
Q is ↑Mon↑ iff it is a finite disjunction of quantifiers of the form at least k of
the n or more (k ≤ n).

23 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 1

Many common Det denotations exhibit double monotonicity: ↑mon↑,
↓mon↑, etc. So it is natural to ask e.g:

Which are the ↑mon↑ quantifiers?

Each point (n−k, k) in such a Q determines a trapezoid Qn,k :

Qn,k

(0,k)

n

But after a finite number of steps from such a point you hit the left axis.

Hence (in the tree) Q is a finite disjunction of the Qn,k :

Fact
Q is ↑Mon↑ iff it is a finite disjunction of quantifiers of the form at least k of
the n or more (k ≤ n).

23 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 1

Many common Det denotations exhibit double monotonicity: ↑mon↑,
↓mon↑, etc. So it is natural to ask e.g:

Which are the ↑mon↑ quantifiers?

Each point (n−k, k) in such a Q determines a trapezoid Qn,k :

Qn,k

(0,k)

n

But after a finite number of steps from such a point you hit the left axis.
Hence (in the tree) Q is a finite disjunction of the Qn,k :

Fact
Q is ↑Mon↑ iff it is a finite disjunction of quantifiers of the form at least k of
the n or more (k ≤ n).

23 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold? When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold? When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold? When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold?

When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold? When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 3

Facts provable by ‘reasoning’ in the tree 2

(1a) All linguists and logicians were invited.
(1b) All linguists were invited and all logicians were invited.

(2a) No linguists or logicians were invited.
(2b) No linguists were invited and no logicians were invited.

Under one natural reading, these sentences have the form

(3a) Q(A ∪ B,C)
(3b) Q(A,C) & Q(B,C)

Note that the equivalence fails e.g. for the (three-way) ambiguous

(4) Five linguists and logicians were invited.

When does it hold? When it does, Q is called left anti-additive (LAA); this
property also turns up in connection with negative polarity items.

Reasoning in the number tree one can show

Proposition (Peters and W-hl 2006)
The only non-trivial LAA quantifiers are all, no, and Q(A,B)⇔ A = ∅.

24 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin.

But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.

25 of 37

Properties of quantifiers Number tree applications 4

Another kind of application
Facts in the number tree can point to more general results.

For example, it is immediate in the tree that

(a) symmetry = ↑NEmon + ↑SWmon
(b) smoothness =def ↑SEmon + ↑NEmon entails mon↑

So (a) and (b) hold under Conserv, Ext, Isom, and Fin. But these facts
are much more general:

Fact
For any Conserv quantifier Q, (a1) ⇔ (a2) and (b1) ⇒ (b2) for any M.

(a1) QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B) and
QM(A,B) & A ⊆ A′ ⊆ M & A∩B = A′∩B ⇒ QM(A′,B)

(a2) QM(A,B)⇒ QM(B,A)

(b1) QM(A,B) & A ⊆ A′ ⊆ M & A−B = A′−B ⇒ QM(A′,B) and
QM(A,B) & A′ ⊆ A & A∩B = A′∩B ⇒ QM(A′,B)

(b2) QM(A,B) & B ⊆ B ′ ⇒ QM(A,B ′)

Not very hard to prove, but hard to come up with without the tree.
25 of 37

Properties of quantifiers Number tree applications 5

Using the number tree for help with linguistic universals

Linguistic universals about determiners or quantified NPs are often based on
checking known or obvious cases.

For example, Barwise and Cooper (1981) suggested the following
monotonicity universal:

(U1) If a Det denotation Q is ↑Mon (‘persistent’), it is also (Mon↑).

Many Det denotations satisfy this. But (as Johan pointed out) a quick look
at the number tree reveals that some but not all is a counter-example:

−− −− + −− + + −− + + + −− + + + + −− + + + + + −− + + + + + + −− + + + + + + + −− + + + + + + + + −. .

26 of 37

Properties of quantifiers Number tree applications 5

Using the number tree for help with linguistic universals

Linguistic universals about determiners or quantified NPs are often based on
checking known or obvious cases.

For example, Barwise and Cooper (1981) suggested the following
monotonicity universal:

(U1) If a Det denotation Q is ↑Mon (‘persistent’), it is also (Mon↑).

Many Det denotations satisfy this. But (as Johan pointed out) a quick look
at the number tree reveals that some but not all is a counter-example:

−− −− + −− + + −− + + + −− + + + + −− + + + + + −− + + + + + + −− + + + + + + + −− + + + + + + + + −. .

26 of 37

Properties of quantifiers Number tree applications 5

Using the number tree for help with linguistic universals

Linguistic universals about determiners or quantified NPs are often based on
checking known or obvious cases.

For example, Barwise and Cooper (1981) suggested the following
monotonicity universal:

(U1) If a Det denotation Q is ↑Mon (‘persistent’), it is also (Mon↑).

Many Det denotations satisfy this.

But (as Johan pointed out) a quick look
at the number tree reveals that some but not all is a counter-example:

−− −− + −− + + −− + + + −− + + + + −− + + + + + −− + + + + + + −− + + + + + + + −− + + + + + + + + −. .

26 of 37

Properties of quantifiers Number tree applications 5

Using the number tree for help with linguistic universals

Linguistic universals about determiners or quantified NPs are often based on
checking known or obvious cases.

For example, Barwise and Cooper (1981) suggested the following
monotonicity universal:

(U1) If a Det denotation Q is ↑Mon (‘persistent’), it is also (Mon↑).

Many Det denotations satisfy this. But (as Johan pointed out) a quick look
at the number tree reveals that some but not all is a counter-example:

−− −− + −− + + −− + + + −− + + + + −− + + + + + −− + + + + + + −− + + + + + + + −− + + + + + + + + −. .

26 of 37

Properties of quantifiers Number tree applications 5

Linguistic universals, cont.

Likewise Väänänen and W-hl (2002)—somewhat embarrassingly—suggested
a smoothness universal (U2), which again is correct for many ↑Mon Det
denotations, such as at least n, more than n/m:ths of, every.

(U2) If a Det denotation Q is Mon↑, it is in fact smooth.

But there are simple patterns in the number triangle violating this, and some
of them interpret English Dets. For example:

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − − − − −− − − − − − − − −− − − − − − − − − −. .
at least four of the six

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − + + + +− − − − + + + + +− − − − + + + + + +. .
at least four of the six or more

In all of these cases, the number tree was instrumental.

27 of 37

Properties of quantifiers Number tree applications 5

Linguistic universals, cont.

Likewise Väänänen and W-hl (2002)—somewhat embarrassingly—suggested
a smoothness universal (U2), which again is correct for many ↑Mon Det
denotations, such as at least n, more than n/m:ths of, every.

(U2) If a Det denotation Q is Mon↑, it is in fact smooth.

But there are simple patterns in the number triangle violating this, and some
of them interpret English Dets. For example:

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − − − − −− − − − − − − − −− − − − − − − − − −. .
at least four of the six

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − + + + +− − − − + + + + +− − − − + + + + + +. .
at least four of the six or more

In all of these cases, the number tree was instrumental.

27 of 37

Properties of quantifiers Number tree applications 5

Linguistic universals, cont.

Likewise Väänänen and W-hl (2002)—somewhat embarrassingly—suggested
a smoothness universal (U2), which again is correct for many ↑Mon Det
denotations, such as at least n, more than n/m:ths of, every.

(U2) If a Det denotation Q is Mon↑, it is in fact smooth.

But there are simple patterns in the number triangle violating this, and some
of them interpret English Dets. For example:

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − − − − −− − − − − − − − −− − − − − − − − − −. .
at least four of the six

−− −− − −− − − −− − − − −− − − − − −− − − − + + +− − − − + + + +− − − − + + + + +− − − − + + + + + +. .
at least four of the six or more

In all of these cases, the number tree was instrumental.

27 of 37

Definability

First-order definability in the number tree

A simple use of EF-games shows:

Fact
A quantifier of type 〈1〉 or (Conserv and Ext and of type) 〈1, 1〉 is first-order
definable iff for some r ≥ 0, it has the pattern shown below.

?
(0,r)(r ,0)

all + or all −

28 of 37

Definability

First-order definability in the number tree

A simple use of EF-games shows:

Fact
A quantifier of type 〈1〉 or (Conserv and Ext and of type) 〈1, 1〉 is first-order
definable iff for some r ≥ 0, it has the pattern shown below.

?
(0,r)(r ,0)

all + or all −

28 of 37

Definability Number tree applications 6

First-order definability: applications

?
(0,r)(r ,0)

all + or all −

By looking in the number tree:

Fact
The following are not first-order definable:

(a) most (and all non-trivial proportional quantifiers), an even number of

(b) Q(A,B)⇔ |A− B| = k and |A ∩ B| is even

Fact
All first-order definable quantifiers are Boolean combinations of ↑mon quantifiers.
(Looking a little closer, one sees that they are in fact disjunctions of left cont
quantifiers.)

29 of 37

Definability Number tree applications 6

First-order definability: applications

?
(0,r)(r ,0)

all + or all −

By looking in the number tree:

Fact
The following are not first-order definable:

(a) most (and all non-trivial proportional quantifiers), an even number of

(b) Q(A,B)⇔ |A− B| = k and |A ∩ B| is even

Fact
All first-order definable quantifiers are Boolean combinations of ↑mon quantifiers.
(Looking a little closer, one sees that they are in fact disjunctions of left cont
quantifiers.)

29 of 37

Definability Number tree applications 6

First-order definability: applications

?
(0,r)(r ,0)

all + or all −

By looking in the number tree:

Fact
The following are not first-order definable:

(a) most (and all non-trivial proportional quantifiers), an even number of

(b) Q(A,B)⇔ |A− B| = k and |A ∩ B| is even

Fact
All first-order definable quantifiers are Boolean combinations of ↑mon quantifiers.
(Looking a little closer, one sees that they are in fact disjunctions of left cont
quantifiers.)

29 of 37

Definability Number tree applications 6

First-order definability: applications

?
(0,r)(r ,0)

all + or all −

By looking in the number tree:

Fact
The following are not first-order definable:

(a) most (and all non-trivial proportional quantifiers), an even number of

(b) Q(A,B)⇔ |A− B| = k and |A ∩ B| is even

Fact
All first-order definable quantifiers are Boolean combinations of ↑mon quantifiers.

(Looking a little closer, one sees that they are in fact disjunctions of left cont
quantifiers.)

29 of 37

Definability Number tree applications 6

First-order definability: applications

?
(0,r)(r ,0)

all + or all −

By looking in the number tree:

Fact
The following are not first-order definable:

(a) most (and all non-trivial proportional quantifiers), an even number of

(b) Q(A,B)⇔ |A− B| = k and |A ∩ B| is even

Fact
All first-order definable quantifiers are Boolean combinations of ↑mon quantifiers.
(Looking a little closer, one sees that they are in fact disjunctions of left cont
quantifiers.)

29 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers

Many other definability results are relevant for natural language semantics.

Jouko Väänänen has shown that definability from monotone type 〈1〉
quantifiers (under Isom and Fin) is very easily checked in the number tree.

The oscillation of Q at level n is the number of times Q switches from + to
− or vice versa on level n.

Q has bounded oscillation if there is a fixed bound on its oscillation at all
levels.

Theorem (Väänänen 1997)

A type 〈1〉 quantifier is definable from monotone type 〈1〉 quantifiers if and only if
it has bounded oscillation.

30 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers

Many other definability results are relevant for natural language semantics.

Jouko Väänänen has shown that definability from monotone type 〈1〉
quantifiers (under Isom and Fin) is very easily checked in the number tree.

The oscillation of Q at level n is the number of times Q switches from + to
− or vice versa on level n.

Q has bounded oscillation if there is a fixed bound on its oscillation at all
levels.

Theorem (Väänänen 1997)

A type 〈1〉 quantifier is definable from monotone type 〈1〉 quantifiers if and only if
it has bounded oscillation.

30 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers

Many other definability results are relevant for natural language semantics.

Jouko Väänänen has shown that definability from monotone type 〈1〉
quantifiers (under Isom and Fin) is very easily checked in the number tree.

The oscillation of Q at level n is the number of times Q switches from + to
− or vice versa on level n.

Q has bounded oscillation if there is a fixed bound on its oscillation at all
levels.

Theorem (Väänänen 1997)

A type 〈1〉 quantifier is definable from monotone type 〈1〉 quantifiers if and only if
it has bounded oscillation.

30 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers

Many other definability results are relevant for natural language semantics.

Jouko Väänänen has shown that definability from monotone type 〈1〉
quantifiers (under Isom and Fin) is very easily checked in the number tree.

The oscillation of Q at level n is the number of times Q switches from + to
− or vice versa on level n.

Q has bounded oscillation if there is a fixed bound on its oscillation at all
levels.

Theorem (Väänänen 1997)

A type 〈1〉 quantifier is definable from monotone type 〈1〉 quantifiers if and only if
it has bounded oscillation.

30 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers

Many other definability results are relevant for natural language semantics.

Jouko Väänänen has shown that definability from monotone type 〈1〉
quantifiers (under Isom and Fin) is very easily checked in the number tree.

The oscillation of Q at level n is the number of times Q switches from + to
− or vice versa on level n.

Q has bounded oscillation if there is a fixed bound on its oscillation at all
levels.

Theorem (Väänänen 1997)

A type 〈1〉 quantifier is definable from monotone type 〈1〉 quantifiers if and only if
it has bounded oscillation.

30 of 37

Definability Number tree applications 7

Definability from monotone quantifiers, cont.

For example,

Qeven is not definable from monotone type 〈1〉 quantifiers:
+

+ −
+ − +

+ − + −
+ − + − +

+ − + − + −
+ − + − + − +

+ − + − + − + −
+ − + − + − + − +

+ − + − + − + − + −. .

Whereas QM(A)⇔ |M−A| = 2 and |A| is even, though not
FO-definable, is definable from monotone type 〈1〉 quantifiers:

−− −
+ − −− − − −− − + − −− − − − − −− − − − + − −− − − − − − − −− − − − − − + − −− − − − − − − − − −. .

31 of 37

Definability Number tree applications 7

Definability from monotone quantifiers, cont.

For example,

Qeven is not definable from monotone type 〈1〉 quantifiers:
+

+ −
+ − +

+ − + −
+ − + − +

+ − + − + −
+ − + − + − +

+ − + − + − + −
+ − + − + − + − +

+ − + − + − + − + −. .

Whereas QM(A)⇔ |M−A| = 2 and |A| is even, though not
FO-definable, is definable from monotone type 〈1〉 quantifiers:

−− −
+ − −− − − −− − + − −− − − − − −− − − − + − −− − − − − − − −− − − − − − + − −− − − − − − − − − −. .

31 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel,

in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree.

As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR).

(In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?

32 of 37

Definability Number tree applications 7

Definability from monotone type 〈1〉 quantifiers, cont.

However, even though Q and Qrel are the same binary relation in the
number tree, the expressivity of monotone (mon↑ or mon↓) quantifiers of
the latter form is much greater.

For example, Qeven is definable from just one such quantifier Qrel, in the
sense that there is a sentence in FO(Qrel) with one unary predicate symbol
which is true in (M,A) just in case |A| is even.

Another interesting example from an NL point of view concerns the
monotone quantifiers QR and most = (QR)rel, which are the same in the
number tree. As shown in Barwise and Cooper (1981), most is not definable
in FO(QR). (In fact (Kolaitis and Väänänen 1995), most is not definable
from any finite number of type 〈1〉 quantifiers.)

When Q is monotone, the number tree provides easy checking whether Qrel

is definable from Q, for this holds exactly when Q is FO-definable (W-hl
1991, Kolaitis and Väänänen 1995).

Question: Can the number tree help more generally to check definability
properties of Conserv and Ext quantifiers?32 of 37

Definability Number tree applications 8

Definability from Conserv and Ext quantifiers

It can help checking if Q (and hence Qrel in this case!) is definable from
monotone Conserv and Ext quantifiers.

Väänänen and W-hl (2002) generalize the notion of bounded oscillation to
bounded color oscillation, and show that Q is definable from monotone
Conserv and Ext quantifiers iff it has bounded color oscillation.

On the one hand, this notion would probably never had been thought of
without the intuitions from the number tree.

On the other hand, checking that a quantifier does not have bounded color
oscillation seems hard: the only known example is constructed using finite
combinatorics (van der Waerden’s Theorem). The construction again relies
crucially on the number tree!

33 of 37

Definability Number tree applications 8

Definability from Conserv and Ext quantifiers

It can help checking if Q (and hence Qrel in this case!) is definable from
monotone Conserv and Ext quantifiers.

Väänänen and W-hl (2002) generalize the notion of bounded oscillation to
bounded color oscillation, and show that Q is definable from monotone
Conserv and Ext quantifiers iff it has bounded color oscillation.

On the one hand, this notion would probably never had been thought of
without the intuitions from the number tree.

On the other hand, checking that a quantifier does not have bounded color
oscillation seems hard: the only known example is constructed using finite
combinatorics (van der Waerden’s Theorem). The construction again relies
crucially on the number tree!

33 of 37

Definability Number tree applications 8

Definability from Conserv and Ext quantifiers

It can help checking if Q (and hence Qrel in this case!) is definable from
monotone Conserv and Ext quantifiers.

Väänänen and W-hl (2002) generalize the notion of bounded oscillation to
bounded color oscillation, and show that Q is definable from monotone
Conserv and Ext quantifiers iff it has bounded color oscillation.

On the one hand, this notion would probably never had been thought of
without the intuitions from the number tree.

On the other hand, checking that a quantifier does not have bounded color
oscillation seems hard: the only known example is constructed using finite
combinatorics (van der Waerden’s Theorem). The construction again relies
crucially on the number tree!

33 of 37

Definability Number tree applications 8

Definability from Conserv and Ext quantifiers

It can help checking if Q (and hence Qrel in this case!) is definable from
monotone Conserv and Ext quantifiers.

Väänänen and W-hl (2002) generalize the notion of bounded oscillation to
bounded color oscillation, and show that Q is definable from monotone
Conserv and Ext quantifiers iff it has bounded color oscillation.

On the one hand, this notion would probably never had been thought of
without the intuitions from the number tree.

On the other hand, checking that a quantifier does not have bounded color
oscillation seems hard: the only known example is constructed using finite
combinatorics (van der Waerden’s Theorem).

The construction again relies
crucially on the number tree!

33 of 37

Definability Number tree applications 8

Definability from Conserv and Ext quantifiers

It can help checking if Q (and hence Qrel in this case!) is definable from
monotone Conserv and Ext quantifiers.

Väänänen and W-hl (2002) generalize the notion of bounded oscillation to
bounded color oscillation, and show that Q is definable from monotone
Conserv and Ext quantifiers iff it has bounded color oscillation.

On the one hand, this notion would probably never had been thought of
without the intuitions from the number tree.

On the other hand, checking that a quantifier does not have bounded color
oscillation seems hard: the only known example is constructed using finite
combinatorics (van der Waerden’s Theorem). The construction again relies
crucially on the number tree!

33 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors. Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all). The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors. Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all). The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors.

Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all). The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors. Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all). The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors. Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all).

The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Qeven has bounded color oscillation

Let α color N as follows: α(2n) = red, α(2n + 1) = green.

This induces a coloring of the number tree:

α(m, n) = (α(m), α(n))

So there are four different colors. Here is how they apply to Qeven:

(0,0)

(0,2)

(0,4)

(0,6)

(0,8)

(0,10)

(0,12)
(12,0)

(5,0)

(0,14)

(0,16)

Inside each color class, the oscillation of Qeven is bounded (in fact Qeven

doesn’t oscillate at all). The existence of an (induced) coloring of this kind
is what it takes to have bounded color oscillation.

34 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers.

A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .

35 of 37

Definability Number tree applications 8

Definability from smooth quantifiers
If definability from monotone Conserv and Ext quantifiers is too general,
a more interesting notion would be definability from smooth Conserv and
Ext quantifiers.

Väänänen and W-hl (2002) show that if Q is definable from such quantifiers
then Q has bounded oscillation in the ordinary, easily checkable, sense.

So e.g. Qeven is not definable from smooth quantifiers.

Unfortunately, there are quantifiers with bounded oscillation that are not
definable from smooth quantifiers. A simple example is the (monotone!)

quantifier Q(A,B)⇔ |A| is even.

Open Problem
Find a property P such that Q is definable from smooth quantifiers iff
Q has bounded oscillation and P.

If there is such a P, the number tree will presumably help finding it. . .
35 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;

illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;

immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;

sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;

evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;

check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers,

maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one,

but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

Conclusion

Conclusion

What we have seen is how one can:

visualize familiar Det and NP denotations, as well as other type 〈1〉
quantifiers and their relativizations;
illustrate properties of these quantifiers, in particular monotonicity;
immediately ‘see’, or prove by simple geometric reasoning, non-trivial
facts about quantifiers;
sometimes generalize these facts by dropping Isom, Ext, and Fin;
evaluate linguistic universals, and settle linguistic questions about
which quantifiers satisfy certain combinations of properties;
check first-order definability and definability from monotone quantifiers
(in finite models);

just by tipping over N2 a little!!

This idea (and many of its applications) is just one aspect of Johan’s many
contributions to the logical and linguistic study of quantifiers, maybe not
even the most important one, but surely a good illustration of (again just
one aspect of) his work in logic.

36 of 37

The End

THANK YOU

37 of 37

	Background
	Plan
	Quantifiers
	The number tree
	Operations on quantifiers
	Boolean combinations
	Number tree applications 1

	Properties of quantifiers
	Number tree applications 2
	Monotonicity
	Number tree applications 3
	Number tree applications 4
	Number tree applications 5

	Definability
	Number tree applications 6
	Number tree applications 7
	Number tree applications 8

	Conclusion
	The
	End

