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The Problem: Doxastic Changes and Conditionals

Problem: Understand, explain and compute the
dynamics of knowledge and belief in a multi-agent context.

A More general Problem: study and compare notions
of conditional, such as doxastic conditionals BP

a Q,
dynamic conditionals [P?]Q, [P !]Q, counterfactual
conditionals etc.

...In fact, we started from quantum conditionals!
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Conditional Beliefs and Changes of Belief

In particular, consider hypothetical (i.e. conditional)
beliefs, captured by a binary doxastic operator

BP
a Q,

as well as actual changes of belief, expressed by combining
dynamic and doxastic modalities:

[P !]BaQ.
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“Static” and “Dynamic”

The conditional BP
a Q is “static” w.r.t. the actual state of

the system: the state doesn’t change, only a’s theory
about it changes. It is directly related to the standard
AGM belief revision theory.

[P !]BaQ is “dynamic”: the state changes (the agent
learns P ), and after that a beliefs P .

In fact, we can understand conditional beliefs
dynamically: BP

a Q means that, after learning P , agent
believes that Q was true (in the original state) before the
learning.
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Moore Sentences

To see the difference, consider a Moore sentence

P := Q ∧ ¬BaQ.

It is rather clear that
BP

a P

should always be true, while

[P !]BaP

will typically be false (whenever P is true, i.e. whenever
the action P ! is a true “learning” action).
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Doxastic Logic

The logic of belief. Usually accepted axioms: KD45.

Ba(P → Q) → (BaP → BaQ)

Ba¬P → ¬BaP

BaP → BaBaP

¬BaP → Ba¬BaP
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Doxastic-Epistemic Logic

Adding knowledge: satisfying S5; knowledge implies
belief; agents know their beliefs and non-beliefs.

Ka(P → Q) → (KaP → KaQ)

KaP → P ∧BaP

KaP → KaKaP

¬KaP → Ka¬KaP

BaP → KaBaP

¬BaP → Ka¬BaP
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Relational semantics: doxastic models

A doxastic frame is a Kripke structure of the form
(S,→a)a, such that all the relations →a⊆ S × S are
transitive, Euclidean and serial:

s →a t and t →a w implies s →a w,

s →a t and s →a w implies t →a w,

for all s ∈ S there exists some t ∈ S such that s →a t.

A doxastic model is a frame together with a valuation
‖ • ‖ : Φ → P(S), assigning sets of states to “atomic
sentences” from a given list Φ = {p, q, . . .}.
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Epistemic equivalence in Doxastic models

Two states s, t are indistinguishable (or epistemically
equivalent for agent a if we have:

∀w ∈ S ( s →a w ⇔ t →a w )

We write s ∼a t in this case.
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Knowledge and Belief in Doxastic Models

Given a doxastic frame S, an S-proposition is any subset
P ⊆ S. Knowledge and belief can be defined as modal
operators on S-propositions using the standard Kripke
semantics:

BaP = {s ∈ S : ∀t ∈ S : if s →a t then t ∈ P}

KaP = {s ∈ S : ∀t ∈ S : if s ∼a t then t ∈ P}
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Discrete Probabilistic Measures

A discrete probabilistic space is a pair (S, µ), where S is a
finite set of states and µ : P(S) → [0, 1] satisfies the
standard axioms of a probability measure.

This is equivalent to having simply a probability
assignment (on S finite), i.e. a map µ : S → [0, 1] such
that

∑
s∈S µ(s) = 1. This can be uniquely extended to

P(S) by putting

µ(P ) :=
∑

s∈P

µ(s)
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Note that, to uniquely determine such a probability
assignment on a set S = {s1, . . . , sn} with n elements, it
is enough to specify n− 1 probabilities:
{µ(si) : 1 ≤ i ≤ n− 1}.

Conversely, any map µ : {si : 1 ≤ i ≤ n} → [0, 1] on n− 1
states, such that

∑
1≤i≤n−1 µ(si) ≤ 1, determines a

discrete probabilistic space.
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Subjective Probability: “Degrees of Belief”

The Bayesian, or “subjective”, interpretation of
probability: µ(P ) = α means that the agent’s “degree of
belief” in P , the “intensity” of his belief in P , is given by
the number α. “Certainty” corresponds to α = 1.

But what about (simple) belief? As in BaP .
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A “big enough” probability is not enough!

One might be tempted to equate simple “belief” with “a
high degree of belief”, by putting e.g.

BP iff µ(P ) ≥ α

for some big enough α, say α = 0.99. Or even α = 0.5.

But none of these will make KD45 axioms sound. In fact,
even K will fail! The K-validity

BP ∧BQ ⇒ B (P ∧Q)

fails, except if α = 0 (i.e. the agent has no non-trivial
beliefs) or α = 1.
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Simple Belief=Certain Belief

So the only natural (and non-trivial) probabilistic
interpretation for belief is to take α = 1, i.e. to equate
(simple) belief with “certain” belief:

BP iff µ(P ) = 1

This is independent on the current state, so it only
applies to the case in which the agent has no knowledge
at all about the current state.
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Incorporating Knowledge

If the agent does have some information Q about the
current state s, i.e. if all he knows is that s ∈ Q, then
“certain” belief becomes a conditional probability:

s ∈ BP iff µ(P |Q) = 1 ,

where µ(P |Q) is defined as usual:

µ(P |Q) :=
µ(P ∧Q)

µ(Q)
,

in the assumption that µ(Q) 6= 0.
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Probabilistic Models

So a (discrete) probabilistic frame for doxastic-epistemic
logic is a structure (S, µa,Πa)a, such that:

• each (S, µa) is a (discrete) probabilistic space, and

• each (S, Πa) is an Aumann structure; i.e. each Πa is
an information partition of S. (Equivalently, we can
use equivalence relations ∼a instead of partitions Πa.)
For a state s, denote by s(a) the information cell of s

in the partition Πa (or the ∼a-equivalence class of s).

• µa( s(a) ) 6= 0.
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Exercise

Any discrete probabilistic frame is a doxastic frame, if we
take

s →a t iff µa(t|s(a)) 6= 0.

Moreover, in this doxastic frame, we have:

s ∼a t iff s ∈ t(a) iff s(a) = t(a).

Conversely, any finite doxastic frame S can be
“probabilized”, i.e. we can define measures µa and thus a
discrete probabilistic frame, such that the doxastic frame
associated to it (by the above correspondence) is the
original doxastic frame S.
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Completeness of doxastic-epistemic logic

“Model”= frame together with a valuation ‖ · ‖.

The semantics for belief and knowledge is the obvious one:

BaP := { s ∈ S : µa(P |s(a) ) = 1 }

KaP := { s ∈ S : s(a) ⊆ P }



KNAW07 Dynamic Logics for Communication 20

Exercise: The above correspondence between finite
doxastic frames and discrete probabilistic frames
preserves belief and knowledge: the same propositions are
believed/known at the corresponding states. The above
axioms of doxastic-epistemic logic are complete for both
discrete probabilistic models, and finite doxastic models.
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Knowledge 6= True Certain Belief

Example: S = {H, T}, H(a) = {H}, T (a) = {T},
H(b) = T (b) = {H, T};
µa is irrelevant; µb(T ) = 1, and so µb(H) = 0.

A coin is on the table, in front of Alice, who sees the
upper face of the coin. Bob can’t see it, but he believes
that it is Tails. Suppose in fact this is true: the real state
is T , so Bob’s certain belief is true. But he still doesn’t
know it’s Tails!
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Common Belief and Common Knowledge

CKP =
∧

a1,a2,...,an

Ka1Ba2 . . . KanP,

CBP =
∧

a1,a2,...,an

Ba1Ba2 . . . BanP.

Here, interpret
∧

as “(infinite) intersection”. We cannot
define it in the language of doxastic logic, since the
language doesn’t allow infinite conjunctions.
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Learning New Information

Suppose we make a truthful public announcement. P ! is
the action in which a true proposition P is publicly
learned by the whole group. For instance, T ! is the public
announcement that the coin lies Tails up.
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“Public Announcement is Conditionalization”

The received wisdom is that learning new information
corresponds to probabilistic conditionalization: the
epistemic-doxastic model after the action P ! is obtained
by deleting all the non-P states, intersecting the
information cell with the new information P , and
conditionalizing the probabilistic beliefs with P :

S′ := P,

s(a)′ := s(a) ∩ P,

µ′a(Q) := µa(Q|P ).
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Example continued

This works pretty well if the agents didn’t happen to have
believe ¬P .

For instance, after the public announcement T !, the
model S from the above example becomes: S′ = {T},
T (a)′ = T (b)′ = {T}, µ′a(T ) = µ′b(T ) = 1. Now, Bob
knows it’s Tails up.
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The Problem of Belief Revision

But what if the real state in the original model was in
fact H, i.e. (against Bob’s belief) the coin was lying
Heads up?

Then a truthful public announcement must say this, i.e.
it must be H!, and so the new model is S′ = {H}. Given
Bob’s prior belief (that the coin lies Tails up), we get

µ′b(H) = µb(H|H) =
µb(H)
µb(H)

,

which is undefined, since µb(H) = 0.
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Probability theory cannot do belief revision!

In probabilistic applications, e.g. in Game Theory, this
problem is sometimes preempted by requiring that
µa(s) 6= 0 for all states s. But this, in effect, is a way of
eluding the problem by simply stipulating that agents
never have any wrong beliefs!

In fact, this collapses belief into knowledge: with our
previous definitions for Ka and Ba, the two become
equivalent!

Bayesian belief update, based on standard Probability
Theory, simply cannot deal with any non-trivial belief
revision.
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(Discrete) Conditional Probability Spaces

Studied by Popper, Renyi, de Finetti, van Fraasen.
Applied to belief revision by Halpern and others.

A discrete conditional probability space is a pair (S, µ),
where S is a finite set of states and
µ : P(S)×P(S) → [0, 1] satisfies the following axioms:

1. µ(A|A) = 1,

2. µ(A∪B|C) = min(1, µ(A|C)+µ(B|C) ), if A∩B = ∅,
3. µ(A ∩B|C) = µ(A|B ∩ C) · µ(B|C).
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Binary Conditional Probability Assignments

In fact, all the information about µ is captured by
probabilities conditioned only on pairs of states, i.e. by
the quantities:

(s, t)µ := µ( s|{s, t} )

for all s, t ∈ S.
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In other words: discrete conditional probability spaces
can alternatively be described as binary probabilistic
assignments (, ) : S × S → [0, 1] on a finite set S,
satisfying the axioms:

(s, s) = 1;

(t, s) = 1− (s, t), for s 6= t ;

(s, w) =
(s, t) · (t, w)

(s, t) · (t, w) + (w, t) · (t, s)
for s 6= w and denominator 6= 0.

In fact, as in the case of simple probability measures, it is
enough to give n− 1 independent binary probabilities.
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(Discrete) Conditional Probability Models

A discrete conditional probability frame is a structure
(S, µa,Πa)a, such that, for each a, (S, µa) is a discrete
conditional probability space and (S, Πa) is an
information partition.

Ka and Ba are defined as before, but now we can also
define conditional beliefs:

BP
a Q := { s ∈ S : µa(Q|P ∩ s(a) ) = 1}.

We obtain a Conditional Doxastic Logic (CDL), which is
a modal-epistemic, multi-agent version of the AGM

axioms.
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We interpret the conditional belief statement s ∈ BP
a Q in

the following way: if the actual state is s, then after
“learning” that P is the case (in this actual state), agent
a will believe that Q was the case (at the same actual
state, before the learning).
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In fact, for the logic (i.e. the calculation of Ka, Ba and
BP

a ), only the binary probabilities conditioned by states
that are in the same information cell, i.e.

(s, t)µa for s ∼a t,

are relevant.

So we can ignore the others: even less then n− 1
probabilities may be enough. Moreover, this provides a
way to encode the information partition into the
probabilistic information.
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Example

We encode the above example as:

º¹ ¸·
³´ µ¶T

º¹ ¸·
³´ µ¶H

b:1oo
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Relational Semantics: “Plausibility Models”

The standard semantics for conditional belief, or for
modal logics for belief revision, is in terms of “Grove
models”, “Lewis spheres”, “Spohn ordinal plausibility
ranking”, or (simpler and more modal-logic-like) Kripke
models based on a “plausibility” relation s ≤ t, saying
that state t is at least as plausible as state s.

A finite (epistemic-doxastic) plausibility frame is a
structure (S,≤a,∼a)a, where S is finite and, for each a,
≤a is a total (i.e. “connected”, or “complete”) preorder
and ∼a is an equivalence relation.
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Knowledge and Conditional Belief

In a plausibility model, Ka is defined in the standard way
using ∼a, while

BP
a (Q) := { s ∈ S : Max≤aP ∩ s(a) ⊆ Q }

where

Max≤aT = {s ∈ T : t ≤a s for all t ∈ T}.
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Local plausibility

As before, only the plausibility relation between states in
the same information cell are relevant; in other words,
only the “local” plausibility relation

£a := ≤a ∩ ∼a .

In fact, this relation encodes the epistemic relations ∼a as
well. So, as before, we only represent £a, and for
convenience we skip all the loops (since £ is reflexive
anyway).
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Example revisited

The example above becomes:

º¹ ¸·
³´ µ¶T

º¹ ¸·
³´ µ¶H

boo
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Strict Plausibility and Equi-plausibility

For both local and global plausibility relations, we can
also consider their “strict” versions:

s <a t iff: s ≤a t but t 6≤a s

s ¢a t iff: s £a t but t 6 £as.

Finally, the relation of “equi-plausibility” is the
equivalence relation ∼=a induced by the preorder £a:

s ∼=a t iff: both s £a t and t £a s.
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A “Qualitative” Interpretation

Our claim is that this is in fact a qualitative notion,
expressing (not degrees, or intensity, of beliefs) but a type
of “priority” of beliefs, expressible best in terms of
(binary) conditional beliefs about the current state: s ¢a t

means that, when given the (correct) information that the
actual state of the system is either s or t, agent a won’t
know which of the two (since they are epistemically
indistinguishable) but he’ll believe that the state was in
fact t.

s ¢a t “means” B{s,t}
a {t}.
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Conditional beliefs are “firm”

All beliefs captured by a plausibility model are “firm”
(though conditional), i.e. believed with (conditional)
probability 1: given the condition, something is either
believed or not. We give the agent some additional
information about the state of the system (that it is
either s or t) and we ask her a yes-or-no question (“Do
you believe that the state is t ?”); we write s ¢a t iff the
agent’s answer is “yes”.
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Firm, but Revisable, Beliefs

This is a firm answer, so it expresses a firm belief.

“Firm” does not imply “un-revisable” though: if later we
reveal to the agent that the state in question was in fact
t, she should be able to accept this new information; after
all, the agent should be introspective enough to realize
that her belief, however firm, was just a belief.
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Argument: Comparing the two kind of models

Can we extract a (total) plausibility preorder from a
(discrete) conditional probabilistic model, in such a way
that the two notions of conditional belief coincide?

YES. But it is NOT given by

s ≤a t iff µa(s) ≤ µa(t),

since this won’t give rise to the same conditional belief.

Moreover, it is NOT given by

s ≤a t iff µa(s|{s, t}) ≤ µa(t|{s, t})
either!
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The only such notion that does the job is the following:

s ≤a t iff (t, s)µa 6= 0.

The corresponding strict preorder is:

s <a t iff (s, t)µa = 0

In other words: the plausibility order between two states
doesn’t have anything to do with the relative degrees of
belief in the two states, but only with conditional certainty
(of one state, given both).
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Converse

So any discrete conditional probability model is a
plausibility model (with the same notions of knowledge
and conditional belief).

Conversely, every finite plausibility model can be
“probabilized”: we can define conditional probability
measures for each agent, that will give rise to the same
conditional beliefs.

This correspondence between the two types of models can
be used to prove completeness of CDL with respect to
(both) discrete conditional probabilistic models (and
plausibility models).
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Conditional Doxastic Logic (CDL)

The syntax of CDL (without common knowledge and
common belief operators) is:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Bϕ
a ϕ

while the semantics is given by the obvious compositional
clauses for the interpretation map || • ||S : CDL → P(S)
in a plausibility model S.
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In this logic, the knowledge modality can be defined as an
abbreviation, putting

Kaϕ := B¬ϕ
a ⊥

(where ⊥ = p ∧ ¬p is an inconsistent sentence), or
equivalently

Kaϕ := B¬ϕ
a ϕ
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Doxastic Propositions

A doxastic proposition is a map P assigning to each
plausibility model (or conditional probabilistic model) S
some S-proposition, i.e. a set of states PS ⊆ S.

The interpretation map for the logic CDL can thus be
thought of as associating to each sentence ϕ of CDL a
doxastic proposition ||ϕ||.
We denote by Prop the family of all doxastic
propositions. All the above operators (Boolean operators
as well as doxastic and epistemic modalities) on
S-propositions induce corresponding operators on
doxastic propositions, defined pointwise.
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A Complete Proof System for CDL

Necessitation Rule:

From ` ϕ infer ` Bψ
a ϕ .

Normality: ` Bθ
a(ϕ → ψ) → (Bθ

aϕ → Bθ
aψ)

Truthfulness of Knowledge: ` Kaϕ → ϕ

Persistence of Knowledge: ` Kaϕ → Bθ
aϕ

Full Introspection: ` Bθ
aϕ → KaBθ

aϕ

` ¬Bθ
aϕ → Ka¬Bθ

aϕ
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Proof System, continued

Hypotheses are (hypothetically) accepted:

` Bϕ
a ϕ

Minimality of revision:

` ¬Bϕ
a¬ψ → (Bϕ∧ψ

a θ ↔ Bϕ
a (ψ → θ))

One can add axioms for common knowledge, and preserve
completeness.
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Relations between knowledge and beliefs

Observe that
KaQ =

⋂

P⊆S

BP
a Q,

or equivalently:

s ∈ KaQ iff s ∈ BP
a Q for all P ⊆ S. (1)

Another identity that can be easily checked is:

KaQ = B¬Q
a Q = B¬Q

a ⊥ (2)

(where ⊥ := ∅).
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Discussion of (1)

Identity (1) gives a characterization of knowledge as
“absolute”, belief, invariant under any belief revision: a
given belief is “known” iff it cannot be revised, i.e. it is
believed in any condition. This resembles Stalnaker’s
defeasibility analysis of knowledge, based on the idea that
“if a person has knowledge, than that person’s
justification must be sufficiently strong that it is not
capable of being defeated by evidence that he does not
possess” (Pappas and Swain).
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Stalnaker’s Interpretation

But Stalnaker interprets “evidence” as “true
information”, saying: “an agent knows that ϕ if and only
if ϕ is true, she believes that ϕ, and she continues to
believe ϕ if any true information is received”.

So Stalnaker’s concept of defeasible knowledge differs
from ours, corresponding in fact to what we will call “safe
belief”.
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(1): Knowledge as Strongly Defeasible Belief

Our “knowledge” is more robust than Stalnaker’s: it
resists any belief revision, i.e. is not capable of being
defeated by any evidence (including false evidence). So it
corresponds to interpreting “evidence” in the above quote
as meaning “any information, be it truthful or not”. As a
consequence, our notion of knowledge (unlike Stalnaker’s
defeasible knowledge) is negatively introspective, and thus
fits better with the standard usage of “knowledge” in CS.
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Discussion of (2)

Identity (2) says that something is “known” if
conditionalizing our belief with its negation is impossible
(i.e. it would lead to an inconsistent belief).

This corresponds to yet another of Stalnaker’s notions of
knowledge, defined by him in terms of doxastic
conditionals, using precisely the above identity (2).

One of the (trivial but useful) observations arising from
our work is that the notion of knowledge defined by (2)
does not match Stalnaker’s “defeasible” knowledge, but
instead it satisfies the closely related identity (1).
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Safe Beliefs

We precisely capture Stalnaker’s “defeasible knowledge”
in our concept of safe belief.

This can be defined as the Kripke modality 2a associated
to the local plausibility relation £a, i.e. given by

2aQ := [£a]Q

for all S-propositions Q ⊆ S. We read s ∈ 2aQ as saying
that: at state s, agent a’s belief of Q (being the case) is
safe; or at state s, a safely believes that Q. Cf. van
Benthem and Liu.



KNAW07 Dynamic Logics for Communication 57

Safe Belief as a Weak form of Knowledge

Observe that: 2a is an S4-modality (since £a is reflexive
and transitive), but not necessarily S5; i.e. safe beliefs are
truthful

2aQ ⊆ Q

and positively introspective

2aQ = 2a2aQ,

but not necessarily negatively introspective.
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Also, knowledge implies safe belief:

KaQ ⊆ 2aQ;

and safe belief implies belief:

2aQ ⊆ BaQ
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Safe Belief is “Weakly Defeasible”

The last observation can be strengthened to characterize
safe belief in a similar way to the above characterization
(1) of knowledge: safe beliefs are precisely the beliefs
which are persistent under revision with any true
information; i.e.

s ∈ 2aQ iff:

s ∈ BP
a Q for all P ⊆ S such that s ∈ P.
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We can thus see that “safe belief” coincides with
Stalnaker’s non-standard notion of “(weakly defeasible)
knowledge”. Indeed, safe belief can be understood as a
“weak” (non-negatively-introspective) form of
“knowledge”.
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Example 2

Alice and Bob play a game, in which an (anonymous)
referee takes a coin and puts it on the table in front of
them, lying face up but in such a way that the face is
covered (so Alice and Bob cannot see it). The goal of the
game is to guess which face is up. Based on previous
experience, (it is common knowledge that) Alice and Bob
believe that the upper face is Heads (-since e.g. they
noticed that the referee had a strong preference for
Heads).

And in fact, they’re right: the coin lies Heads up.
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A Model for Example 2

º¹ ¸·
³´ µ¶H

º¹ ¸·
³´ µ¶T

a,boo

The actual state s is the one on the left, and we neglected
the anonymous referee. The agents believe Heads is up;
but they don’t know that Heads is up.
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Example 3

Alice has to get out of the room for a minute, which
creates an opportunity for Bob to quickly raise the cover
in her absence and take a peek at the coin. He does that
and so he sees that the coin is Heads up.

After Alice returns, she obviously doesn’t know whether
or not Bob took a peek at the coin, but she believes he
didn’t do it: taking a peek is against the rules of the
game, and so she trusts Bob not to do that.
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The model for Example 3

The situation after this action is described by the
following model S′, with actual state s′1 in the upper left
corner:

º¹ ¸·
³´ µ¶H

a

ÂÂ?
??

??
??

??
??

??
??

?

a

²²

º¹ ¸·
³´ µ¶T

a

²²

a

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

aoo

º¹ ¸·
³´ µ¶H

º¹ ¸·
³´ µ¶T

a,b
oo
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(We’ll later see how this can be computed.)
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Examples continued

In both Examples 2 and 3 above, Alice holds a true belief
(at the real state) that the coin lies Heads up: the actual
state satisfies BaH. In both cases, this true belief is not
knowledge (since Alice doesn’t know the upper face);
nevertheless, in Example 2, this belief is safe (although it
is not known by the agent to be safe): no additional
truthful information (about the real state s) can force her
to revise this belief. To see this, note that any new
truthful information would reveal to Alice the real state
s, thus confirming her belief that Heads is up. So in the
first model S we have s |= 2aH.
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Examples, continued

In contrast, in Example 3, Alice’s belief (that the coin is
Heads up), though true, is not safe. There is some piece
of correct information which, if learned by Alice, would
make her change this belief: we can represent this piece of
correct information as the doxastic proposition H → KbH.
It is easy to see that the actual state s′1 of the model S′

satisfies the proposition BH→KbH
a T (since (H → KbH)S′

= {s′1, t′1, t′2} and the maximal state in the set
s′1(a) ∩ {s′1, t′1, t′2} = {s′1, t′1, t′2} is t′2, which satisfies T.)
So, if given this information, Alice would come to wrongly
believe that the coin is Tails up!
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Other Identities

Believing something is the same as believing that it is safe
to believe it:

BaQ = Ba2aQ

So all beliefs held by an agent “appear safe” to him.
Moreover, the only way for an agent to know that one of
his beliefs is safe is to actually know it to be truthful.
Knowing something is the same as knowing that it is safe
to believe it:

KaQ = Ka2aQ
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Another important observation is that one can
characterize belief and conditional belief in terms of
knowledge and safe belief:

BaQ = K̃a2aQ

and more generally

BP
a Q = K̃aP → K̃a(P ∧2a(P → Q)).

(Here, K̃aP = ¬Ka¬P .)



KNAW07 Dynamic Logics for Communication 70

The paradox of the “perfect believer”

Exercise: In standard doxastic-epistemic logic, one can
prove that

BaKaϕ → ϕ.

For certain belief (with probability 1), it seems reasonable
to assume the following “axiom”:

Baϕ → BaKaϕ.

But putting these together, belief and knowledge collapse
and so we get the “perfect believer’s paradox”:

Baϕ → ϕ
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Discussion

As usually stated, this just shows that the above “axiom”
is wrong, and should be rejected. Various authors
proposed a different solution: accepting the axiom, but
giving up the principle of “negative introspection” with
respect to knowledge; no paradoxical conclusion follows
then.

Our solution combines the advantages of both: the above
axiom is correct if we interpret “knowledge” as 2a (but
then negative introspection fails); while negative
introspection holds if we interpret “knowledge” as Ka

(but then the above “axiom” fails”).
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Conclusion

The paradox of the perfect believer arises from the
conflation of two different notions of “knowledge”:
“Aumman” (partition-based) knowledge and “Stalnaker”
knowledge (i.e. safe belief).
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Degrees of Safety

In the probabilistic models, we can define “degrees of
safety” of a belief, similarly to the degrees of belief.

The degree of safety of a’s belief in Q at state s is given
by:

min
s∈P⊆s(a)

µa(Q|P ).

“Safe belief” is the same as belief with degree of safety=1.

In certain contexts, it is enough to have “weakly safe”
beliefs (i.e. with degree of safety > 0): though they might
be lost due to truthful learning, they are never reversed
(to believe the opposite).
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Common Safe Belief

There is a notion of “common safe belief” that plays an
important role in games: the theorems usually stated in
terms of “common belief (or common knowledge) of
rationality” should be in fact be stated in terms of
common safe belief of rationality.

C2P =
∧

a1,a2,...,an

2a12a2 . . . 2anP.
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Example: The Centipedes Game

Failure of backward induction, despite common belief in
rationality at original node. E.g. The Centipedes Game.

Let us assume that “rationality” is an unchanging “fact”,
constraining once and forever (if true) a player’s behavior.
Still, a player’s beliefs about the other’s rationality may
change. We need common belief in rationality at all
(future) nodes. To make it robust, the only general
assumption that we can make at the original node is
common safe belief of rationality.
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Theorem. Assuming “rationality of a player” is an
unchanging feature of a player, common safe belief in
rationality at the initial state of a game is enough to
ensure the backwards induction solution.
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The Logic of Knowledge and Safe Belief

The following set of axioms is complete for discrete
probabilistic models (and plausibility models):

• K-axiom for Ka and 2a;

• S5-axioms for Ka;

• S4-axioms for 2a;

• KaP → 2aP ;

• Ka((P ∨2aQ) ∧ (Q ∨2aP )) → KaP ∨KaQ.
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Dynamics: Action Models

An (discrete conditional-probabilistic, or finite
plausibility) action model is just a (discrete
conditional-probabilistic, or finite plausibility) frame Σ,
together with a precondition map

pre : Σ → Prop

associating to each element of Σ some doxastic
proposition pre(σ).

Cf. G. Aucher, H. van Ditmarsch, J. van Benthem and
others.
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We call the elements of Σ (basic) doxastic actions, and we
call preσ the precondition of action σ. The basic actions
σ ∈ Σ are taken to represent some deterministic actions of
a particularly simple nature. We only deal here with pure
“belief changes”, i.e. actions that do not change the
“ontic” facts of the world, but only the agents’ beliefs.
Intuitively, the precondition defines the domain of
applicability of σ: this action can be executed on a state s

iff s satisfies its precondition.
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Interpretation of plausibility ordering

The conditional probabilities µa, or the plausibility
pre-orderings £a, give the agent’s (probabilistic,
conditional) beliefs about the current action.

But this should be interpreted as beliefs about changes,
that encode changes of beliefs. In this sense, we use such
“beliefs about actions” as a way to represent doxastic
changes: the information about how the agent changes
her beliefs is captured by our action plausibility relations.
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So we read σ ¢a σ′ as saying that: if (in addition to his
direct observations), agent a is given some information
about (the history of) the system (until and including the
current action), and if this information is enough to
determine that the action is either σ or σ′, but not
enough to determine which of the two, then she believes
the action to be σ′ .
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Ex. 4: Private (Group) Announcements

Let us consider the action that produced the situation
represented in Example 3 above. This was the action of
Bob taking a peek at the coin, when Alice was away.
Recall that Alice believed that nothing was really
happening in her absence, though obviously she didn’t
know this (that nothing was happening). In the literature
on dynamic-epistemic logic, this action is usually called a
private announcement to a subgroup: the “insider” (Bob)
learns which face is up, while the outsider Alice believes
nothing is happening.
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Representation

We represent this as an action model Σ:

º¹ ¸·
³´ µ¶H

a
!!DD

DD
DD

DD

º¹ ¸·
³´ µ¶T

a
}}zz

zz
zz

zz

aoo

º¹ ¸·
³´ µ¶true
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Needed: An ‘Update’ Operation

How can we recover the output state model (in Example
3) from the original (input) state model (Example 2) and
the model of the action (Example 4)?

We need a binary ‘update’ operation ⊗, taking any state
model S = (S, £a, ‖ • ‖)a∈A and any action model
Σ = (Σ,£a, pre)a∈A into an updated state model S⊗Σ,
representing the way an action lying in Σ will act on an
input-state lying in S. We call this the update product of
the two models.
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The Anti-lexicographic Product Update

The set of states of the new model S⊗Σ is:

S ⊗ Σ := {(s, σ) : s ∈ pre(σ)S}
The valuation is given by the original model: (s, σ) |= p iff
s |= p. The plausibility relation is given by:

(s, σ)£a(s′, σ′) iff: either σ¢aσ′, σ ∼a σ′ or σ ∼=a σ′, s£as′.

Consequence: the new epistemic uncertainty relation
are the product of the two uncertainty relations:

(s, σ) ∼a (s′, σ′) iff σ ∼a σ′, s ∼a s′.
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The anti-lexicographic preorder

What this corresponds to, in terms of the “global”
(plausibility) preorder relations ≤a, is:

(s, σ) ≤a (s′, σ′) iff either σ <a σ′ or σ ≤a σ′ ≤a σ, s ≤a s′.

This corresponds to (one of) the (two) standard way(s) to
generate a total preorder on a product from total
preorders on its components: the (lexicographic and the)
anti-lexicographic preorder(s).
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Interpretation

The anti-lexicographic preorder gives “priority” to the
action plausibility relation; this is not an arbitrary choice,
but is motivated by our above-mentioned interpretation
of “actions” as specific types of belief changes. The action
plausibility relation captures what agents really believe is
going on at the moment (while the input-state plausibility
relations only capture past beliefs). The doxastic action is
the one that “changes” the initial doxastic state, and not
vice-versa.
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Interpretation, continued

Giving priority to action plausibility does not in any way
mean that the agent’s belief in actions is “stronger” than
her belief in states; it just captures the fact that, at the
time of updating, the belief about the action is what is
actual, is the current belief about what is going on, while
the beliefs about the input-states are in the past. (Of
course, at a later moment, the above-mentioned belief
about action (now belonging to the past) might be itself
revised. But this is another, future update.) The belief
update induced by a given action is nothing but an update
with the (presently) believed action.
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Interpretation, continued

In other words, the anti-lexicographic product update
reflects our Motto above: beliefs about changes (as
formalized in the action plausibility relations) are nothing
but ways to encode changes of belief (i.e. ways to change
the original plausibility order on states).

This simply expresses our particular interpretation of the
(strong) plausibility ordering on actions, and is thus a
matter of convention: we decided to introduce the order
on actions to encode corresponding changes of order on
states.
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Examples of Update Products

It is easy to see that the update product of the state
model in Example 2 and the action model in Example 4 is
the state model in Example 3:

º¹ ¸·
³´ µ¶H

a
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Public Announcements of “Hard Facts”

A special case of private announcements to a subgroup is
when the subgroup consists of all the agents: truthful
public announcement P! of some “hard fact”, represented
by a epistemic proposition P. The action model consists
of only one node, labeled with P. Its effect (via the
update product) is to delete all the non-P states and keep
the same relations between the remaining states.
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Example

After the previous action, the two are informed that now,
if the coin lies Heads up then Bob knows it. This
corresponds to (H → KbH)!, and the updated state model
after that is:
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º¹ ¸·
³´ µ¶H
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³´ µ¶H

º¹ ¸·
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Note that, in this model, Alice came to the (wrong!) belief
that T (i.e. the coin lies Tails up): as we saw, this is only
possible since her previous true belief that H was not safe.
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Example 5: Successful Lying

Suppose now that, after Bob took the peek in Alice’s
absence, Bob sneakily announces: “Look, I took a peek
and saw the coin was lying Tails up”. For our purposes,
we can formalize the content of this announcement as
KbT, i.e. saying that “Bob knows the coin is lying Tails
up”. This is a public announcement, but not a truthful
one (though it does convey some new truthful
information): it is a lie! We assume that it is in fact a
successful lie: even after he admitted having taken a peek,
Alice still trusts Bob, so she believes him.
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Representation

The successful lying action is given by the left node in the
following model Σ′:

º¹ ¸·
³´ µ¶¬KbT

a //
º¹ ¸·
³´ µ¶KbT

Applying this action model to the state model S′ from
Example 2, we obtain the following:



KNAW07 Dynamic Logics for Communication 96

º¹ ¸·
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Public Announcement of “Soft” Facts

Suppose an announcement P !? is made, in such a way
that all the agents believe it is truthful, although (unlike
in truthful public announcements of “hard” facts) they
don’t know for sure that it is truthful.

º¹ ¸·
³´ µ¶¬P

a,b,c,... //
º¹ ¸·
³´ µ¶P
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Soft Update

Such an announcement has been considered by other
authors, who proposed a notion of “soft update” for it.
But it is easy to see that this matches what we get by
updating any given state model S with the action P !?
using the anti-lexicographic product update:

The new state model S⊗ P !? can be thought of as being
from S by keeping the same information cells, and
keeping the same plausibility order s ≤ t between any two
states s, t ∈ P , and similarly between states s, t 6∈ P ,
while in the same time making all P -states more plausible
than all non-P states.
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Discovery of Deceit

Suppose that, in fact, when Bob was secretely taking a
peek, Alice was taping him (using a hidden camera), so
that she was able to see Bob taking a peek. Suppose also
that it is common knowledge that Bob does not suspect
he is being taped: he believes (though he doesn’t know
for sure) that there is no hidden camera.
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Action Model
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Here, I used double circles to mark the “real” actions
(one of which is actually happening).
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Exercise

Compute the updated state model S⊗Σ.
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Interception of messages

If the above “deceit” (Bob secretely looking at the coin)
is replaced by a secret communication (say, from Charles
to Bob, telling him that the coin lies Heads up), then the
action corresponding to “discovery of deceit” by Alice (as
above) can also be interpreted as secret interception
(wiretapping) by Alice of the secret message (between
Charles and Bob).
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A Probabilistic Version

Given (discrete conditional probabilistic) models S, Σ, we
put on S ⊗ Σ:

If (σ, τ) 6= 0, and either s 6= t or σ 6= τ , then

(sσ, tτ) =
(s, t) · (σ, τ)

(s, t) · (σ, τ) + (1− (s, t)) · (1− (σ, τ))
;

if (σ, τ) = 0, then
(sσ, tτ) = 0 ;

if s = t and σ = τ , then

(sσ, tτ) = 1.
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Justification: Jeffrey’s Rule

Why is that natural?

Well, this is nothing but

(sσ, tτ) = lim
x→(s,t)

x · (σ, τ)
x · (σ, τ) + (1− x) · (τ, σ)

where the limit is taken over x’s such that the
denominator is 6= 0.

This can itself be justified on the basis of a natural
generalization to conditional probabilistic spaces of the
so-called Jeffrey’s rule for updating probabilities.
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Example

We reinterpret the state models in Examples 2 and 3 (and
the action model in Example 4) probabilistically: both
initially believed with certainty that H, then Bob took a
peek, while Alice was certain he didn’t. The resulting
model is essentially the same, except that we add
probability 1 everywhere:
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Dynamic Modalities

Given a doxastic action σ (living in some action model Σ,
we can define a corresponding dynamic modality,
capturing the weakest precondition of σ: for every
proposition P, the proposition [σ]P is given by

([σ]P)S : = {s ∈ S : (s, σ) (if defined) ∈ PS⊗Σ}
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The Laws of Dynamic Belief Revision

[α]KaP = preα →
∧

β∼aα

Ka[β]P

[α]2aP = preα →
∧

α¢aβ

Ka[β]P ∧
∧

α∼=aγ

2a[γ]P

Here, = is logical equivalence, ∼a is epistemic
indistinguishability between actions, ¢a is strict
plausibility order on actions, while ∼=a is equi-plausibility
of (indistinguishable) actions:

α ∼=a β iff α £a β and β £a α.
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Other Reduction Laws

[α]p = preα → p

[α]¬P = preα → ¬[α]P

[α](P ∧Q) = preα → [α]P ∧ [α]Q
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Computing Belief Updates

Using above-mentioned characterizations of (conditional)
belief, we can deduce reduction laws for Ba and BP

a . We
give here the one for simple belief, in the case of a
truthful public announcement P! :

[P!]BaQ = P → BP
a [P!]Q
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Analysis: A Cryptographic Attack.

Two agents, a and b, share a secret key, so that they can
send each other encrypted messages over some
communication channel.

But the channel is not secure: some outsider c may
intercept the messages or prevent them from being
delivered (although he cannot read them, or send around
instead his own encrypted messages, since he doesn’t have
the key).
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Suppose also the encryption method is publicly known
(although the key is secret). It is also known that a is the
only one who knows some important secret (say, whether
some fact P holds or not). Suppose now that A sends an
encrypted message to B, communicating the secret
(whether P or ¬P ). b gets the message, and he’s
convinced it must be authentic, since it has been
encrypted with the secret key.
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To make sure b got the message, the protocol requires
him to publicly acknowledge its receipt (i.e. to broadcast
over a completely public channel, but impossible to block
or falsify, a message saying “Yes, I got the encrypted
message”). So both of them will be convinced that they
now share the secret, and that c doesn’t know the secret,
although he may suspect they know it. (But they think c

can’t be sure of that either, since for all he knows the
message might have been just junk).
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However, suppose that agent c is the only one to notice
two features of the specific encryption method: first, that
the shape of the already encrypted message can show
whether it contains a secret (P or ¬P ) or it’s just junk;
second, that without knowing the key or reading the
content, he can modify the encrypted message in a trivial
way, so that the encoded bit is changed to its opposite:
the message will read “P” if it was ¬P , and vice-versa.
(Encryption methods having similar defects have been
already used.)
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So the outsider c will secretly intercept the message,
change it appropriately and send it to b. Of course, c will
never know the secret: he still can’t decrypt messages; but
instead he has successfully manipulated his opponents’
beliefs: a and b will mistakenly believe that they now share
the secret; while in fact B got the “wrong secret” instead!
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Representation of the initial situation

The initial situation in the scenario from the
cryptographic attack above is given by:

¤
£

¡
¢P oo b,c //

¤
£

¡
¢¬P

There are plausibility arrows for b and c between any two
states: This reflects the fact that b and c don’t know
which of these states is the real one (they don’t know the
secret) and moreover they consider both plausible. In
contrast, a knows the state.
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Representation of the cryptographic atack

The epistemic program describing the above
cryptographic attack (including the simultaneous sending
of the secret by a, interception and manipulation by c,
and receiving and acknowledgement by b) has the
following representation:
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Justification

Only one of the two actions on top (call them α, β) can
really happen: these are actions in which the “secret”
(either P or ¬P ) is intercepted, modified and resent to b.
Only c is aware of the possibility of these actions, but he
doesn’t know which of them is happening. Moreover, we
assume c is a cautious player: he only believes what he
knows. This means he considers α and β equi-plausible:
so there are c-arrows between these top nodes.
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The two nodes in the middle row (call them α′, β′) are
possible actions that a or b may think to be happening:
they represent what would have happened if the
encryption method was safer. a and b are completely
deceived: a knows what message she sent, but she
wrongly thinks that b has got it; while b is even wrong
about the secret: his arrows point to actions with the
wrong preconditions. The bottom node γ corresponds to
sending a ’junk’ (or empty) message. c cannot distinguish
between these three actions, so (being cautious) considers
them equi-plausible.



KNAW07 Dynamic Logics for Communication 121

The update Product

Taking the update product of the state model given above
for the initial situation before the attack with the above
action model of the attack itself, we obtain a new state
model, representing the final epistemic situation after the
attack:
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Reasoning about the Cryptographic Attack

Let π = α ∪ β be the cryptographic attack program. We
want to prove that, if the secret was that P was true (as
in the initial situation drawn above) then after the attack,
a will believe that b knows this secret P . This is expressed
by the validity of

P → [π]BaKbP

To show this, apply the reduction axioms (using the above
notations α, β, . . . for the action nodes in π’s graph):

[π]BaKbP = [α]BaKbP ∧ [β]BaKbP
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For α we prove:

[α]BaKbP = [α]K̃a2aKbP

P → ¬[α]Ka¬2aKbP

P → ¬(P → Ka[α]¬2aKbP∧
∧P → KA[α′]¬2aKbP )

So we push dynamic modalities inside, past the epistemic
ones (while also changing the actions). Applying again
the axiom to programs α′ and β′, agent b and formula P ,
we push dynamic modalities further. Finally, we use the
Preservation of “Facts” to eliminate dynamic modalities
altogether.


