WoLLIC 2006

Conditional Doxastic Models:
A Qualitative Approach to Dynamic Belief Revision

Alexandru Baltag !

Computing Laboratory
Ozford University
Ozford, UK.

Sonja Smets 23
Center for Logic and Philosophy of Science
Vrije Universiteit Brussel
Brussels, Belgium

Abstract

In this paper, we present a semantical approach to multi-agent belief revision and belief update.
For this, we introduce relational structures called conditional dozastic models (CDM’s, for short).
We show this setting to be equivalent to an epistemic version of the classical AGM Belief Revision
theory. We present a logic of conditional beliefs that is complete w.r.t. CDM’s. Moving then to belief
updates (sometimes called “dynamic” belief revision) induced by epistemic actions, we consider two
particular cases: public announcements and private announcements to subgroups of agents. We show
how the standard semantics for these types of updates can be appropriately modified in order to apply
it to CDM’s, thus incorporating belief revision into our notion of update. We provide a complete
axiomatization of the corresponding dynamic doxastic logics. As an application, we solve a “cheating
version” of the Muddy Children Puzzle.
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1 Introduction

Once upon a time there were three very wise children, playing in a garden, under the tall
trees. Despite their father’s warning, naughty Adam and Eve got mud on their foreheads, but
obedient Mary stayed clean. Then the father came to them and said:“Behold, at least one of
you is dirty”.

The story might have easily gone the usual way, with the father repeatedly asking’em if
they (knew, or justifiably believed, that they) were dirty or not, until the children had arrived
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to the correct answer by the sheer power of pure logic. But ... pretty Eve was an impatient
girl: before answering any questions, she quickly took a glance into her pocket-mirror, without
anybody even suspecting this. So she immediately answered “yes, dear father, I know: I'm
dirty, and I am sorry”, while the others could only confess their ignorance. Dirty girl Eve,
indeed!

But what would the other two answer if the compassionate father repeated the Question?
Adam’s answer can be correctly predicted using a special case (private announcements to sub-
groups) of the logic of epistemic actions, introduced in [5,6,4] and which we will hereby refer to
as “the Rightful Logic”. Indeed, Eve’s peek in the mirror can be thought of as a fully private
announcement (that “Eve is dirty”) having only herself as the recipient. Using Rightful Logic,
one can prove that Adam will come to the incorrect (but logically justified) conclusion that
he’s clean. This agrees with our intuitions: not suspecting any cheating, Adam will reason that
Eve could have known she was muddy only if she was in fact the only muddy one. Moreover,
Adam will never be able to retract his wrong answer: Rightful Logic simply cannot allow him
to change his mind. Poor naughty Adam: the dirty boy is condemned to be forever wrong; but
this surely serves him right!?

Sadly, the Rightful Logic predicts an even more unfortunate ending to our story: after
hearing Eve’s answer, innocent Mary will simply go mad! She will simultaneously believe that
she’s dirty and that she’s clean, so her second answer will only be an inconsistent mumble.
Indeed, according to the Rightful semantics of private and public announcements, the set of
“possible worlds” that she considers as possible (after Eve’s answer) is empty. Moreover, Mary
is condemned to perpetual madness: no future communication can heal her inconsistencies.

This is in total contrast to our intuitions: a wise Mary should just conclude that Eve has
somehow cheated, obtaining the desired information by some other process than pure reasoning
(e.g. by looking in a mirror or by some other equivalent secret action). Mary should thus answer
“I don’t know” to fathers’ second repetition of the question, but then in the third round of
questioning (after hearing Adam’s wrong answer), she should finally say “Now I know, dear
father: I'm clean”. Correct answer, instead of inconsistent mumble: what a happy ending for
the immaculate Mary!

The purpose of this paper is twofold: first, to develop a Kripke-model based, qualitative,
multi-agent version of the classical Belief Revision theory, which we call the logic of conditional®
beliefs; second, we use this to propose a modified semantics for private and public announce-
ments, and to axiomatize the corresponding dynamic doxastic logic, which one may call “the
Merciful Logic” (of public/private announcements). By incorporating the main ideas of classi-
cal Belief Revision theory into our basic semantic structures, the Merciful Logic will save Mary
from madness, will lead her to Truth, and could even give another chance to Adam to redeem
himself, if the father asked the Question once again.

The first goal is met by replacing the usual doxastic/epistemic Kripke models with semantic
structures called “conditional doxastic models” (CDM’s). It is important to note that our
approach differs from the recent semantical literature on the topic of (dynamic or static) belief
revision (e.g. [3,10,16,22,23]) in the following sense. Most Kripke-style models proposed for
multi-agent belief revision are based on specific mechanisms that rely on quantitative notions,
such as “degrees of belief”, plausibility functions, graded models or probabilistic measures
of belief. > However, classical (AGM) belief revision theory is a qualitative theory, based on

4 or “hypothetical”
5 One could argue that the degrees of belief can be given by a plausibility order relation, so by a qualitative,
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simple postulates concerning a basic operation (revision), of great generality and simplicity.
Our approach retains this qualitative flavor of the classical AGM theory.

It is true that we also give a Representation Theorem, showing that any CDM can be
represented as arising from a (multi-agent) epistemic plausibility model (based on a family
of “well-preorderings”). © Such models are closer to the ones encountered in the standard
literature on belief revision, being a simple variation on a theme pursued first by Gardenfors
(total preorders as plausibility relations) and later by Spohn [24] (ordinal-valued plausibility
functions). However, the correspondence between CDM’s and plausibility models is not one-to-
one: the same CDM corresponds to many different plausibility models. This means that, if
we take the conditional doxastic structure as fundamental, we can easily see that all the other
above-mentioned descriptions are somewhat redundant by comparison: they include irrelevant
features, such as specific ordinal assignments, or plausibility comparisons between states that
are epistemically distinguishable. For this and other reasons 7, we strongly prefer the qualitative
description in terms of conditional doxastic maps, which can be seen as a natural extension
of the standard definition of doxastic Kripke models, and which gives rise in a natural way to
conditional belief operators, and thus to a conditional dozastic logic CDL. Indeed, the semantic
structure of our CDM’s matches perfectly the structure of our logic CDL, so that a complete
axiomatization can be easily obtained by a simple modal translation of our semantic clauses.

In this sense, our approach is close to the one in Johan van Benthem’s recent (unpublished)
paper [27], of which we became aware only at a late stage of writing this paper. Though based
on (“quantitative”) models involving degrees of plausibility, the approach in [27] abstracts
away from the details of modeling when considering the associated modal logic, which (is
not based on any “graded belief” operator, as in e.g. [3,10], but) is a simple language of
conditional beliefs and update modalities, virtually identical to ours (for public announcements).
As a result, the main “reduction axiom” in [27], which computes (in the style of the Action-
Knowledge Axiom in [6,5]) the conditional beliefs after a public announcement in terms of
initial beliefs, is identical to our corresponding axiom. In a sense, our approach here is simply
to go one step further, and abstract away (from the specific details of a particular quantitative
implementation of belief revision operators) on the semantic side as well. This leads to a
perfect match between the syntax (based on conditional beliefs) and the semantics (in terms of
conditional doxastic models), giving our logic a broader, more general scope of application and
a greater transparency. In its turn, this greatly facilitates the move to more general contexts:
one can easily produce in this way appropriate analogues of the reduction axioms for private
announcements, and in fact (in unpublished work [8]) we obtain natural generalizations to the
case of arbitrary epistemic/dozastic actions.

Our concepts of conditional belief and of CDM can also be seen in the context of the wide
logical-philosophical literature on notions of conditional, see e.g. [1,25,19,189]. One can of
course look at our conditional belief operators as non-classical (and non-monotonic!) implica-
tions. Indeed, there have been various attempts and discussions concerning using conditionals
to deal with belief revision (see e.g. [11,15,20]). We will show that our operators avoid the

order-theoretic notion, but in fact the way belief revision or update are defined makes an essential use of the
“arithmetic” of these (finite or transfinite) degrees, e.g. in [24] and [3]; hence, the quantitative flavor.

6 This result can be seen as an analogue in our semantic context of Gardenfors’ representation theorem in
[12], representing the AGM revision operator in terms of the minimal valuations for some total preorder on
valuations.

7 The notion of equivalence between models is sensitive to the choice of definition. We think that the “right”
such notion for our logic is the natural concept of bisimilarity between CDM’s.
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known paradoxes arising from such mixtures of conditional and belief revision, by failing to sat-
isfy the so-called Ramsey test (except in absolute, unconditional contexts). Indeed, as argued
in [27], the usual statement of the Ramsey test is based on a confusion between knowledge of a
conditional with premise ¢ (or rather, between the “static” belief revision with ¢, as captured by
our hypothetical beliefs) and the knowledge/belief held after learning ¢ (i.e. the “dynamic” belief
revision). The approach in [21] seems also to be closely related to ours: the “models” considered
there for belief revision and belief update are of the same type (except for being single-agent)
as our CDM’s. They consider some natural semantic conditions, in correspondence with modal
axioms, but they do not focus on the same set of postulates as us.®

The plan of this paper is the following. In the next section we briefly review some basic
notions about knowledge-belief (KB) models and doxastic-epistemic logic. In section 3, we
“revise” the standard (syntactic) AGM revision theory, to make it applicable to a (multi-
agent) epistemic/doxastic language, by considering revision of beliefs against a knowledge base;
this imposes a weakening of the standard “Success” postulate. Then we convert the (revised)
belief revision postulates into semantic clauses on KB models, obtaining a semantic counterpart
of the (revised) AGM theory. In section 4, we define our central semantic notion, conditional
dozastic models (CDM’s), and we prove this setting to be actually equivalent (modulo the usual
KB conditions) with the above-mentioned “semantic AGM” postulates. We also show this to
be equivalent to a definition in terms of “well-preordered” plausibility relations. In section
5, we move to belief updates, by changing the usual semantics of public announcements to
make them act on CDM’s in the natural way, thus allowing beliefs to be “dynamically revised”
when learning new information. In section 6, we extend this setting to private announcements
to subgroups, we give a complete axiomatization (using “reduction axioms” in the style of
(6,5,26,27], and then we apply this logic to the task of “saving Mary” from the cheaters, in the
above Muddy-Children-type scenario.

2 Preliminaries: KB-Models and Belief-Knowledge Logic

A knowledge-belief frame (KB-frame for short, see e.g. [17], pg. 89) is a Kripke frame of the
form (S, =4, ~a)aca, With a given set of states S and two binary relations for each agent; the
first relation ~, is meant to capture the knowledge of agent a, while the second —, captures
his beliefs. A KB frame is required to satisfy the following natural conditions: (1) each ~, is
reflexive: s ~, s; (2) if s ~, t then we have: s —, w iff t —, w, and also s ~, w iff t ~, w; (3)
if s —, ¢ then s ~, t; (4) for every s € S there exists some t € S such that s —, t.

The first clause expresses the truthfulness of knowledge, the second expresses full introspec-
tion (an agent knows what he believes/knows and what not), the third says that agents believe
everything they know, and the last (seriality) says that beliefs are consistent. A knowledge-belief
model (KB-model) is a Kripke model having an underlying KB-frame.

By replacing the accessibility relations with their image-maps®, we obtain an equivalent
definition of a more “coalgebraic” flavor: a KB-frame is a structure (S, e, ®(a)).c4, where S is
a set of states and e,, e(a) : S — P(S) are maps satisfying the following conditions:

(1) ses(a); (3) 54 C s(a)
(2) ift € s(a), then s, = tq, s(a) = t(a) ; (4) sq # 0.

8 The notion of update considered in [21] is also completely different from our corresponding notion.
9 The image-map of a relation R C S x S is the map R: S — P(S), R(s) := {t € S : sRt}.
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The maps o, and e(a) are called appearance maps: s, is the dozastic appearance of s to a (or the
theory of a about s), and s(a) is the epistemic appearance of s to a (or the knowledge of a about s).
The equivalence between the two definitions of knowledge-belief models is easily verified 1° .

Given a knowledge-belief model S, an S-proposition (or S-theory) is simply any set P C S of
states in S. This is of course a purely extensional and semantical notion of proposition/theory, to
be distinguished from the syntactical and intensional notions of “sentence” and “theory”. For any S-
proposition P and agent a € A, we can define as usually the S-propositions B, P (“agent a believes P”)
and K,P (“agent a knows P”) by the standard Kripke definitions of modalities (for the accessibility
relations —, and ~;). In terms of appearance maps, these definitions can be given in the form of
Galois dualities (between appearance and knowledge/belief):

s€ B,Piff s, CP s € KyP iff s(a) C P

We can define operations on S-propositions: negation =P := S\ P, conjunction PAQ := PNQ, general
true belief EbP := (,c 4 BaP (“everybody believes P”) and general knowledge EkP := (),c 4 Ko P.
Finally, we define common true belief CbP := (),,~,(Eb)"P = PN EbP N Eb(EbP) N --- and common
knowledge CkP := (), o(Ek)"P = PN EkP N Ek(EEP)N - - -.

The Belief-Knowledge Logic (BKL) is a logic whose syntax is given by:
o = plopleNp| Bap | Kap | Cop | Chep
The semantics is given by the obvious compositional clauses: p is given by the valuation, ||—¢|s :=
—ll¢|ls etc. As standard, we also use the notation s =g ¢ for s € ||¢||s. Observe that general belief
and general knowledge are definable in BKL , by putting: Ebp := A, c 4 Bap, Ekp := N\,ca Katp.
Under various names, BK L is a well-known logic and its complete proof system, which we will also
denote by BK L, is given by familiar axioms and rules, see e.g. [17] (pg. 94, where this proof system
is called K'L).

3 A semantic, multi-agent, epistemic AGM theory

Classical AGM theory. Classical belief revision takes a syntactic view of theories: we are given a
family 7 of all “theories”, whose members are assumed to be deductively closed sets of sentences (over
some given language). Let L be the inconsistent theory (containing all sentences). The expansion
T + ¢ of a theory T € T with a sentence ¢ is defined as T + ¢ := {¢ : T U {p} F ¥}. Now the belief
revision operator * can be introduced by means of the standard AGM postulates:

(*1) T * ¢ is a theory; (*5) T*xp=_Liff F—p;
(*2) peTxy; (*6) ifF o« then Txp =T *
(*3-4) ifFpthen Txp=T; (*7-8) if W ET xpthen T« (A1) =(T*¢p)+1

Revising the Revision Theory: epistemic AGM. In order to apply belief revision to theories in
a dozastic-epistemic language, we need to revise the “Success” postulate (*5) in an obvious way, since
agents’ beliefs about their own beliefs or knowledge are certain, and thus they should not be revised.
More generally, if something is “known”, than it should not be subject to revision; or, in other words,
any attempt to “revise” with a sentence whose negation is “known” should lead to a contradiction.
This leads us to a “revision of this belief revision postulate”, by replacing (*5) with its “epistemic
version”:
(*5e) Txp=Lif TH K-p (e iff (K—¢) € T).

This revised system, composed of postulates (*1), (*2), (*3-4), (*5e),(*6), (*7-8), is called epistemic
AGM. If, as usually, we assume that knowledge satisfies the Necessitation rule (from F ¢ infer - Ky),
then from this and (*5e) we obtain as a consequence the desirable half of (*5): if - =y then T'x¢ = L.

10 One way by putting e, = =, and e(a) = ~, (where R is the image-map of R), and the opposite way by
putting: s —, t iff t € 54, and s ~, t iff t € s(a).
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Multi-agent AGM. To apply the postulates to theories written in the logic BK L, we need a multi-
agent version of Epistemic AGM. So we need to restate postulate (*5e) using the labelled operator K,,
for all agents a. But in addition, observe that the notion of “theory” and the “revision” operation
become relative to agents: a set of sentences might well be a possible theory for agent a, but not for an
agent b. “Theories” in AGM are supposed to be complete descriptions of (the agent’s) beliefs about
the world. So, for example, a theory that leaves open the question whether Kjp holds or not (for some
given fact p) cannot ever be the (complete) theory describing agent b’s beliefs (though it can perfectly
well describe completely agent a’s beliefs): due to introspection, b cannot be uncertain about his own
knowledge.

So we need to assume as given, for each agent a, a family 7, of “a-theories”. We assume these to
be deductively closed sets of sentences in the logic BK L; as pointed above, we also need to require a
minimal notion of introspectiveness: an a-theory should settle all the questions concerning a’s beliefs
and knowledge. In addition, we want each revision operator %, to act on a-theories, and so to state
the postulate (*5e), we need to require the inconsistent theory to be an a-theory.

So we formulate our revised multi-agent (epistemic) AGM postulates, by giving, for every agent
a € A: a family 7, C P(BKL) of sets of sentences in the language BK L, called a-theories, and a
belief revision operator x, : 7, x BKL — 7,, taking pairs of a-theories and BK L-sentences into new
a-theories; and requiring them to satisfy the following conditions: (T1) L € 7, (where L := BKL
is the inconsistent theory, containing all the sentences in BKL); (T2) every T € 7, is deductively
closed, w.r.t. the complete proof system of BKL; (T3) for every ¢ € BKL and every T € 7,, we
have either K,p € T or (=K,p) € T ; (T4) all the above postulates of epistemic AGM, in which we
label with agent names both the knowledge K, and the revision %, operators. Observe that it is not
necessary to require an introspective condition corresponding to (T3) for belief, since this follows from
the above conditions, given the axioms of BK L. Indeed, one can easily prove that for every ¢ € BKL
and every T' € 7,, we have either Byp € T or (—By,p) € T.

Semantic Belief Revision. To develop a semantical counterpart of multi-agent (epistemic) AGM,
we assume as given a K B-model S. We need to replace in the above postulates the syntactic notion of
a “theory” as set of sentences with the semantic notion of S-theory (i.e. set of states in S); similarly,
we replace sentences by S-propositions (also set of states). Observe that each S-theory T' C S gives rise
to a syntactic theory th(T) ={¢ € BKL :t =g ¢ for all t € T'}. In addition to the above postulates,
we have to make our belief revision theory consistent with our theory of beliefs (given by the model S ):
namely, we have to add a postulate (T0) requiring that, for each agent a, the agent’s current beliefs
form an a-theory. Finally, we need to replace the operation T + ¢ and the “deductive closure” of a
theory with their semantic counterparts. To do this, observe first that the partial order on theories
is inverted for semantic theories: for S-theories T, 7" C S we have T' C T" iff th(T") C th(T). The
inconsistent theory L is now represented by the empty set of states ) C S. The deductive closure of the
union of two syntactic theories corresponds to the intersection of the corresponding semantic theories
(sets of states). Hence, expansion T 4+ P of a semantic theory 7' C S with a semantic proposition
P C S is simply given by the intersection T N P. As a result, we obtain the following definition:
Semantic Version of Epistemic AGM Postulates. Given a K B-model S, an AGM belief revision
theory for S is defined by giving, for each agent a, a family of S-theories 7, C P(S), called a-theories
over S, and an operation x, : 7, X P(S) — 7, such that for all T' € 7,, P C S, we have:

(TO) s, € 7,, for all s € S;

(T1) Ve Ta;

(T2) if T € 7,, then for all s,t € T we have s, = t, and s(a) = t(a).
(*1) T x, P € Ty;

(*2) T #, P C P;
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(*3-4) T, S = T;

(*5e) T+, P=0iff T C K,~P (iff T(a)NP =0) ;

(*6) if P = Q then T, P =T %4 Q;

(¥7-8) if T+ PN Q # 0 then T o (PN Q) =T 4 PN Q,

where we used the notation T'(a) := {t(a) : t € T'}, to indicate the “knowledge of @ in T'”. Observe
that, in fact, the above semantic version of the AGM postulate (*6) is superfluous: it is always trivially
satisfied, due to the extensionality of S-theories.

4 Conditional Doxastic Models

We give now a setting that is equivalent to semantic (multi-agent epistemic) AGM, though it is
much simpler in formulation. Namely, we enrich our knowledge-belief models to capture a notion of
conditional belief. A conditional dozastic frame (CD-frame, for short) (S,{e% }aca pcs) consists of a
set of states S, together with a family of conditional (doxastic) appearance maps, one for each agent
a and each possible condition P C S. These are required to satisfy the following conditions:

(i) if s € P then s # 0; (i) if PN s§ #0 then s7 # 0;
(iii) if ¢t € s then s¢ =19, (iv) sPcPp;

(v) saPmQ:sfﬁQ, if sPNQ #0.

A conditional dozastic model (CDM, for short) is a Kripke model whose underlying frame is a
CD-frame. The conditional appearance sap captures the way a state s appears to an agent a, given
some additional (plausible, but not neccesarily truthful) information P. More precisely: whenever s is
the current state of the world, then after receiving new information P, agent a will come to believe
that any of the states s’ € sZ’ might have been the current state of the world (as it was before receiving
information P).

Using conditional doxastic appearance, the knowledge s(a) possessed by agent a about state s (i.e.
the epistemic appearance of s) can be defined as the union of all conditional dozastic appearances. In
other words, something is known iff it is believed in any conditions: s(a) := UQCS s&. Using this,
we can see that the first condition above in the definition of conditional doxastic frames captures the
truthfulness of knowledge. The second condition states the success of belief revision, when consistent
with knowledge: if something is not known to be false, then it can be consistently entertained as a
hypothesis. The third condition expresses full introspection of (conditional) beliefs: agents know their
own conditional beliefs, so they cannot revise their beliefs about them. The fourth condition says
hypotheses are hypothetically believed: when making a hypothesis, that hypothesis is taken to be true.
The last condition describes minimality of revision: when faced with new information @, agents keep
as much as possible of their previous (conditional) beliefs s.".

These requirements can be seen as strengthenings of the clauses defining a K B-frame: indeed,
every CD-frame is a K B-frame. To see this, it is enough to define s, := 52, and check this satisfies
all the KB assumptions. In other words: we can recover the unconditional (“default”) beliefs as
conditional beliefs with respect to some trivially true condition.

Alternatively, we can define a conditional doxastic frame relationally as a tuple (S, {—P>a}a€ APCS);
where —I>Da are binary relations, satisfying the clauses: (1.) if s € P then there exists some state ¢ such
that s —g t; (2.) if s —Q>a t € P, then there exists a state w € S such that s L w; (3.) if s Lot
then for every state w € S we have: s —Q>a w iff ¢ —an w; (4.) if s L. tthent e P; (5.) if there exists

P . . .
S —1>Da t € @ then, for all every w € S, we have: s _r)wg) w iff s —]>3a w € Q. It is easy to see that the this

7
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definition of conditional doxastic frames is equivalent to the above one ! .

Applying the standard Kripke relational definition of modalities to the conditional doxastic re-

lations s —I?Q t, we obtain a new operator Bf on S-propositions, expressing conditional beliefs; in
terms of appearance maps, the definition says that conditional belief is the Galois dual of conditional
appearance:

BPQ:={se S:s’ CQ}

We read this as saying that agent a believes Q@ conditional of P. More precisely, this says that: if the
agent would learn P, then (after learning) he would come to believe that @ was the case in the current
state (before the learning). Notice that beliefs conditional to the trivially true proposition S coincide
with the usual, unconditional beliefs: Bf Q = B,Q.

As a consequence of the above postulates, the knowledge operator, defined (as in the previous
section) as the Galois dual of epistemic appearance K,P := {s € S : s(a) C P}, has the following
property:

K.P= ()| BYP=B."0=B"P
QCS
We can also define conditional versions of general belief, common true belief, knowledge, general
knowledge, common knowledge, by putting: EbFQ = Naca BFQ, ovPQ = ﬂn>0(EbP)”Q =Qn
EbPQn EV(EV)QN ..., KPQ = Ko(P — Q), Bk? := N,c s K2'Q, CEPQ := 50 (EEP)"Q
Theorem. A C'DM is equivalent to a semantic AGM theory over a K B-model.

Proof. Given an AGM theory over a K B-model, we define s’ := s, %, P, and check this satisfies
the clauses of a CDM. For the converse, start with a CDM, and put 7, := {sf : s € S, P C S}.
Define a revision operator T *, @ for our theories T = s € 7,, by cases: if we have P N s(a) = 0
(ie. if s = 0), then we put s %, Q := 0 ; if we have PN s(a) # 0, but PN Q N s(a) = 0, then put
saP *q Q = saQ; else, put sf *q (1= saPmQ = sf nQE = saQ N P. It is easy to check the K B conditions.

Examples of CDM’s: Any K B-model is a C DM ; indeed, we can trivially convert a K B-model into
a CDM, by putting: s¥ = s, N P, whenever s, N P # (), and s. = s(a) N P otherwise. Of course,
this is only one way to organize a K B-model as a C DM, a very special case corresponding to the
most trivial belief revision policy, encoded in the principle: “when your beliefs are contradicted by new
facts, give them all up and stick with what you know”. A more general example is given by:

Plausibility Models: An epistemic plausibility frame is a structure (S, ~q, <q)aca, consisting of a
set S endowed with a family of equivalence relations ~, and a family of “well-preorders” <,, one for
each agent a. Here, a “well-preorder” is just a preorder < on S such that every subset has minimal
elements; i.e. for every set T C S there exists t € T such that ¢t < ¢’ for all ¥ € T. An epistemic
plausibility frame together with a valuation gives an epistemic plausibility model. Plausibility frames
for only one agent and without the epistemic relations have been used as models for AGM belief
revision in [12,22] etc. A more concrete example of plausibility frames was given by W. Spohn in
[24], in terms of ordinal preference maps assigning ordinals d(s) (“the degree of plausibility” of s) to
each state s € S. In our epistemic multi-agent context, this would give us structures consisting of
a multi-agent knowledge frame (S, ~g)qec, together with an ordinal plausibility map d, : S — Ord
(where Ord is the family of all ordinals).
Any epistemic plausibility model gives rise to a CDM , in a canonical way, by putting

s = Minc {t e P:t~ys}

where Min<, T ={t € T :t <, t' for all t € T'} is the set of minimal elements in 7. We call this the
canonical CDM associated to the given plausibility model. The converse is given by the following:

—

P

1n one way they are equivalent by putting e = £, (where R is the image-map of R), and in the opposite

way by putting: 8—1>3at iff t € 2.
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Representation Theorem. FEvery CDM is the canonical CDM of some epistemic plausibility
model.

Proof. Given a CDM S = (S, {e}uca pcs), take for each a some arbitrary well-ordering <@ of
the family {s(a) : s € S} of all epistemic appearances. Define s ~, t iff s(a) = t(a). Define s <, t by:
either s(a) < t(a), or s(a) = t(a), s € e Tt s easy to check that this is an epistemic plausibility
model, whose canonical CDM is S itself. 4

So our setting in terms of CDM'’s is equivalent to a more standard one in terms of plausibility
models. Nevertheless, the proof of the above theorem shows the correspondence is not one-to-one '2:
the same C DM corresponds canonically to many plausibility models. In its turn, the same plausibility
model corresponds to many Spohn-type models (in terms of plausibility degrees). In this paper, we
take the conditional doxastic structure as fundamental, since we are interested in a logic of conditional
beliefs. This means that, for our purposes, not only the actual assignment d, of ordinal degrees of
plausibility, but even much of the induced structure of the plausibility relations <,, is irrelevant: they
contain superfluous features. The important thing are the corresponding conditional doxastic maps.
Conditional Doxastic Logic (CDL). We now change BK L to a version in which belief operators
are conditionalized. The syntax of C' DL is given by:

g =plop|eNg | Bip| Cb¥p | Ck¥p

while the semantics is given by the obvious compositional clauses for the interpretation map || e ||s :
CDL — P(S) in a CDM S. In this logic, the knowledge modality can be defined as an abbreviation,
putting K,¢ := B, o1 (where 1 = pA—p is an inconsistent sentence), or equivalently K¢ := B, ¢¢. 13
It is easy to see that this agrees semantically with the previous definition of the semantic knowledge
operator (as the Galois dual of epistemic appearance): ||K,d|ls = Kq4||é|ls. We also define K% :=
Ka(0 — @), Ebe@ = /\aGA ngp7 Eke(p = /\(LG.A Ks@

Theorem. A sound and complete proof system for C'DL is obtained as follows: first, include
all the axioms and rules of classical propositional logic; second, include Necessitation Rules for all
modalities: from + ¢ infer - BY @, - Cky and F Cb%¢ ; third, include the following axioms:

= Bi(p — 1) — (Blo — Biy)
FCV (e — v) — (Cbo — CbPep)
FCK (¢ — ¢) — (CKo — CkP4p)

Normality:

Truthfulness of Knowledge:
Persistence of Knowledge:

Full Introspection:

Hypotheses are (hypothetically) accepted:

Minimality of revision:

Fixed-Point Axioms:

Induction Axioms:

EKop — ¢

- Kap — Bip

- Bip — K,Bi'p

- =Bip — Ko~Bip

F Bfop

= =BEp — (B0 > BE (1 — 0))
Foo — o AEVYCH

FCKk'o — o ANEKCEO

= C(p — Ebp) — (¢ — Cbtp)

= Ck(p — Ek’p) — (¢ — CEy)

Related to our topic are the standard philosophical problems of using conditionals in belief revision

12Tndeed, this is shown by the arbitrary choice of the well-orders <°.
13 This way of defining knowledge in terms of doxastic conditionals can be traced back to [25].
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models (see for instance [11,15,20]). In this context, it is interesting to see how our conditional belief
operators, understood as conditionals, can avoid Gardenfors’ triviality result [11], which has been used
to argue that standard AGM theory is incompatible with a conditional-based view of belief revision.
This result was based on the assumption that any such conditional should satisfy the so-called Ramsey
test [19]. Following [20], the Ramsey test can be stated in syntactic terms as saying that

(R) “f Pthen Q" eTiff Qe Tx*P

If we interpret the conditional “if P then Q” as our conditional belief BY'Q, interpret the revision
operator as the operator #, defined above (in the proof of the theorem on the equivalence between
CDM’s and AGM theories over K B models), and interpret “theories” T' to mean elements of 7, in a
CDM (as defined in the above-mentioned proof, i.e. theories of the form T = s, for some proposition
R), then we obtain the following semantic version of the Ramsey test:

(Rx?) forevery RC S: s € BPQiff sBx, P CQ.

It is easy to check this is false: given our C DM postulates, the (Rx*)-test fails under this interpretation.
To see this, observe that the left-hand side of (R#?) is equivalent to Vt € s® : t£ C Q. But, by our
postulates, ¢ € s& implies tI = sI’ = s, ¥, P. So, whenever s # (), the left-hand side of (R*?) is
simply equivalent to s, *, P C (), which is in general not equivalent to the right-hand side sf x, P C Q.
So we see that the Ramsey test could only succeed if we had s, = sf in general, i.e. if conditional
beliefs would collapse to unconditional ones: this is in a way our own semantic version of Gardenfors’
triviality result. On the other hand, observe that (Rx?) does hold in unconditional contexts, that is
for R = S (i.e. for theories of the form T = s,): s, C BY'Q iff 5, %, P = s C Q.

The deep flaw underlying the Ramsey test is that it treats hypothetical beliefs about beliefs in the
same way as hypothetical beliefs about facts; the test would succeed only if, when making a hypothesis,
agents would revise their beliefs about their own beliefs in the same way they revise their factual
beliefs. But this is inconsistent with the restrictions posed by introspective knowledge to belief revision:
introspective agents know their own beliefs, and so cannot accept hypotheses that go against this
knowledge. A hypothetical belief system (e.g. the theory s in the above counterexample) may include
different ontic statements than the unconditional belief system (s,); but it includes precisely the same
dozastic/epistemic statements BEQ as this unconditional belief system. Due to introspection, beliefs
about beliefs cannot be revised, not in the sense of (“static”) belief revision that we have here. 4 Only
a “dynamic” kind of belief revision (that aims to represent the revised beliefs of the agent about the
situation after the revision) would satisfy some (suitably modified) Ramsey test.

5 Dynamic Belief Revision: Public Announcements

The belief revision encoded in the conditional doxastic models above is of a static, purely hypothetical,
nature. Indeed, the revision operators cannot alter models in any way: all the possibilities are already
there, so both the unconditional and the revised, conditional beliefs refer to the same world and the
same moment in time.'® In contrast, a belief update is a dynamic form of belief revision, meant to
capture the actual change of beliefs induced by learning (or by other forms of epistemic/doxastic

4 Remember that BfQ means “if a would learn P, then he would come to believe that Q@ had been the case
(before the learning)”. Suppose you happen to believe =P, and somebody asks you: “If I was to tell you that
P was the case, would that change your mind about the fact that you currently believe =P ?”. Clearly, the
correct answer is: “No, it wouldn’t. It would indeed change my belief about P, but not my belief about the
fact that now I believe —P”.

15 Indeed, the postulate (*2) (and the corresponding clause (4) in the definition of C'D-frames) can only hold if
a revision with so-called Moore sentences (e.g. ¢ A =K, ) is understood to be only hypothetically possible. The
agent a’s actual beliefs after learning such a sentence cannot possibly include the sentence itself.

10
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actions). As already noticed before [13,6,5], the original model does not usually include enough states
to capture all the epistemic possibilities that arise in this way. So, contrary to the previous section,
we now allow for belief revisions that change the original CDM. In this section we focus on public
announcements, which change epistemic (and conditional doxastic) models in a minimal way: they
can only shrink the model by “relativization” to a given sentence.

Given a model (CDM) S, denote by saQ, ||l.]| the appearance maps and valuation in S. For any
S-proposition P C S, we define the relativized C DM P!(S) by taking:

(i) the set of states of P!(S) is the set P,
(i) (S?)P!(S) .= s&, for every s € P and Q C P,

(i) lIplleys) = llpll N P.

As an immediate consequence, we get that unconditional beliefs after the update come from prior
conditional beliefs: (sq)pi(s) = (55)1)](5) =sb.

We interpret the action P! as a transition relation from any current state s € S satisfying P to the
state s € PI(S). The syntaz of our public announcement logic is obtained by simply adding constructs
involving dynamic modalities < ¢! > ¢ to the syntax of CDL. For the semantics we include the
following extra clause: || < ¢! > |ls = [[¥[]4)41(5)-

To obtain a sound and complete proof system, we add reduction axioms for public announcements
to the axioms of C'DL:

<pl>p — PAD <!> — pA<!>Y
<pl>WA0) o <@l>PV<pl>0 <ol >CkYy o oACEk! <ol >
< ! > By — go/\B(fw!>0<cp!>d) <! >CWy go/\C’b(f‘p!>9<<p!>@Z)

where p’s denote atomic sentences.

6 Private Announcements to subgroups

In this section we deal with the specific action of “privately learning a fact” or, more generally, a
“private announcement P!4 to a subgroup of agents”. The intuition is that the announcement is
broadcasted to the agents of a group A, while the outsiders B ¢ A do not suspect this is happening.
For simplicity, we consider here the case in which it is common knowledge that nothing else can happen:
this particular announcement (of this particular sentence P to the group A) is the only message that
may be broadcasted at this time; the only alternative is no message being sent, i.e. the silent action
74P in which “nothing happens” (but in which the outsiders don’t know this, so they think it is possible
that the message P was in fact broadcasted to group A).

Given a CDM S and an S-proposition P C S, we define the a new, updated C DM under private
announcements Pla (S) as follows: for each of the old states s € S we take two distinct new copies
P'4(s) (meant to denote the state after P was announced to the group A) and 74P(s) (meant to
denote the corresponding state in which nothing really happened, but the outsiders b ¢ A consider
possible that P was announced to group A). Then the new model S’ is obtained by putting:

(i) the new set of states of Pla(S) is the set S’ = Pl4(P) UTaP(S)
—1 —
(ii) for all a € A: P!A(s)aQ = Ply( S,I;!A @ ) and 7',4]3(5)22 =TaP( seAP @ )

(iii) for all b ¢ A: 7'AP(5)IC)’2 = P!A(s)bQ =7AP( sZAP_l(Q) ), if s(b) NTAP~HQ) # 0;
—1
and TAP(s)bQ = P!A(s)bQ = Ply( 85!‘4 @ ), otherwise
11
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(iv) lplls == Pla(llplls) U taP(llplls),

where we used the notations o(Q) := {o(s) : s € Q} and 07 1(Q') := {s € S : 5(s) € Q'} for any of the
two “actions” o € {P!4, 74P}, and for all sets Q C S, Q" C S’. We explain the clauses for conditional
belief update. For clause 2: the insiders know in any case which action o happened (be it P!4 or 74 P),
so if after that action they are given some new information @) they apply the following algorithm. They
first reconsider their beliefs about the past states, in the view of the new information: they might
have to revise these beliefs with the fact that, after this specific action happens, ) becomes true; so
they revise their beliefs about the past state with ~!(Q); then they run back to present, by applying
action o to the states allowed by these past beliefs: this gives their current belief about the state of
the world after the action o. In clause 3, the outsiders apply essentially the same algorithm, but (not
knowing which action really happens) they keep the default belief that what they see, that is action
74P (i.e. “nothing”), is what is happening; so they apply the above algorithm only to action o = 74 P;
unless this is contradicted by the new information @), i.e. unless it is already known beforehand that
() cannot become true after 74 P; in which case, they “revise their belief about the current action”:
they realize that P!, is happening, so they apply the above algorithm to o = P!4.

For our syntazr, we replace the public announcement modalities above < ¢! > with dynamic
modalities < !4 > and < 74¢ > corresponding to the two types of action above. 6 The semantics
is given by the standard PDL clause: || < 0 > ¢||s := {s € S : o(s) exists and o(s) € |[¢||s}. To get
a complete proof system, we replace the reduction axiom for conditional beliefs with the axioms:

< @la> Bl o ABIFAZ0 < ol > )

<7ap > Boip o BITAP>0 < i > )

< la> Bl oA B;TA“DG < TAp > YN (Kp[Tap] -0 — B;‘p!“‘w < plg > )
< TAQ > ng — Bb<TA<'9>0 < T1ap > Y A (Kp[Tap]—0 — Bb<‘p!A>0 < la > 1),

for all insiders a € A and all outsiders b ¢ B. With these modifications, and by eliminating the axioms
and rules referring to common knowledge and common belief, we obtain a sound and complete proof
system for the logic of private announcements (without common knowledge/belief). " And finally, here
is the promised “dynamic analogue” of the Ramsey test (which is valid, unlike its static counterpart):

Rly(8)a C Ba|Pl]Q iff Plo(Rla(s)a) € Q

Back to Mary. Having introduced these models, we return to the example presented in the intro-
duction. So given Eve (e), Adam (a) and Mary (m), we denote the states in the initial model S by
x = (¢ x% 2™), with z¢, 2% 2™ € {0,1} where 0 =clean and 1 =dirty. The epistemic uncertainty
relation is clear: agents see each other but not themselves, so (i) = {y € S : y/ = 27 for all j # i}.
We can convert this into a K B-model by e.g. assuming that agents start by being “cautious”, i.e.
believing only what they know. This sets x; = x(i). For conditional beliefs, we can use e.g. the
“most trivial” belief revision policy (introduced in section 4): s’ = s; N P, whenever s; N P # ), and
sP = s5(i) N P otherwise. 1

Now, the real state of the world is w = (1,1,0). Mary’s initial belief and knowledge is w,, =
w(m) ={(1,1,1),(1,1,0)}. After father’s announcement, the state (0,0, 0) is eliminated. Eve’s peek in
the mirror can be modeled as a private announcement v = 1¢!, to herself (where the atomic sentence 1¢

16 For reasons of simplicity, we eliminate common knowledge and common belief operators.

17 We considered only this restricted logic for simplicity. As in the simpler case of purely epistemic updates with
a private announcement (without belief revision) in [5], one can also obtain a complete axiomatization of the
logic with common knowledge and common belief, by adding some generalized “Dynamic-Epistemic Induction”
proof rules.

18 But note that this particular choice of a trivial belief revision policy is irrelevant for the rest of this argument:
the same analysis as below can be applied to any CDM based on the above K B model.

12
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indicates that Eve’s forehead is dirty), and the alternative (no peeking) is denoted by 7 := 7.1¢. After
that, in the resulting model S’, Mary’s knowledge is v(w)(m) = {7(1,1,1),7(1,1,0),~v(1,1,1),~(1,1,0)},
while her belief is y(w), = {7(1,1,1),7(1,1,0)}. But after Eve’s public announcement (K.1°)!,

the model shrinks to the set S” := ||K.1¢s = {y(1,2%2™) : 2% 2™ € {0,1}}. Mary’s un-
conditional beliefs after the public announcement are obtained using her prior conditional beliefs
(Y(w)m)sr = 'y(w);i”. To evaluate the last term we need to use the second case of clause 3 in

the definition of private announcements (since we have wy, N71(S") = 0 ): (y(w)m)sr = 75 =

( w;yn_l(sn)) = y(wim)Ny~1S")) = y(w(m)) = {y(1,1,1),7(1,1,0)}. This is a non-empty set of
possible states: so Mary is still sane! Moreover, all her possible states are outputs of the action ~y: she
knows that « has happened. In other words: Mary discovers that cheating () has taken place!

7 Conclusion

We have presented here a new, qualitative semantic implementation of the AG M belief revision theory,
in terms of conditional doxastic models. Based on this, we proposed a revised semantics for public
and private announcements, incorporating belief revision into the notion of update. This “Merciful
Logic” solves problems such as the ones posed by the above cheating version of the Muddy Children
Puzzle, preventing agents from going mad when their beliefs are invalidated.

The semantical structures used in this paper have an algebraic counterpart. In [7], a first attempt
has been made to work out an algebraic setting for multi-agent belief revision. In unpublished work
[8], we generalize the present setting to allow other types of actions. More precisely, all epistemic
action models in [6,4,5] can be conditionalized. The updated CDM’s are actually the result of taking
the “update product” (in a sense that refines the concept in [5]) of the initial conditional doxastic
state model with a conditional doxastic action model. But the definition of the general update is rather
complex and technical, and would require a lot of preparation and justification. To build a case for
it, we chose for simplicity (and due to lack of space) to concentrate here on two very special cases, of
great intuitive appeal. But the general picture can already be glimpsed from our example: looking
back at Mary, Adam and Eve, it is obvious that when Mary revises her beliefs as part of the update
with action (K 1¢)!, she actually deduces that the cheating action v = 1¢!, has happened (instead of
T); so she revises not only her static beliefs about propositions, but also her beliefs about actions.
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