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Problem 1.

1. Each of two children, Alice and Bob, is given a sheet of paper with a
natural number written on it. It is common knowledge that the two
numbers nA, nB belong to the set {0, 1, 2, 3}, that they are distinct
(nA 6= nB) and that each of the two children can see only the number
written on his/her sheet of paper. We assume the children have no
non-trivial beliefs: in other words, they believe only what they know.
Let us assume that, in fact, Alice’s number is 2 and Bob’s number is
3. (So nA = 2, nB = 3.)

Represent the above situation by a plausibility model (S, s), with two
agents (A for Alice, B for Bob) and eight atomic sentences kA, kB, with
k ∈ {0, 1, 2, 3}. The sentence kA means that Alice’s number is k, and
similarly for kB. Clearly specify the set of states, the valuations and
the accessibility relations, and point out what is the real state.

2. Alice and Bob are now asked to answer publicly, truthfully and simul-
taneously the following question: “Is your number even or odd?”

Assuming that the children do what they are asked, represent this si-
multaneous announcement as a doxastic action in a (plausibility) action
model Σ. (Do not use any other atomic sentences but the ones listed
above!) Clearly specify the set of actions, the preconditions and the
accessibility relations, and point out what is the real action.

3. Represent (by a plausibility model) the situation after the above an-
nouncement, by computing the anti-lexicographic update product S⊗Σ
of the two models. Clearly specify the set of states, the valuations and
the accessibility relations, and point out what is the real state.

4. Does either of the children know now (after the announcement) the
other’s number? Justify your answer.
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5. (6 marks) If, instead of assuming the numbers to be 2 and 3, we assume
that the numbers have the same parity (i.e. are both odd or both even),
would this make any difference to the answer to the question in the
previous part? Justify your answer, by looking at the possible output-
states in this case (after the Alice and Bob truthfully answer the above
question).

6. We now make the same assumption about the numbers as in parts 1
and 2 above (i.e. nA = 2, nB = 3), but we assume that in fact the
two children are lying when answering the question: so Alice will say
her number is odd, and Bob will say his number is even. It is common
knowledge that neither of the children suspects the other is lying: they
both believe (although they don’t know) that the other is telling the truth.

Represent this “simultaneous lying” announcement, as an action in a
plausibility action model Σ′.

7. Represent (as a plausibility state model) S′ the situation after the “si-
multaneous lying” announcement from the previous part, by computing
the anti-lexicographic update product S′ = S⊗Σ′.

8. After the previous (double lying) action, the children are publicly told
by their father the following sentence: “Alice lied”. It is common knowl-
edge that the father always speaks the truth.

Represent this an action in a plausibility action model Σ′′.

9. Compute the anti-lexicographic product update S′ ⊗ Σ′′ to represent
the situation after father’s announcement.
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Problem 2. In a far away country, the queen is giving distinctions of honor
by placing hats on the heads of remarkable people. Alice and Bob are each
due to receive a distinction. It is common knowledge that the queen has only
three hats left, namely 2 red hats and 1 white hat. The queen asks Alice and
Bob to close their eyes, and then places a hat on each of their heads. Let us
suppose that in fact the queen chooses to place red hats on both their heads.
Then they are allowed to look: each can see the other’s hat, but not his/her
own. Let us assume that both Alice and Bob are cautious players: at the
moment, they only believe what they know (and nothing else).

1. Represent the above situation as a plausibility model S.

2. Now the following action happens: secretely and separately from each
other, Alice and Bob look in their mirrors and see their own (red!) hats;
none of them suspects that the other one is doing this (in other words,
they both believe the other is not looking, although they don’t know
this for sure); and each of them knows that the other doesn’t suspect
anything.

But it is common knowledge that the queen can see (and thus knows)
anything that happens in her queendom; so e.g. if Bob looks in the
mirror, he knows the queen can see him doing this.

Represent all this scenario as a doxastic action, using a plausibility
action model Σ, with 4 actions.

3. Let rb, hb, ra, ha be atomic sentences describing the hat situation (i.e.
rb says that Bob has a red hat) Using the reduction laws (including the
derived reduction law for belief), prove that after the above action, the
Queen knows that Alice believes that Bob doesn’t know that he has a
red hat. In other words, prove that, if σ is the action described above,
the sentence

[σ]KqBa¬Kbrb

is true at the real state in the original model S.
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Problem 3. Given a discrete conditional-probability space (S, µ), the binary
conditional-probability assignments were defined as

(s, t)µ := µ(s|{s, t})
for all s, t ∈ S.

1. Prove that, for any discrete probabilistic space (S, µ), the binary as-
signments satisfy the following clauses:

(s, s) = 1;

(t, s) = 1− (s, t), for s 6= t ;

(s, w) =
(s, t) · (t, w)

(s, t) · (t, w) + (w, t) · (t, s)
for s 6= t and denominator 6= 0.

2. Prove the converse of the previous part: given any binary operator (, ) :
S × S → [0, 1] on a finite set S, satisfying the above three conditions,
there exists a conditional probability measure µ : P(S) → [0, 1] such
that

(s, t) = (s, t)µ

for all s, t ∈ S.

Problem 4.

1. Show the soundness of the reduction laws for knowledge and safe belief:
prove that the logical equivalencies claimed by these laws hold at any
state in any plausibility model.

2. Prove the reduction law for belief (given in the lecture notes) from the
reduction laws from knowledge and safe belief. You can also use the
other reduction laws and the identity:

BaQ = K̃a¤aQ

where K̃aP = ¬Ka¬P .
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Problem 5 For advanced students, assumes known standard techniques for
proving completeness in Modal Logic). Briefly sketch the idea for the proof of
completeness of the axiomatic system for the logic of knowledge and safe belief
(as given in the Lecture Notes) with respect to plausibility models. Recall
these axioms were

• K-axiom for Ka and ¤a;

• S5-axioms for Ka;

• S4-axioms for ¤a;

• KaP → ¤aP ;

• Ka(P ∨¤aQ) ∧ (Q ∨¤aP ) → KaP ∨KaQ.

Note As usual for normal modalities, we also the following to be part of the
axiomatic system: the rules of modus ponens and Necessitation; and all the
propositional tautologies (or, equivalently, any known complete set of axioms
for propositional logic).
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