Silver dichotomy for countable cofinalities

Vincenzo Dimonte

August 24, 2018

Joint work with Xianghui Shi
Previously...
When λ is a strong limit cardinal of cofinality ω, descriptive set theory can be done in λ^2, or equivalently in $\omega\lambda$, $\Pi_{n\in\omega}\lambda_n$ or $V_{\lambda+1}$.

Many results in classical descriptive set theory hold also in this setting.

In general, the results that are dependent to some tree-structure generalize very well.

$I_0(\lambda)$ has an influence on this setting in the same way that AD has an influence on classical descriptive set theory.
Theorem (Silver, 1993)

Let X be a Polish space and $E \subseteq X^2$ be a coanalytic equivalence relation on X. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection $\varphi : \omega^2 \to X$ such that for distinct $x, y \in \omega^2 \implies \neg \varphi(x)E\varphi(y)$.

Is this true also for the generalized Baire space?

Theorem (Friedman, Kulikov 2014)

Suppose $V = L$ and κ inaccessible. Then the order $\langle \mathcal{P}(\kappa), \subset \rangle$ can be embedded into the set of Borel equivalence relations on 2^κ strictly below the identity, ordered with Borel reducibility.
Theorem (Silver, 1993)

Let E be a coanalytic equivalence relation on ω^2. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection $\varphi : 2^\omega \to \omega^2$ such that for distinct $x, y \in 2^\omega \neg \varphi(x)E\varphi(y)$.
Theorem?

Let E be a coanalytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- E has at most countably many classes;
- there is a continuous injection $\varphi : \prod_{n \in \omega} \lambda_n \to \prod_{n \in \omega} \lambda_n$ such that for distinct $x, y \in \prod_{n \in \omega} \lambda_n \dashv \varphi(x)E\varphi(y)$.
Let E be a coanalytic equivalence relation on $\prod_{n\in\omega} \lambda_n$. Then exactly one of the following holds:

- E has at most λ many classes;
- there is a continuous injection $\varphi : \prod_{n\in\omega} \lambda_n \rightarrow \prod_{n\in\omega} \lambda_n$ such that for distinct $x, y \in \prod_{n\in\omega} \lambda_n \rightarrow \varphi(x)E\varphi(y)$.
Theorem! (D.-Shi)

Let λ_n be measurable cardinals. Let E be a coanalytic equivalence relation on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- E has at most λ many classes;
- there is a continuous injection $\varphi : \prod_{n \in \omega} \lambda_n \rightarrow \prod_{n \in \omega} \lambda_n$ such that for distinct $x, y \in \prod_{n \in \omega} \lambda_n$ $\neg \varphi(x)E\varphi(y)$.
“Definition”

Let E be an equivalence relation on some product space. We say that E has the “singleton property” if for all x, y, if they differ only in one coordinate, then $\neg xE y$.

Theorem (Shelah 1988)

If E is a co-analytic equivalence relation on ω^2 with the singleton property, then there is a continuous injection $\varphi : \omega^2 \rightarrow \omega^2$ such that for distinct $x, y \in \omega^2$ $\neg \varphi(x)E \varphi(y)$.
“Definition”

Let E be an equivalence relation on some product space. We say that E has the “singleton property” if for all x, y, if they differ only in one coordinate, then $\neg xEy$.

Theorem (Shelah 2003)

Let λ_n be measurable cardinals. If E is a co-analytic equivalence relation on $\prod_{n \in \omega} \lambda_n$ with the singleton property, then there is a continuous injection $\varphi : \prod_{n \in \omega} \lambda_n \to \prod_{n \in \omega} \lambda_n$ such that for distinct $x, y \in \prod_{n \in \omega} \lambda_n$ $\neg \varphi(x)E\varphi(y)$.
Fix a dense subset S of $\langle \omega \rangle^\omega$ that intersects every level in exactly one element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem (G_0-dichotomy)

Let G be an analytic directed graph on ω^ω. Then exactly one of the following holds:

- there is a (Borel) \aleph_0-colouring of G;
- there is a continuous function from ω^ω to itself that is a homomorphism from G_0 to G.

This actually generalizes nicely, with almost the same proof.
Fix a dense subset S of $\Pi_{n \in \omega} \lambda_n$ that intersects every level in exactly one element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\Pi_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a \aleph_0-colouring of G;
- there is a continuous function from $\Pi_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

This actually generalizes nicely, with almost the same proof.
Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a \aleph_0-colouring of G;
- there is a continuous function from $\prod_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

This actually generalizes nicely, with almost the same proof.
Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem?

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a λ-colouring of G;
- there is a continuous function from $\prod_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

This actually generalizes nicely, with almost the same proof.
Fix a dense subset S of $\prod_{n \in \omega} \lambda_n$ that intersects every level n in exactly κ_{n-1} element. Let G_0 be the directed graph that couples two elements if they start with an element of S and differ only in the next coordinate.

Theorem! (D.-Shi)

Let G be an analytic directed graph on $\prod_{n \in \omega} \lambda_n$. Then exactly one of the following holds:

- there is a λ-colouring of G (actually, something more complicated, but equivalent for graphs that are the complement of an equivalence relation);
- there is a continuous function from $\prod_{n \in \omega} \lambda_n$ to itself that is a homomorphism from G_0 to G.

This actually generalizes nicely, with almost the same proof.
Now, let E be a co-analytic equivalence relation on $\Pi_{n \in \omega} \lambda_n$. Then its complement G is an analytic directed graph, therefore either E has $\leq \lambda$ equivalence classes, or there is a continuous function $\varphi : \Pi_{n \in \omega} \lambda_n \rightarrow \Pi_{n \in \omega} \lambda_n$ such that $x, y \in G_0$ iff $\neg \varphi(x) E \varphi(y)$. The problem is now that φ is possibly not injective.

Classically, from the G_0-dichotomy to Silver Dichotomy we use the meagre-comeagre structure of ω^2. This creates many problems in $\Pi_{n \in \omega} \lambda_n$, but Shelah’s theorem can save us: the complement of G_0 has the singleton property, and we can use a similar argument to finally prove the Silver Dichotomy.
Can we get rid of the measurable cardinals?

Are measurable cardinals the key to understand the Baire structure of λ^2?
One of the main points of the Axiom of Determinacy is that it generalizes regularity properties for all subsets of reals. This is true also for Silver Dichotomy:

Theorem (AD)

Let E be an equivalence relation on ω^2. Then exactly one of the following holds:

- the classes of E are well-ordered;
- there is a continuous injection $\varphi : \omega^2 \to \omega^2$ such that for distinct $x, y \in \omega^2$ it is not the case that $x E \varphi(y)$.

One of the main points of I0 is that it generalizes AD-like results to higher cardinal. Does it work also in this case?

Open problem I0(\lambda)

Let \(E \) be an equivalence relation on \(\lambda^2 \). Is it true that exactly one of the following holds?

- the classes of \(E \) are well-ordered;

- there is a continuous injection \(\varphi : \lambda^2 \to \lambda^2 \) such that for distinct \(x, y \in \lambda^2 \), \(\neg \varphi(x)E\varphi(y) \).
Forbidden slide 1 (not enough time)

Brief summary of proof of Shelah’s result.
Consider the double diagonal Prikry forcing \mathbb{P} that adds \textit{two} Prikry sequences in λ. This forcing has two important characteristics:

- if M is a model of cardinality λ, then there is a M-generic set for \mathbb{P} in V;
- only the tails of the generic are meaningful, so changing just one coordinate maintain the genericity.
Forbidden slide 2 (not enough time)
The fact that E is co-analytic is also important: this means that the formula that defines E is absolute between models that contain V_λ.
So the proof goes like this: pick M small model that contains everything. If there is a condition of \mathbb{P} that forces that the two elements of the generic are E-related, then also those in V are E-related. Switching one coordinate we do the same, but this contradicts the singleton property or the fact that E is an equivalence relation.
Using generic absoluteness, we have a partial result:

Theorem

Suppose $\text{I}_0(\lambda)$, as witness by j, and let $(\lambda_n)_{n \in \omega}$ be the critical sequence of j. Suppose that all subsets of $V_{\lambda+1}$ are $U(j)$-representable. Then if $E \in L(V_{\lambda+1})$ is an equivalence relation with the singleton property, there is a continuous injection $\prod_{n \in \omega} \lambda_n \to \prod_{n \in \omega} \lambda_n$ such that for distinct $x, y \in \prod_{n \in \omega} \lambda_n \neg \varphi(x) E \varphi(y)$.
Thanks for watching.