The tree property at $\aleph_{\omega+2}$

Šárka Stejskalová
joint work with Sy-David Friedman and Radek Honzík

Kurt Gödel Research Center
University of Vienna
logika.ff.cuni.cz/sarka

Amsterdam
August 24, 2018
Recall that an uncountable regular cardinal \(\kappa \) has the tree property (TP(\(\kappa \))) if every \(\kappa \)-tree has a cofinal branch.

In this talk we show the basic steps behind the proof of the following theorem:

Theorem (Friedman, Honzík, S. (2018))

\((GCH)\) Suppose \(0 \leq n < \omega \) is a natural number and there is \(\kappa \) which is \(H(\lambda^{+n}) \)-hypermeasurable where \(\lambda \) is the least weakly compact above \(\kappa \), then there is a forcing extension where the following hold:

1. \(\kappa = \aleph_\omega \) is strong limit and \(2^{\aleph_\omega} = \aleph_{\omega+n+2} \).
2. TP(\(\aleph_{\omega+2} \)).
Recall that if \aleph_ω is strong limit, then by a result by Shelah,

$$2^{\aleph_\omega} < \min(\aleph_{2\omega+}, \aleph_{\omega_4}),$$

so we cannot aim for an arbitrary infinite gap.

We will mention at the end some open question, in particular whether we can extend our result to a countable gap with TP$(\aleph_{\omega+2})$.
Forcing we will use

We use Mitchell forcing because it is more suitable to manipulate the continuum function.

- The product of the Mitchell and the Cohen forcing works nicely because Mitchell projects to the Cohen forcing (at relevant cardinals).
- The Mitchell forcing $\mathbb{M}(\kappa, \lambda)$ can be easily modify to force $2^\kappa > \kappa^{++}$ while forcing $\text{TP}(\kappa^{++})$.
Assume $\kappa < \lambda$ are infinite regular cardinals, with λ being inaccessible (weakly compact for us).

Definition

A condition in $\mathbb{M}(\kappa, \lambda)$ is a pair (p, q) such that p is a condition in $\text{Add}(\kappa, \lambda)$ and q is a function with domain of size at most κ, $\text{Dom}(q) \subseteq \lambda$, such that for all $\alpha \in \text{Dom}(q)$, $q(\alpha)$ is an $\text{Add}(\kappa, \alpha)$-name for a condition in $\text{Add}(\kappa^+, 1)^{\text{Add}(\kappa, \alpha)}$.

The ordering is defined on the next slide.
Assume $\kappa < \lambda$ are infinite regular cardinals, with λ being inaccessible. Then

Definition

A condition (p, q) is stronger than (p', q') if

(i) $p \leq p'$,

(ii) $\text{dom}(q) \supseteq \text{dom}(q')$ and for every $\beta \in \text{dom}(q')$,

\[p \upharpoonright \beta \models \text{Add}(\kappa, \beta) \quad q(\beta) \leq q'(\beta). \]
Mitchell forcing, basic properties

Assuming that $\kappa^\kappa = \kappa$ and $\lambda > \kappa$ is an inaccessible cardinal, Mitchell forcing $M(\kappa, \lambda)$ satisfies following:

- It is λ-Knaster and κ-closed.
- It collapses the cardinals in the open interval (κ^+, λ) to κ^+.
- It forces $2^\kappa = \lambda = \kappa^{++}$.

There is a projection from $M(\kappa, \lambda)$ to $\text{Add}(\kappa, \lambda)$.

The preservation of κ^+ is shown by the existence of a projection from $\text{Add}(\kappa, \lambda) \times T$ to $M(\kappa, \lambda)$, where T is a κ^+-closed forcing (it has conditions of the form $(0, q)$ in $M(\kappa, \lambda)$).\(^1\)

The natural projection from $M(\kappa, \lambda)$ to $M(\kappa, \alpha)$ for $\kappa < \alpha < \lambda$, makes it possible to treat $M(\kappa, \lambda)$ as an iteration, and write $M(\kappa, \alpha) * \dot{R}$.

\(^1\)We call T the term forcing.
Branch lemmas

Let κ, λ be regular cardinals.

- (essentially Baumgartner) Assume that $\mathbb{P} \times \mathbb{P}$ is a κ-cc forcing notion. If T is a tree of height κ, then forcing with \mathbb{P} does not add cofinal branches to T.

- (essentially Silver) Let $\kappa < \lambda$, with $2^\kappa \geq \lambda$. Assume that \mathbb{P} is a κ^+-closed forcing notion. If T is a λ-tree, then forcing with \mathbb{P} does not add cofinal branches to T.
The main strategy of the proof, with gap 3 (n=1)

- We prepare the universe V so that forcing $2^\kappa = \lambda^+$ with the Cohen forcing will preserve the measurability of κ (with some work, this is possible to do with the large-cardinal assumption that κ has a (κ, λ^+)-extender; supercompactness is not necessary2).
 - The preparation actually destroys the strong-limitness of λ. Thus λ is not weakly compact in the rest of the argument. This presents a technical obstacle which needs to be overcome.
- We use a variant of the Mitchell forcing $\mathbb{M} = \mathbb{M}(\kappa, \lambda, \lambda^+)$ to force 2^κ to be equal to λ^+, and simultaneously collapse cardinals in the interval (κ, λ).

In $V[\mathbb{M}]$, the tree property holds at κ^{++}, κ is still measurable, and we can define a Prikry forcing with collapses. Our final forcing is

$$\mathbb{M}(\kappa, \lambda, \lambda^+) \ast \mathbb{Q},$$

where \mathbb{Q} is the Prikry forcing with collapses (defined with respect to some guiding generic).

Now, the quotient analysis is much harder because of the Prikry forcing (with collapses).

Let give a brief review of the quotient analysis on the next slide.
Let \(k : V \rightarrow M \) be an elementary embedding with critical point \(\lambda \). With the right setup we can write

\[
k(M \ast Q) = (M \ast Q) \ast R,
\]

where \(R \) is the quotient forcing \(k(M \ast Q)/(M \ast Q) \). In particular, if \(G \ast x \) is \(M \ast Q \)-generic, then

\[
R = \{(p', q', r') \in k(M \ast Q) \mid (p', q', r')||k''(G \ast x)\}.
\]

We wish to show that \(R \) does not add branches to \(\lambda \)-trees over \(M[G][x] \).
Unlike the classical case (just with \mathbb{M}), it is not clear whether \mathbb{R} regularly embeds into a product $P_1 \times P_2$, where $P_1 \times P_2$ is κ^+-cc and P_2 is κ^+-closed, which would make the argument simpler.

Instead we will show directly that \mathbb{R} does not add branches, which requires a careful analysis of when (p, q, r) in $\mathbb{M} \ast \mathbb{Q}$ forces (p', q', r') in $k(\mathbb{M} \ast \mathbb{Q})$ into (or out of) $\dot{\mathbb{R}}$.

A rough outline of the argument is given on next slide.
Suppose for contradiction T is a λ-tree in $V[M \ast Q]$ and R forces that \dot{b} is a new branch in T. Let \dot{T} be a Q-name over M for T.

We build a labelled tree \mathcal{T} of height κ of conditions $a = (r, (p', q', r'))$ in $Q \ast R$ such that r decides how \dot{T} looks locally and the whole a decide how \dot{b} looks locally. In particular if $(r, (p', q', r'))$ decides a segment of \dot{b} through \dot{T}, and for instance knows $y < \dot{T} z$ are in \dot{b}, then already r knows $y < \dot{T} z$.

Since \mathcal{T} has 2^κ cofinal branches, there are two branches v, w through \mathcal{T} and respective conditions a_v and a_w which decide $\dot{b}|\delta$ the same way, say y (where δ is a level of \dot{T} such that $\dot{b}|\delta$ is being decided by branches through \mathcal{T}).

Continuing above these conditions, we get two more conditions which decide a restriction of \dot{b} above y differently.
• By reflection (which is built into \mathcal{T}), such a difference is by necessity reflected down to some level $\delta' < \delta$ which contradicts the fact that a, b decide the restriction $b|\delta = y$ the same way.

• The construction of \mathcal{T} and the subsequent arguments use crucially the fact that we work with a dense subforcing of $Q \ast R$ in which the conditions $(r, (p', q', r'))$ are such that $r \in Q$ and $r' \in k(Q)$ have the same stem.

• With conditions from this dense subforcing, one can extend p' and q' more easily without running the risk of incompatibility with the stem of r (which would result in falling out of the quotient R). Then we use the nice chain condition of "p"-conditions and nice closure of the "q"-conditions (with respect to the term ordering) to build \mathcal{T}.
A variant of this argument is used to show any finite gap with $\text{TP}(\aleph_{\omega+2})$. In this variant, we essentially reduce the general case to the gap 3 case.
Open questions:

1. Is it consistent to have an infinite gap with $\text{TP}(\aleph_{\omega+2})$?
2. Can we in addition control other cardinal invariants besides $c(\aleph_{\omega})$? For instance $c(\aleph_{n})$ for $n < \omega$, or $u(\aleph_{\omega})$?