Kurepa trees and spectra of $\mathcal{L}_{\omega_1,\omega}$ sentences

Dima Sinapova
University of Illinois at Chicago
joint work with Ioannis Souldatos

August 24, 2018
Consistency results involving Kurepa trees.

Application: analyzing the spectrum of an $L_{\omega_1,\omega}$ sentence.
Let ϕ be an an $\mathcal{L}_{\omega_1,\omega}$ sentence. The **spectrum** of ϕ is the set of all cardinalities of models of ϕ i.e.

$$\text{Spec}(\phi) = \{\kappa \mid \exists M \models \phi, |M| = \kappa\}$$

If $\text{Spec}(\phi) = [\aleph_0, \kappa]$, then ϕ **characterizes** κ.

General question: which cardinals can be characterized?

Some facts:

- (Morley, Lopez-Escobar) Let Γ be a countable set of $\mathcal{L}_{\omega_1,\omega}$ sentences. If Γ has models of cardinality \aleph_α for all $\alpha < \omega_1$, then it has models in all infinite cardinalities.

- (Hjorth, 2002) For all $\alpha < \omega_1$, \aleph_α is characterized by a complete $\mathcal{L}_{\omega_1,\omega}$ sentence.

Corollary: Under GCH, \aleph_α is characterized by a complete $\mathcal{L}_{\omega_1,\omega}$ sentence iff $\alpha < \omega_1$.
Motivation

Corollary

*Under GCH, \aleph_α is characterized by a complete $L_{\omega_1, \omega}$ sentence iff $\alpha < \omega_1$.***

Question:

Can there exist an $L_{\omega_1, \omega}$ sentence that characterizes \aleph_{ω_1}? (Under failure of GCH)

Answer: Yes.

A conjecture of Shelah’s: If $\aleph_{\omega_1} < 2^{\aleph_0}$, then any $L_{\omega_1, \omega}$ sentence which has models of size \aleph_{ω_1} also has models of size 2^{\aleph_0}.

We show: 2^{\aleph_0} cannot be replaced by 2^{\aleph_1} in the above.
The model theoretic application

We show the following:
There exists an $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ, for which it is consistent with ZFC that:

1. ϕ characterizes \aleph_{ω_1}, i.e. it has spectrum $[\aleph_0, \aleph_{\omega_1}]$.
2. $2^{\aleph_0} < \aleph_{\omega_1} < 2^{\aleph_1}$ and ϕ has models of size \aleph_{ω_1}, but not 2^{\aleph_1}.
3. The spectrum of ϕ can be $[\aleph_0, 2^{\aleph_1})$ where 2^{\aleph_1} is weakly inaccessible.

Note: this is the first example where the spectrum of a sentence can be both right-open and right-closed.

We define ϕ to code a Kurepa tree.
Definition

T is a **Kurepa tree** if T has countable levels, height \aleph_1, and at least \aleph_2 many cofinal branches.

For $\lambda > \omega_1$, $KH(\aleph_1, \lambda)$ is the statement that there exists a Kurepa tree with λ many branches.

$$B := \sup \{ \lambda \mid KH(\aleph_1, \lambda) \text{ holds} \}$$

Note that $\aleph_2 \leq B \leq 2^{\aleph_1}$

Similarly, for any regular κ, can define κ-Kurepa trees, $KH(\kappa, \lambda)$ and $B(\kappa)$, where κ is the height of the tree in place of \aleph_1; $\kappa^+ \leq B(\kappa) \leq 2^\kappa$.

Dima Sinapova University of Illinois at Chicago joint work with Ioannis Souldatos

Kurepa trees and spectra of $L_{\omega_1, \omega}$ sentences
Theorem

There is an $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ, such that ϕ has a model of size λ iff $\lambda \leq 2^{\aleph_0}$ or there is a Kurepa tree with λ many branches (i.e. $KH(\omega_1, \lambda)$).

In other words,

- If there are no Kurepa trees, $\text{Spec}(\phi) = [\aleph_0, 2^{\aleph_0}]$;
- If B is a maximum, then ϕ characterizes $\max(2^{\aleph_0}, B)$.
Consistency results

\[\mathcal{B} := \sup \{ \lambda \mid KH(\omega_1, \lambda) \text{ holds} \} \]

Theorem

It is consistent with ZFC, that:

1. \(2^{\aleph_0} < \aleph_{\omega_1} = \mathcal{B} < 2^{\aleph_1}\) and there exist a Kurepa tree with \(\aleph_{\omega_1}\) many branches.

2. \(\aleph_{\omega_1} = \mathcal{B} < 2^{\aleph_0}\) and there exist a Kurepa tree with \(\aleph_{\omega_1}\) many branches.

Note that in both cases \(\mathcal{B}\) is a maximum.

The model theoretic application:

Corollary

There is a \(L_{\omega_1, \omega}\) sentence \(\phi\), which consistently:

- characterizes \(2^{\aleph_0}\),
- characterizes \(\aleph_{\omega_1}\) and \(2^{\aleph_0} < \aleph_{\omega_1}\).*
An overview of the proof

Theorem

It is consistent with ZFC, that:

1. \(2^{\aleph_0} < \aleph_{\omega_1} = B < 2^{\aleph_1}\) and there exist a Kurepa tree with \(\aleph_{\omega_1}\) many branches.

2. \(\aleph_{\omega_1} = B < 2^{\aleph_0}\) and there exist a Kurepa tree with \(\aleph_{\omega_1}\) many branches.

Let \(V \models ZFC + GCH\).

The forcing posets:

- Let \(\mathbb{P}\) be the standard \(\sigma\)-closed, \(\aleph_2\)-c.c. poset to add a Kurepa tree with \(\aleph_{\omega_1}\) many branches.

- Let \(\mathbb{C} := \text{Add}(\omega, \aleph_{\omega_1+1})\)

Then, we claim that

1. \(V[\mathbb{P}]\) gives part (1)

2. \(V[\mathbb{P} \times \mathbb{C}]\) gives part (2).
An overview of the proof

Some key points in the proof of (2):

- \mathbb{P} adds a Kurepa tree with \aleph_{ω_1}-many branches, showing that $\mathcal{B} \geq \aleph_{\omega_1}$.

- For $\alpha < \omega_1$, let \mathbb{P}_α be the restriction of \mathbb{P} that adds the first \aleph_α many branches to the generic tree.

$\mathcal{B} \leq \aleph_{\omega_1}$:

- Let T be a Kurepa tree in $V[\mathbb{P}][C]$.
- Then $T \in V[\mathbb{P}][Add(\omega, \omega_1)]$, for an appropriately chosen generic $Add(\omega, \omega_1)$.
- Every cofinal branch of T is in $V[\mathbb{P}_\alpha][Add(\omega, \omega_1)]$, for some $\alpha < \omega_1$.
- In $V[\mathbb{P}_\alpha][Add(\omega, \omega_1)]$, $2^{\omega_1} < \aleph_{\omega_1}$.

Then, by cardinal arithmetic, T cannot have more that \aleph_{ω_1} many branches.

Corollary: The sentence ϕ can characterize \aleph_{ω_1}.
In the above theorem, we force B to be a maximum. And in part (1), $\text{Spec}(\phi) = [\aleph_0, \aleph_{\omega_1}]$.

Question: Can we have B be a supremum, but not a maximum? More generally, can the spectrum of an $\mathcal{L}_{\omega_1,\omega}$ sentence consistently be both right-hand closed and open?

It turns out, yes.

From a Mahlo cardinals, we force $B = 2^{\aleph_1}$ and no Kurepa trees with 2^{\aleph_1} many branches.
B can be a supremum, not a maximum:

Theorem

From a Mahlo cardinal, it is consistent that $2^{\aleph_0} < B = 2^{\aleph_1}$, for every $\kappa < 2^{\aleph_1}$, there is a Kurepa tree with at least κ many branches, but there is no Kurepa tree with 2^{\aleph_1} many branches.

Key notions in the proof:

- The forcing axiom GMA;
- A maximality principle, SMP;
- Their consequences on Σ^1_1 subsets of ω^{ω_1}.
A forcing axiom, defined by Shelah.

Some definitions:

Let κ be regular; a poset is **stationary κ^+-linked** if for every sequence $\langle p_\gamma | \gamma < \kappa^+ \rangle$, there is a regressive $f : \kappa^+ \to \kappa^+$, s.t. for almost all $\gamma, \delta \in \kappa^+ \cap \text{cof}(\kappa)$, $f(\gamma) = f(\delta)$ implies that p_γ, p_δ are compatible.

Set Γ_{κ} to be the collection of all κ-closed, stationary κ^+-linked, well met posets with greatest lower bounds.

Definition

GMA_{κ} states that every $\mathbb{P} \in \Gamma_{\kappa}$ for every collection of dense sets $\mathcal{D} \subset \mathbb{P}$ with $|\mathcal{D}| < 2^\kappa$, there exists a \mathcal{D}-generic filter for \mathbb{P}.
A maximality principle, that generalizes GMA.

Definition
For a regular κ, $SMP_n(\kappa)$ states that:

- $\kappa^{<\kappa} = \kappa$;
- for any Σ_n formula ϕ, with parameters in $H(2^\kappa)$ and any $\mathbb{P} \in \Gamma_\kappa$, if for all κ-closed, κ^+-c.c. $Q \in V[\mathbb{P}]$, $V[\mathbb{P}][Q] \models \phi$, then ϕ is true in V.

SMP_κ means $SMP_n(\kappa)$ for all n.

Fact (Philipp Lücke): If $\kappa^{<\kappa} = \kappa$ and there is a Mahlo $\theta > \kappa$, then one can force $SMP(\kappa)$.

Dima Sinapova University of Illinois at Chicago joint work with Ioannis Souldatos
Kurepa trees and spectra of $L_{\omega_1,\omega}$ sentences
Some implications

Proposition

(Lücke)

1. If $\tau < 2^\kappa \rightarrow \tau^{<\kappa} < 2^\kappa$, then $\text{SMP}_1(\kappa)$ iff GMA_κ and $\kappa^{<\kappa} = \kappa$.

2. $\text{SMP}_2(\kappa)$ implies that 2^κ is weakly inaccessible, and for all $\tau < 2^\kappa$, $\tau^{<\kappa} < 2^\kappa$.

3. $\text{SMP}_2(\kappa)$ implies that every Σ^1_1 subset of κ^κ of cardinality 2^κ contains a perfect set.

Here:

$A \subset \kappa^\kappa$ contains a perfect set if there is a continuous injection $g : 2^\kappa \rightarrow \kappa^\kappa$ with $\text{ran}(g) \subset A$.

$A \subset \kappa^\kappa$ is Σ^1_1 iff $A = p[T]$ for some tree $T \subset \kappa^{<\kappa} \times \kappa^{<\kappa}$.
a proof of

$SMP_2(\kappa)$ implies that every Σ^1_1 subset of κ^κ of cardinality 2^κ contains a perfect set.

proof:
Let T be a tree in $\kappa^{<\kappa} \times \kappa^{<\kappa}$, we look at $p[T]$.
Set $\nu := 2^\kappa$, and let \dot{Q} be an $Add(\kappa, \nu^+)$ name for a κ-closed, κ^+ c.c poset. Denote $W := V[Add(\kappa, \nu^+)][\dot{Q}]$.
Note that V and W have the same cardinals.
Two cases:

1. $(p[T])^V \subsetneq (p[T])^W$, or
2. $W \models |p[T]| < 2^\kappa$

Case (1): can construct an embedding $g : 2^{<\kappa} \rightarrow \kappa^{<\kappa} \times \kappa^{<\kappa}$, $\text{ran}(g) \subset T$ that witnesses $p[T]$ contains a perfect set.

So, $\phi := "|p[T]| < 2^\kappa \text{ or there is such an embedding }"$ holds in W.
By $SMP_2(\kappa)$, ϕ holds in V.
Theorem

From a Mahlo cardinal, it is consistent that $2^{\aleph_0} < \mathcal{B} = 2^{\aleph_1}$, for every $\kappa < 2^{\aleph_1}$, there is a Kurepa tree with at least κ many branches, but there is no Kurepa tree with 2^{\aleph_1} many branches.

Proof.

Let V be a model of $SMP_2(\omega_1)$ (can be forced from a Mahlo). By the above, in V we have:

- GMA_{ω_1};
- CH, 2^{ω_1} is weakly inaccessible.
- Every Σ^1_1 subset of $\omega_1^{\omega_1}$ of cardinality 2^{ω_1} contains a perfect set.
Kurepa trees with (at least) \(\kappa \) many branches for all \(\kappa < 2^{\aleph_1} \):

1. Let \(P \) be the standard poset to add such a tree.
2. \(P \) satisfies the hypothesis of \(GMA_{\omega_1} \);
3. We need only \(\kappa \) many dense sets to meet to get the tree with \(\kappa \) branches.

So by \(GMA_{\omega_1} \), there is a Kurepa tree with at least \(\kappa \) many branches.
No Kurepa trees with 2^\aleph_1 many branches:

Let T be a Kurepa tree. Look at the set of branches, $[T]$.

Claim: $[T]$ is a closed set that does not contain a perfect set.

Pf:

- Let $g : 2^{\omega_1} \to 2^{\omega_1}$ be a continuous injection with $\text{ran}(g) \subset [T]$.
- Construct $\langle p_s \mid s \in 2^{<\omega} \rangle$ and $\langle \alpha_n \mid n < \omega \rangle$, s.t.
 - $s' \supset s \rightarrow p_{s'} <_T p_s$; $|s| = n \rightarrow \alpha_n = \text{dom}(p_s)$,
 - for each s, $p_{s^0} \neq p_{s^1}$.

 by induction on $|s|$.

- Then for $\alpha := \sup_n \alpha_n$, the α-th level of T has 2^ω many nodes:
 - for $\eta \in 2^\omega$, set $p_\eta = \bigcup p_{\eta|n}$.

- Contradiction with T being Kurepa.

So $|[T]| < 2^{\omega_1}$, as desired.
1. The idea of using Kurepa trees to get counterexamples to the perfect set property goes back to Mekler and Väänänen.

2. A slightly weaker large cardinals hypothesis than a Mahlo suffices.

3. Our results generalize to κ-Kurepa trees for $\kappa \geq \aleph_2$.
Thm: can force $\mathcal{B} = 2^{\aleph_1}$ is not a maximum.

Corollary

There is an $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ, such that under some mild large cardinals, it is consistent that the spectrum of ϕ is $[\aleph_0, 2^{\aleph_1})$, $2^{\aleph_0} < 2^{\aleph_1}$ and 2^{\aleph_1} is weakly inaccessible.

Corollary

Can have $2^{\aleph_0} < \aleph_{\omega_1} < 2^{\aleph_1}$ and sentence with models in \aleph_{ω_1}, but no models in 2^{\aleph_1}.

Recall Shelah’s conjecture: If $\aleph_{\omega_1} < 2^{\aleph_0}$, then any $\mathcal{L}_{\omega_1,\omega}$ sentence which has models of size \aleph_{ω_1} also has models of size 2^{\aleph_0}.

Corollary

2^{\aleph_0} cannot be replaced by 2^{\aleph_1} in the above.
Using consistency results about Kurepa trees, we produce an $\mathcal{L}_{\omega_1,\omega}$ sentence ϕ, for which it is consistent that:

1. ϕ characterizes 2^\aleph_0
 (take a model with no Kurepa trees or with $\mathcal{B} < 2^\aleph_0$),

2. ϕ characterizes \aleph_ω and $2^\aleph_0 < \aleph_\omega$
 (take the model with $2^\aleph_0 < \mathcal{B} = \aleph_\omega < 2^{\aleph_1}$).

3. $Spec(\phi) = [\aleph_0, 2^{\aleph_1})$ and $2^\aleph_0 < 2^{\aleph_1}$ and the latter is weakly inaccessible
 (use the last theorem, with $\mathcal{B} = 2^{\aleph_1}$ not a maximum).
More on ϕ

We get similar corollaries regarding the **maximal model** spectrum of ϕ, $MM - Spec(\phi) := \{ \kappa | \exists M \models \kappa, |M| = \kappa, M \text{ is maximal} \}$, and the **amalgamation spectrum** of ϕ, $AP - Spec(\phi)$:

It is consistent that:

1. $MM - Spec(\phi) = \{ \aleph_1, 2^{\aleph_0} \}$, $AP - Spec(\phi) = [\aleph_1, 2^{\aleph_0}]$ (take a model with no Kurepa trees),
2. $2^{\aleph_0} < \aleph_{\omega_1}$ and $AP - Spec(\phi) = [\aleph_1, \aleph_{\omega_1}]$;
3. $MM - Spec(\phi)$ is a cofinal subset of $[\aleph_1, 2^{\aleph_1})$, $AP - Spec(\phi) = [\aleph_1, 2^{\aleph_1})$ (use the last theorem, with $B = 2^{\aleph_1}$ not a maximum).
Open questions

1. Shelah’s conjecture: If $\aleph_{\omega_1} < 2^{\aleph_0}$, then any $\mathcal{L}_{\omega_1,\omega}$ sentence which has models of size \aleph_{ω_1} also has models of size 2^{\aleph_0}.

2. Recall, model existence in \aleph_1 is absolute for $\mathcal{L}_{\omega_1,\omega}$ sentences. **Open**: what about \aleph_1-amalgamation for $\mathcal{L}_{\omega_1,\omega}$ sentences? (By Shoenfield \aleph_0-amalgamation is absolute)