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Abstract

Several recent results show that the Lambek Calculus L and its close relative L1 are sound and complete

under (possibly relativized) relational interpretation. This paper transfers these results to L3, the mul-

timodal extension of the Lambek Calculus that was proposed in Moortgat (1996). Two simple relational

interpretations of L3 are proposed and shown to be sound and complete. The completeness proofs make

heavy use of the method of relational labeling from Kurtonina (1995). Finally, it is demonstrated that re-

lational interpretation provides a semantic justification for the translation from L3 to L from Versmissen

(1996).

1 Introduction

In recent years several results have been obtained that show that the associative Lambek calculus
L (Lambek 1958) and its close relative L1 (i.e. L without the ban on empty premises) can be given
a fairly natural relational semantics. Kurtonina (1995) showed that L1 is sound and complete
if every formula is interpreted as a binary relation over some set of states, the product operator
is interpreted as relational composition, and the two directed implications \ and / as left and
right residuation respectively, i.e. ‖A \B‖ = ‖A‖∪ ◦ ‖B‖, and analogously for ‖A/B‖. Pankrat’ev
(1994) and Andréka and Mikulás (1994) prove that the same semantics is sound and complete for
L if the interpretation of formulas is relativized to a certain transitive relation < on the set of
states.

Recent linguistic applications of categorial logics make heavy usage of multimodal extensions of L
(cf. Moortgat 1997 for an overview), and it is thus an interesting question whether the mentioned
results for L carry over to multimodal logics. The present paper contains two results pertaining
to this issue. We provide two relational semantics for L3—the extension of L with pairs of
unary residuation modalities (cf. Moortgat 1996). We establish soundness and completeness of
these semantics. Finally, we point out some proof-theoretic repercussions of these model-theoretic
results.

2 Relational semantics for the Lambek Calculus

Formulas of the Lambek Calculus L are defined by the closure of a set of primitive types under
the three binary connectives •, \, and /. Derivability is given by the following sequent rules, where
A, B etc. range over formulas and X,Y etc. over finite sequences of formulas. As an additional
constraint, premises of sequents must not be empty.
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Definition 1 (Sequent Calculus):

A⇒ A
[id]

X ⇒ A Y,A,Z ⇒ B
Y,X,Z ⇒ B

[Cut]

X ⇒ A Y,B,Z ⇒ C
Y,X,A \B,Z ⇒ C

[\L]

A,X ⇒ B
X ⇒ A \B [\R]

X ⇒ A Y,B,Z ⇒ C
Y,B/A,X,Z ⇒ C

[/L]

X,A⇒ B
X ⇒ B/A

[/R]

X,A,B, Y ⇒ C
X,A •B, Y ⇒ C

[•L]

X ⇒ A Y ⇒ B
X,Y ⇒ A •B [•R]

In Pankrat’ev (1994) and Andréka and Mikulás (1994) it is shown that L is sound and complete
with respect to the following semantics. Let a model consist of a set of possible worlds W , a
transitive relation < on W , and a valuation function V that maps atomic formulas to sub-relations
of <. The semantics of complex formulas is given by the following clauses:

Definition 2 (Relational semantics):

〈a, b〉 |= p iff 〈a, b〉 ∈ V (p)
〈a, b〉 |= A •B iff a < b ∧ ∃c(〈a, c〉 |= A ∧ 〈c, b〉 |= B)
〈a, b〉 |= A \B iff a < b ∧ ∀c(〈c, a〉 |= A⇒ 〈c, b〉 |= B)
〈a, b〉 |= B/A iff a < b ∧ ∀c(〈b, c〉 |= A⇒ 〈a, c〉 |= B)
〈a, b〉 |= A,X iff a < b ∧ ∃c(〈a, c〉 |= A ∧ 〈c, b〉 |= X)

A sequent A1, . . . , An ⇒ B is valid iff for all models M and possible worlds a, b, if 〈a, b〉 |=
A1, . . . , An, then 〈a, b〉 |= B. If we identify the relation < with W ×W , we arrive at a notion of
validity that corresponds to derivability in L1 (which is L without the restriction to non-empty
premises), as shown in Andréka and Mikulás (1994) and in Kurtonina (1995)—this correspondence
between frame conditions and proof theoretic characterizations of the corresponding logic is akin
to analogous results in the real of modal logic.

3 Multimodal extension

L can be extended to its multimodal version L3 by adding a finite family of pairs of unary
connectives 3i and 2

↓
i , and by extending the sequent calculus with the following rules (taken form

Moortgat (1996), who proves Cut Elimination and Decidability):1

Definition 3 (Sequent Calculus for L3):

X, (iA)i, Y ⇒ B
X,3iA, Y ⇒ B

[3iL]

X ⇒ A
(iX)i ⇒ 3iA

[3iR]

X,A, Y ⇒ B
X, (i2↓iA)i, Y ⇒ B

[2
↓
i
L]

(iX)i ⇒ A
X ⇒ 2↓A

[2
↓
i
R]

The premise of a sequent is now a bracketed sequence of formulas, i.e. a finite labeled tree. The
subscript i will be dropped in the remainder of the paper if no confusion arises.

1 A note on terminology: The term “mode” is used as referring to a family of residuated operators here, not to
the indices in the syntactic representation. So L3, which just comprises one family of binary and one family of
unary connectives, would also qualify as “multimodal”.
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There are two ways how the relational semantics given above can be extended to the multimodal
calculi. The first option is inspired by the way modal formulas are interpreted in Kripke semantics.
If we use a procedural metaphor, to verify a formula 3A in a world a, we (i) make a transition
from a to some other world b that is related to a via the accessibility relation R, (ii) we verify
A in b, and (iii) we make a transition in the reverse direction back to a. The main novelty in
a genuinely dynamic interpretation is the fact that verifying A may lead us to a world c that is
distinct from b, and accordingly, making a R−1-transition from c may lead us to a world d that is
distinct from a. The static and the dynamic picture is given schematically in figure 1.

static dynamic

a

b

a

b c

d

R R -1 R R -1

A
A

Fig. 1: Static and vertical dynamic interpretation of 3A

Note that the input-output pairs 〈a, d〉 and 〈b, c〉 have to be related by the ordering relation <,
while there is no such restriction for the R-relation. Inspired by the picture we might say that
formulas relate points horizontally, while the accessibility relation R is vertical. Following this
suggestion, we call this semantics vertical relational semantics.

Formally, a vertical relational model for L3 is a model for L enriched with a family of binary
relations Ri on W . The recursive truth definition is given below.

Definition 4 (Vertical relational Semantics for L3):

〈a, b〉 |=v p iff 〈a, b〉 ∈ V (p)
〈a, b〉 |=v A •B iff a < b ∧ ∃c(〈a, c〉 |=v A ∧ 〈c, b〉 |=v B)
〈a, b〉 |=v A \B iff a < b ∧ ∀c(〈c, a〉 |=v A⇒ 〈c, b〉 |=v B)
〈a, b〉 |=v B/A iff a < b ∧ ∀c(〈b, c〉 |=v A⇒ 〈a, c〉 |=v B)
〈a, b〉 |=v 3iA iff a < b ∧ ∃c, d(aRic ∧ bRid ∧ 〈c, d〉 |=v A)
〈a, b〉 |=v 2

↓
iA iff a < b ∧ ∀c, d(cRia ∧ dRib ∧ c < d⇒ 〈c, d〉 |=v A)

〈a, b〉 |=v A,X iff a < b ∧ ∃c(〈a, c〉 |=v A ∧ 〈c, b〉 |=v X)
〈a, b〉 |=v (iX)i iff a < b ∧ ∃c, d(aRic ∧ bRid ∧ 〈c, d〉 |=v X)

We say that a sequent X ⇒ A is vertically valid (|=v X ⇒ A) iff for all models M and worlds a
and b: if M, 〈a, b〉 |=v X, then M, 〈a, b〉 |=v A.

The second option for a relational interpretation of L3 is inspired by the embedding from L3 to
L proposed in Versmissen (1996). Here 3A is translated as t0 •A•t1, where t0 and t1 are two fresh
atomic formulas of L. Adapted to relational semantics, this means that there are two distinguished
relations R and S (intuitively corresponding to the formulas t0 and t1), and a 3A-transition can
be decomposed into an R-transition, followed by an A-step and an S-step (figure 2). R and S
have to be sub-relations of <; thus the resulting semantics can be dubbed horizontal semantics.
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Fig. 2: Horizontal dynamic interpretation of 3A

To make this precise, a horizontal relational model for L3 is a model for L which is enriched by
a family of pairs of relations Ri and Si on W such that for all i, Ri, Si ⊆<.

Definition 5 (Horizontal relational Semantics for L3):

〈a, b〉 |=h p iff 〈a, b〉 ∈ V (p)
〈a, b〉 |=h A •B iff a < b ∧ ∃c(〈a, c〉 |=h A ∧ 〈c, b〉 |=h B)
〈a, b〉 |=h A \B iff a < b ∧ ∀c(〈c, a〉 |=h A⇒ 〈c, b〉 |=h B)
〈a, b〉 |=h B/A iff a < b ∧ ∀c(〈b, c〉 |=h A⇒ 〈a, c〉 |=h B)
〈a, b〉 |=h 3iA iff a < b ∧ ∃c, d(aRic ∧ 〈c, d〉 |=h A ∧ dSib)
〈a, b〉 |=h 2

↓
iA iff a < b ∧ ∀c, d(cRia ∧ bSid ∧ c < d⇒ 〈c, d〉 |=h A)

〈a, b〉 |=h A,X iff a < b ∧ ∃c(〈a, c〉 |=h A ∧ 〈c, b〉 |=h X)
〈a, b〉 |=h (iX)i iff a < b ∧ ∃c, d(aRic ∧ 〈c, d〉 |=h X ∧ dSib)

Horizontal validity is defined analogously to vertical validity.

4 Weak completeness of vertical relational semantics

Both notions of validity for L3 given in the previous section are adequate in the sense that they
characterize precisely the derivable sequents. These facts are proved in this and the next section,
starting with vertical interpretation.

Theorem 1 (Weak Completeness): For every sequent X ⇒ A:

`L3 X ⇒ A iff |=v X ⇒ B

Soundness can easily be checked by induction on the length of derivations. The completeness proof
follows largely the strategy of Kurtonina (1995) in her completeness proof for L1 in its relational
interpretation. In a first step, we augment the formulas in the sequent system with labels which
reflect the truth conditions of formulas. Each formula in a sequent is labeled with a pair of labels,
representing the input state and the output state of the corresponding transition. Matters are
somewhat complicated by the fact that we have to distinguish horizontal and vertical transitions.
To do so, we assume that labels are structured objects themselves: they consist of a state parameter
(u, v, w . . .) and a color index (r, s, t, . . .). The color index is written as a subscript to the state
parameter. We use letters a, b, c, . . . as metavariables over labels. The idea is that horizontal
transitions only change the state parameter, while vertical transitions change both components.
Brackets are treated like formulas; they are labeled with input label and output label as well. For
better readability, we use “0i” and “1i” instead of opening and closing brackets.
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Definition 6 (Labeled Sequent Calculus):

urvr : A⇒ urvr : A
[id]

X ⇒ ab : A Y, ab : A,Z ⇒ cd : B
Y,X,Z ⇒ cd : B

[Cut]

X ⇒ ab : A Y, ac : B,Z ⇒ de : C
Y,X, bc : A \B,Z ⇒ de : C

[\L]

urvr : A,X ⇒ urwr : B
X ⇒ vrwr : A \B [\R]

X ⇒ ab : A Y, cb : B,Z ⇒ de : C
Y, ac : B/A,X,Z ⇒ de : C

[/L]

X,urvr : A⇒ wrvr : B
X ⇒ wrur : B/A

[/R]

X,urvr : A, vrwr : B, Y ⇒ de : C
X, urwr : A •B, Y ⇒ de : C

[•L]

X ⇒ ab : A Y ⇒ bc : B
X,Y ⇒ ac : A •B [•R]

X,urvs : 0i, vsws : A,wsxr : 1i, Y ⇒ ef : B
X, urxr : 3iA, Y ⇒ ef : B

[3iL]

X ⇒ urvr : A
wsur : 0i, X, vrxs : 1i ⇒ wsxs : 3iA

[3iR]

X,urvr : A, Y ⇒ ab : B
X, urws : 0i, wsxs : 2

↓
iA, xsvr : 1i, Y ⇒ ab : B

[2
↓
i
L]

urvs : 0i, X,wsxr : 1i ⇒ urxr : A
X ⇒ vsws : 2↓A

[2
↓
i
R]

The underlined labels have to be fresh, i.e. they must not occur elsewhere in the sequent.

Definition 7 (Proper and canonical labeling): A sequent a1b1 : A1, . . . , anbn : An ⇒ ab : A is prop-
erly labeled iff

• a1 = a, bn = b

• ∀i(1 ≤ i < n→ bi = ai+1).

• If Ai = 0 or Ai = 1, ai and bi have different colors.

• Otherwise, ai and bi have the same color.

• If Ai = 0, then there is a j > i with Aj = 1 and the input color of Ai equals the output color
of Aj and vice versa.

• If Ai = 1, then there is a j < i with Aj = 0 and the input color of Ai equals the output color
of Aj and vice versa.

It is canonically labeled iff
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• it is properly labeled.

• Each label occurs exactly twice.

Lemma 1: If a sequent is derivable, it is properly labeled.

Proof:
By induction over the length of derivations. a

Lemma 2 (Renaming Lemma): If a0a1 : A1, . . . , an−1an : An ⇒ a0an : B is derivable, then the
result of renaming all occurrences of an arbitrary ai with a label of the same color is also derivable.

Proof:
By induction on the length of derivations. a
The idea of the completeness proof can be sketched as follows. Suppose a given sequent A⇒ B is
underivable.2 Then the labeled sequent ab : A⇒ ab : B (a and b being distinct and having the same
color) is underivable as well (otherwise we could transform every proof of the latter into a proof of
the former simply by dropping the labels). We will construct a falsifying model whose domain is the
set of labels and which has the property that 〈a, b〉 |= A, 〈a, b〉 6|= B. To this end, we mark labeled
formulas with their intended truth value. This gives us the set {Tab : A,Fab : B}. Let us call such
sets T–F sets. We show that every consistent T–F set can be extended to a maximally consistent
T–F set, and furthermore that each maximally consistent T–F set corresponds to a model which
verifies all T-marked and falsifies all F-marked formulas in it. Hence for each underivable sequent
we can construct a falsifying model, which means that every valid sequent is derivable.

To simplify the model construction, we reify the ordering relation and treat < as a formula too.

Definition 8 (T–F set): A T–F formula is either a formula of L3, “0”, “1”, or “<”, which is
labeled with a pair of labels and marked either with “T” or with “F”. A T–F set is a set of T–F
formulas.

By @∆ we refer to the transitive closure of the relation {〈a, b〉|Tab :<∈ ∆}.

Definition 9 (Maxiconsistency): A T–F set ∆ is called maxiconsistent if it obeys the following con-
straints:

• For any labeled formula ab : A (A 6= 0, 1, <), either Tab : A or Fab : A is in ∆, but not both.

• If Tab : A ∈ ∆ and a 6= 0, 1, then Tab :<∈ ∆.

• ∆ is saturated, i.e.

(i) If Fab : A \B ∈ ∆ and a @∆ b, then there is a c such that Tca : A,Fcb : B ∈ ∆.

(ii) If Fab : A/B ∈ ∆ and a @∆ b, then there is a c such that Tbc : B,Fac : A ∈ ∆.

(iii) If Tab : A •B ∈ ∆, then there is a c such that Tac : A, Tcb : B ∈ ∆.

(iv) If Tab : 3A ∈ ∆, then there are c and d such that Tac : 0, T cd : A, Tdb : 1 ∈ ∆.

(v) If Fab : 2↓A ∈ ∆ and a @∆ b, then there are c and d such that Tca : 0, F cd : A, Tbd :
1, T cd :<∈ ∆.

(vi) Tab : 0 ∈ ∆ iff Tba : 1 ∈ ∆.

2 It is sufficient to show completeness for sequents with a single formula as premise, since any proper sequent
can be transformed into a formula with the same truth conditions by replacing commas with products and bracket
pairs with diamonds.
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• ∆ is deductively closed, i.e. if a sequent α1, . . . , αn ⇒ β derivable, and for all 1 ≤ i ≤ n :
Tαi ∈ ∆, then Tβ ∈ ∆.

From a maxiconsistent set we can construct a model in the following way:

Definition 10 (Canonical Model): Let ∆ be a maxiconsistent set. The canonical model for ∆ is
M∆ = 〈W,<, I, {Ri|i ∈ I}, V 〉, where

1. W is the set of labels occurring in ∆.

2. a < b iff a @∆ b

3. aRib iff Tab : 0i ∈ ∆

4. 〈a, b〉 ∈ V (p) iff Tab : p ∈ ∆.

Fact 1: If ∆ is maxiconsistent, M∆ is a vertical relational model for L3

Proof:
Transitivity of < follows immediately from the model construction. The requirement that ∆ is
maxiconsistent ensures that V (p) ⊆< for arbitrary atoms p. a

Lemma 3 (Truth Lemma): For all maxiconsistent sets ∆, formulas A and labels a, b:

Tab : A ∈ ∆ iff M∆, ab |=h A

Proof:
By induction on the complexity of A. For the base case, the conclusion follows from the definition
of M∆.

1. A = B •C,⇒ Since ∆ is saturated, there is a c such that Tac : B, Tcb : C ∈ ∆. By induction
hypothesis, ac |= B, cb |= C, and furthermore a < b, hence ab |= B • C.

2. ⇐ By the semantics of •, there is a c such that ac |= B, cb |= C. By induction hypothesis
Tac : B, Tcb : C ∈ ∆. Since ac : B, cb : C ⇒ ab : B • C, deductive closure of ∆ gives us
Tab : B • C ∈ ∆.

3. A = B \ C,⇒ Suppose ab 6|= B \ C. Since a < b by maxiconsistency, there is a c such that
ca |= B, cb 6|= C. By induction hypothesis, Tca : B,Fcb : C ∈ ∆. Since ca : B, ab : B \ C ⇒
cb : C, Tcb : C ∈ ∆, which violates consistency of ∆.

4. ⇐ Suppose Tab : B \ C 6∈ ∆. By completeness of ∆, Fab : B \ C ∈ ∆. Since a < b by
the semantics of “\”, a @∆ b and therefore saturation entails that there is a c such that
Tca : B,Fcb : C ∈ ∆. By induction hypothesis, ca |= B, cb 6|= C, which is impossible.

5. A = B/C Likewise.

6. A = 3B,⇒ By saturation, Tab :<∈ ∆, and there are c and d such that Tac : 0, T cd :
B, Tdb : 1 ∈ ∆. By induction hypothesis, cd |= B. The construction of M∆ ensures that
aRc, bRd, and a < b. Hence ab |= 3B.

7. ⇐ By the semantics of 3, there are c and d such that aRc, bRd, and cd |= B. By induction
hypothesis, Tcd : B ∈ ∆. By the construction of M∆ and maxiconsistency, Tac : 0, Tdb :
1 ∈ ∆. Since ` ac : 0, cd : B, db : 1⇒ ab : 3B and ∆ is deductively closed, Tab : 3B ∈ ∆.
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8. A = 2↓B,⇒ Suppose ab 6|= 2↓B. Then there are c and d such that cRa, dRb, c < d, and
cd 6|= B. By induction hypothesis, Fcd : B ∈ ∆, and the construction of M∆ ensures that
Tca : 0, T bd : 1 ∈ ∆. Since ` ca : 0, ab : 2↓B, bd : 1 ⇒ cd : B, Tcd : b ∈ ∆, which violates
consistency.

9. ⇐ Suppose Tab : 2↓B 6∈ ∆. By completeness, Fab : 2↓B ∈ ∆. By saturation, there are c
and d such that Tca : 0, T bd : 1, c @∆ d, Fcd : B ∈ ∆. Hence cRa, dRb, c < d and cd 6|= B,
which is impossible according to the truth conditions for “2↓”. a

To extend the initial T–F set to a saturated one, we constructively enforce saturation by adding
“Henkin witnesses”:

Assume an ordering of the set of labels.

Definition 11 (Henkin witnesses): Let ∆ be a T–F set and α be a T–F labeled formula. a and b are
always assumed to be distinct.

(i) If α = Tab : A •B, then H(∆, α) = ∆∪{α, Tac : A, Tac :<,Tcb : B, Tcb :<}, where c is the
first label having the same color as a which does not occur in ∆.

(ii) If α = Fab : A \ B and a @∆ b, then H(∆, α) = ∆ ∪ {α, Tca : A, Tca :<,Fcb : B}, where c
is the first label of a’s color not occurring in ∆.

(iii) If α = Fab : A/B and a @∆ b, then H(∆, α) = ∆ ∪ {α, Tbc : B, Tbc :<,Fac : A}, where c
is the first label of a’s color not occurring in ∆.

(iv) If α = Tab : 3A, then H(∆, α) = ∆ ∪ {α, Tawr : 0, Twra : 1, Twrur : A, Twrur :<, Turb :
1, T bur : 0}, where w and u are the first distinct state parameters and r is the first color
index not occurring in ∆.

(v) If α = Fab : 2↓A and a @∆ b, then H(∆, α) = ∆∪{α, Twra : 0, Tawr : 1, Fwrur : A, Tbur :
1, Turb : 0, Twrur :<} where w and u are the first distinct state parameters and r is the first
color index not occurring in ∆.

(vi) Else H(∆, α) = ∆.

Adding Henkin witnesses preserves three properties of T–F sets that are essential to prove maxi-
consistency.

Definition 12 (Deep Consistency): A set ∆ is called deeply consistent iff it has the properties that
if ` α1, . . . , αn ⇒ β and Tαi ∈ ∆ for all 1 ≤ i ≤ n, then Fβ 6∈ ∆.

Definition 13 (Acyclicity): A T–F set ∆ is called acyclic iff there is no sequence of labels a1, . . . , an
such that Tai−1ai :<,Tana1 :<∈ ∆.

Definition 14 (Well-Coloredness): A T–F set ∆ is well-colored iff the following conditions hold:

• If Tab :<∈ ∆, then a and b have the same color.

• If Tab : 0 ∈ ∆ or Tab : 1 ∈ ∆, then a and b have different colors.

Lemma 4: If α ∈ ∆ and ∆ is deeply consistent, acyclic and well-colored, then H(∆, α) is also
deeply consistent, acyclic and well-colored.
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Proof:
As for acyclicity, observe that addition of Tac :< cannot destroy it provided c is fresh and a 6= c.
This covers cases (ii) trough (v). In the first cases, assume that adding Tac :<, Tcb :< destroys
acyclicity. This means that there is a sequence a1, . . . , an such that Tai−1ai :<, Tana1 :<∈
∆∪ {Tac :<,Tcb :<}. In this sequence, all occurrences of c have to occur between a and b. Since
the fact that Tab : A • B ∈ ∆ entails that Tab :<∈ ∆, removing all occurrences of c would yield
a closed cycle for ∆, contra assumption.

Preservation of well-coloredness is immediate from the definition of Henkin witnesses.

To prove preservation of deep consistency, we assume the contrary and derive a contradiction in
each case.

(i) Since in every derivable sequent each label occurs an even number of times, the sequent that
violates deep consistency must have the form X1, ac : A, cb : B, . . . ,Xn, ac : A, cb : B, Y ⇒
α where all formulas occurring in X1, . . . , Xn, Y, α already occur in ∆. By the renaming
lemma, thence the following sequent is also valid: X1, ac1 : A, c1b : B, . . . ,Xn, acn : A, cnb :
B, Y ⇒ α, from which we can derive X1, ab : A • B, . . . ,Xn, ab : A • B, Y ⇒ α Since all
formulas involved are already in ∆ and ∆ is deeply consistent, Fα cannot be in ∆, which is
a contradiction.

(ii) By the same reasoning as above, both new formulas must occur in the sequent that causes
violation of deep consistency. Hence its conclusion is cb : B. The only place where the
other occurrence of c can possibly occur is the first premise, hence the sequent has the form
ca : A,X ⇒ cb : B with X consisting only of old T-marked formulas. Since a @∆ b and ∆ is
acyclic and hence irreflexive, a 6= b which ensures that X is non-empty. Therefore from this
sequent we can derive X ⇒ ab : A \B, which is excluded by the deep consistency of ∆.

(iii) Likewise.

(iv) Suppose wra : 1 occurs in the sequent that destroys deep consistency. Since wr is fresh, there
is no F-formula with wr as input label, and the only T-formula with wr as output label is
Tawr : 0. Hence the sequent in question would have the form X, awr : 0, wra : 1, Y ⇒ α,
which is impossible since there are no valid sequents where a closing bracket immediately
follows an opening bracket. In the same way it can be shown that Turb : 0 cannot be
involved in the destruction of deep consistency. Thus by familiar reasoning, the guilty
sequent has the form X1, awr : 0, wrur : A, urb : 1, . . . , Xn, awr : 0, wrur : A, urb : 1, Y ⇒ α.
By the renaming lemma, X1, awr,1 : 0, wr,1ur,1 : A, ur,1b : 1, . . . , Xn, awr,n : 0, wr,nur,n :
A, ur,nb : 1, Y ⇒ α with wr,i and ur,i fresh is also valid. From this we derive the validity
of X1, ab : 3A, . . . , ab : 3A, Y ⇒ α which is incompatible with the assumption of the deep
consistency of ∆.

(v) Suppose awr : 1 would occur in the sequent that undermines deep consistency. Since every
valid sequent is properly labeled and wr is a new label, this sequent has to take the form
A1, . . . , awr : 1, wra : 0, . . . An ⇒ α, where all premises are T-marked and the conclusion
is F-marked in H(∆, α). By proper labeling we know that awr : 1 has to be preceded by
cur : 0 for some c, u. But this is impossible since r is a new color. Thus Tawr : 1 cannot
destroy deep consistency. The same case can be made for Turb : 0. Therefore destruction
of deep consistency entails that there is a valid sequent wra : 0, X, bur : 1 ⇒ wrur : A such
that all formulas in X are T-marked in ∆. Since Tab :<∈ ∆, a 6= b due to acyclicity and
hence X is non-empty. Therefore the sequent x⇒ ab : 2↓A is also valid, which contradicts
deep consistency of ∆.

(vi) Immediate. a

It remains to be shown that any deeply consistent, acyclic and well-colored T–F set can be extended
to a maxiconsistent T–F set.



4 Weak completeness of vertical relational semantics 10

Lemma 5: If ∆ is deeply consistent, acyclic, and well-colored, A 6= 0, 1 and a and b have the same
color, then either ∆ ∪ {Tab : A, Tab :<} or ∆ ∪ {Fab : A} is deeply consistent, acyclic, and
well-colored.

Proof:
Suppose adding Fab : A destroys deep consistency, acyclicity, or well-coloredness. Adding an
F-marked formula cannot destroy acyclicity or well-coloredness, hence ∆∪{Fab : A} is not deeply
consistent. This means that there is a set of formulas Tac1 : A1, . . . , T cn−1b : An ∈ ∆ such that
ac1 : A1, . . . , cn−1b : An ⇒ ab : A is valid. Now suppose adding Tab : A would destroy deep
consistency, too. Then there would be a valid sequent X1, ab : A, . . . ,Xm, ab : A, Y ⇒ cd : C
such that Fcd : C ∈ ∆ and X1, . . . , Xm consist of T-marked formulas from ∆. By repeated
application of Cut we would obtain the valid sequent X1, ac1 : A1, . . . , cn−1b : An, . . . , Xn, ac1 :
A1, . . . , cn−1b : An, Y ⇒ cd : C, where the premise consists only of T-marked formulas and the
conclusion is F-marked, which is excluded by the deep consistency of ∆. Adding Tab :< cannot
destroy acyclicity since Tac1 :<, . . . , T cn−1b :< are in ∆ and ∆ is acyclic. Preservation of well-
coloredness is obvious. a
This allows us to construct a maxiconsistent set by the following procedure:

Definition 15: Let ∆ be a deeply consistent set and ϕ be an enumeration of labeled formulas (ex-
cluding 0, 1, and <).

1. ∆0 = ∆

2. If ϕn = ab : A, and ∆n ∪ {Tϕn, Tab :<} is deeply consistent, acyclic, and well-colored, then
∆n+1 = H(∆n ∪ {Tϕn, Tab :<}, Tϕn).

3. Otherwise ∆n+1 = H(∆n ∪ {Fϕn}, Fϕn).

4. ∆ω =
⋃
n∈ω ∆n.

Lemma 6: If n < m, a and b are labels occurring in ∆n, and ¬a @∆n
b, then ¬a @∆m

b.

Proof:
Induction over n and m. a

Lemma 7: If ∆ is deeply consistent, acyclic, and well-colored, and ∀a, b(Tab : 0 ∈ ∆ ↔ Tba : 1 ∈
∆), then ∆ω is maxiconsistent.

Proof:
By the construction, either Tα or Fα is in ∆ω for all labeled formulas α. Lemmas 4 and 5 ensure
that each ∆n is deeply consistent. If both Tα and Fα were in ∆ω, they would be in some ∆n

too, which is impossible since these are deeply consistent. An inspection of the clauses for Henkin
witnesses shows that each addition of a formula Tab : A is accompanied by addition of Tab :<.
Clauses (i) – (v) of saturation are ensured by closure under Henkin witnesses together with lemma
6. By assumption, clause (vi) of the definition of saturation hold of ∆0, and it is easy to see that
it is preserved under every step from ∆n to ∆n+1. Thus it also holds of ∆ω since otherwise it
would already fail for some ∆n. Since ∆ω is complete, failure of deductive closure would entail
failure of deep consistency for some ∆n. a

Lemma 8: If a1b1 : A1, . . . , anbn : An ⇒ α is canonically labeled and underivable, then {Taibi :
Ai, Fα} ∪ {Taibi :< |0 6= Ai 6= 1} is deeply consistent, acyclic, and well-colored.
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Proof:
Since the sequent is canonically labeled, the only properly labeled sequent made from its com-
ponents is the original sequent itself. Hence there is no valid sequent consisting only of formulas
from the set in question. Acyclicity and well-coloredness follow from the definition of canonical
labeling. a

Lemma 9: If ab : A ⇒ ab : B is derivable in the labeled calculus, A ⇒ B is derivable in the
unlabeled calculus.

Proof:
Simply drop the labels in the proof, and replace “0” by “(” and “1” by “)”. a
Now suppose A ⇒ B is underivable in the unlabeled calculus. By the last lemma, wrur : A ⇒
wrur : B (w and u distinct) is canonically labeled and underivable in the labeled calculus. Hence
in the canonical model constructed from {Twrur : A, Twrur :<,Fwrur : B}ω, 〈wr, ur〉 verifies A
and falsifies B. This completes the proof of Theorem 1. a

5 Weak Completeness of horizontal relational semantics

Theorem 2 (Weak Completeness): For every sequent X ⇒ A:

`L3 X ⇒ A iff |=h X ⇒ B

The soundness proof is again a straightforward induction over the length of derivations. The
completeness proof is very similar to the proof in the previous section, so I will content myself
with pointing out the differences.

Definition 16:
Let ∆ be a T–F set. We say that a @∆ b iff there are labels c1, . . . , cn such that a = c1, b =
cn, Tai−1ai :<∈ ∆ ∨ Tai−1ai : 0 ∈ ∆ ∨ Tai−1ai : 1 ∈ ∆ for all 1 ≤ i ≤ n.

The definition of a maxiconsistent set now runs as follows:

Definition 17 (Maxiconsistency): A T–F set ∆ is called maxiconsistent iff it obeys the following
constraints:

• For any labeled formula ab : A (A 6= 0, 1, <), either Tab : A or Fab : A is in ∆, but not both.

• If Tab : A ∈ ∆ and A 6= 0, 1, then Tab :<∈ ∆.

• ∆ is saturated, i.e.

(i) If Fab : A \B ∈ ∆ and a @∆ b, then there is a c such that Tca : A,Fcb : B ∈ ∆.

(ii) If Fab : A/B ∈ ∆ and a @∆ b, then there is a c such that Tbc : B,Fac : A ∈ ∆.

(iii) If Tab : A •B ∈ ∆, then there is a c such that Tac : A, Tcb : B ∈ ∆.

(iv) If Tab : 3A ∈ ∆, then there are c and d such that Tac : 0, T cd : A, Tdb : 1 ∈ ∆.

(v) If Fab : 2↓A ∈ ∆, then there are c and d such that Tca : 0, F cd : A, Tbd : 1, T cd :<∈ ∆.

(vi) If Tab : A ∈ ∆, A,B 6= 0, 1, then Tab :<∈ ∆.

• ∆ is deductively closed, i.e. if a sequent α1, . . . , αn ⇒ β derivable, and for all 1 ≤ i ≤ n :
Tαi ∈ ∆, then Tβ ∈ ∆.
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From a maxiconsistent set we can construct a canonical model for horizontal semantics:

Definition 18 (Canonical Model): Let ∆ be a maxiconsistent set. The canonical model for ∆ is
M∆ = 〈W,<, I, {Ri|i ∈ I}, {Si|i ∈ I}, V 〉, where

1. W is the set of labels occurring in ∆.

2. a < b iff a @∆ b

3. aRib iff Tab : 0i ∈ ∆

4. aSib iff Tab : 1i ∈ ∆

5. 〈a, b〉 ∈ V (p) iff Tab : p ∈ ∆.

Fact 2: If ∆ is maxiconsistent, M∆ is a horizontal relational model for L3

Proof:
By the definition of @∆, < is transitive and Ri, Si ⊆<. The requirement that ∆ is maxiconsistent
ensures that V (p) ⊆< for arbitrary atoms p. a

Lemma 10 (Truth Lemma): For all maxiconsistent sets ∆, formulas A and labels a, b:

Tab : A ∈ ∆ iff M∆, ab |= A

Proof:
By induction over the complexity of A. Cases 1–5 are identical to the proof for vertical semantics.

7. A = 3B,⇒ By saturation, Tab :<∈ ∆, and there are c and d such that Tac : 0, T cd :
B, Tdb : 1 ∈ ∆. By induction hypothesis, cd |= B. The construction of M∆ ensures that
aRc, dSb, and a < b. Hence ab |= 3B.

8. ⇐ By the semantics of 3, there are c and d such that aRc, dSb, and cd |= B. By induction
hypothesis, Tcd : B ∈ ∆. By the construction of M∆, Tac : 0, Tdb : 1 ∈ ∆. Since
` ac : 0, cd : B, db : 1⇒ ab : 3B and ∆ is deductively closed, Tab : 3B ∈ ∆.

9. A = 2↓B,⇒ Suppose ab 6|= 2↓B. Then there are c and d such that cRa, bSd, c < d, and
cd 6|= B. By induction hypothesis, Fcd : B ∈ ∆, and the construction of M∆ ensures that
Tca : 0, T bd : 1 ∈ ∆. Since ` ca : 0, ab : 2↓B, bd : 1 ⇒ cd : B, Tcd : B ∈ ∆, which violates
consistency.

10. ⇐ Suppose Tab : 2↓B 6∈ ∆. By completeness, Fab : 2↓B ∈ ∆. By saturation, there are c
and d such that Tca : 0, T bd : 1, T cd :<,Fcd : B ∈ ∆. Hence cRa, bSd, c < d and cd 6|= B,
which is impossible due to the truth conditions for “2↓”. a

In the definition of Henkin witnesses, the clauses for the modal formulas are modified:

Definition 19 (Henkin witnesses):

(v) If α = Tab : 3A, then H(∆, α) = ∆ ∪ {α, Tac : 0, T cd : A, Tcd :<,Tdb : 1}, where c and d
are the first distinct labels not occurring in ∆.

(vi) If α = Fab : 2↓A and a @∆ b, then H(∆, α) = ∆ ∪ {α, Tca : 0, F cd : A, Tbd : 1, T cd :<},
where c and d are the first distinct labels not occurring in ∆.

For horizontal semantics, we can ignore well-coloredness.
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Lemma 11: If α ∈ ∆ and ∆ is deeply consistent and acyclic, then H(∆, α) is also deeply consistent
and acyclic.

Proof:
Preservation of acyclicity is as above. As for deep consistency, the proof runs basically as above
too. For the Lambek connectives, it is just identical, and for the modal operators, it is even simpler
since fewer formulas are added at each step of adding Henkin witnesses.

Lemma 12: If ∆ is deeply consistent and acyclic, and A 6= 0, 1, then either ∆ ∪ {Tab : A, Tab :<}
or ∆ ∪ {Fab : A} is deeply consistent and acyclic.

Proof:
As above.

The construction of a maxiconsistent T–F set doesn’t differ from the vertical case.

Lemma 13: If ∆ is deeply consistent and acyclic, then ∆ω is maxiconsistent.

Proof:
See above.

Lemma 14: If a1b1 : A1, . . . , anbn : An ⇒ α is canonically labeled and underivable, then {Taibi :
Ai, Fα} ∪ {Taibi :< |0 6= Ai 6= 1} is deeply consistent and acyclic.

Proof:
See above.

As in the horizontal case, the last lemma ensures that for each underivable sequent, we can
construct a model that falsifies it. a

6 Strong completeness

Kurtonina (1995) shows that L1 is also complete in its relational interpretation if conceived as
an “axiomatic-sequent” calculus. Under this perspective, derivability and entailment are relations
between (sets of) sequents and not formulas.

Definition 20 (Derivability): A sequent ϕ is L3-derivable from a set of sequents Γ iff there is a
sequence of sequents δ1, . . . , δn with δn = ϕ such that each δi is either an axiom of L3, an element
of Γ, or it can be obtained from δ1, . . . , δi−1 by inference rules of L3.

A sequent X ⇒ A is said to be true in a model M iff ‖X‖M ⊆ ‖A‖M . This leads immediately to
a notion of entailments between sequents.

Definition 21 (Entailment): A sequent ϕ is (horizontally/vertically) entailed by a set of sequents Γ
iff in all models where all elements of Γ are (horizontally/vertically) true, ϕ is true as well.

Theorem 3 (Strong Completeness): A sequent ϕ is L3-derivable from a set of sequents Γ iff it is
vertically entailed by Γ iff it is horizontally entailed by Γ.

Proof:
Soundness is straightforward by induction on the length of derivations. As for completeness,
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Kurtonina’s (1995) proof for the corresponding theorem for L1 immediately carries over to L3.
We assume that ϕ is not derivable from Γ and show that it cannot be entailed. First we define the
set Γl as the set of all canonically labeled instances of elements of Γ. The notion of derivability
of sequents above (definition 20) is extended to labeled sequents by replacing L3 with its labeled
version. A set ∆ of labeled T − F formulas is called (vertically/horizontally) Γ-maxiconsistent
iff it is (vertically/horizontally) maxiconsistent and furthermore it is Γ-closed, i.e. if a sequent
α1, . . . , αn ⇒ β is derivable from Γl, and for all 1 ≤ i ≤ n : Tαi ∈ ∆, then Tβ ∈ ∆. Since Γ-
maxiconsistency is a stronger notion than maxiconsistency, fact 1/2 and lemma 3/10 also hold if we
replace the latter by the former. In a similar fashion, we strengthen the notion of deep consistency
to Γ-consistency by replacing derivability with derivability from Γl. The lemmas 4–7/11–13 remain
valid if we replace deep consistency with Γ-consistency. Now suppose Γ 6`L3 ϕ = A1, . . . , An ⇒
B. Since this sequent is not derivable from Γ, neither is any of its canonically labeled versions
ab1 : A1, . . . , bn−1c : An ⇒ ac : B derivable from Γl. Hence {Tab1 : A1, . . . T : bn−1c : An, Fac : B}
is Γ-consistent, i.e. it can be extended to a Γ-maxiconsistent set which gives rise to a canonical
model. By the truth lemma, this model falsifies ϕ. On the other hand, Γ-closure guarantees that
all elements of Γ are true in this model. Hence ϕ cannot be entailed by Γ. a

7 Translation L3 ⇒ L

Versmissen (1996) proves soundness and completeness of the following translation from L3 to L:

Definition 22:

[p] = p (p atomic) (1)
[A •B] = [A] • [B] (2)
[A \B] = [A] \ [B] (3)
[A/B] = [A]/[B] (4)
[3iA] = ti,0 • [A] • ti,1 (5)
[2↓iA] = ti,0 \ [A]/ti,1 (6)

[(iX)i] = ti,1, [X], ti,1 (7)

where ti,0 and ti,1 are fresh atomic formulas.

Versmissen’s proof is purely syntactic. Completeness of L3 in horizontal relational interpretation
lends itself naturally for a semantic proof, following the strategy of Kurtonina and Moortgat
(1997). First we show that every horizontal model for L3 can be transformed into a model for L
which verifies the same formulas modulo translation.

Lemma 15: Let M = 〈W,<, I, {Ri|i ∈ I}, {Si|i ∈ I}, V 〉 be an arbitrary model for L3 and M ′ be
the L-model 〈W,<, V ′〉, where V ′ extends V by mapping ti,0 to Ri and ti,1 to Si. Then it holds
that for all L3-formulas and bracketed sequences of L3-formulas X that

M, 〈a, b〉 |= X iff M ′, 〈a, b〉 |= [X]

Proof: By induction on the complexity of X. The induction base and the induction step for “•”,
“\”, “/” and sequencing are straightforward.

1. X = 3B,⇒ Suppose M,ab |= 3A. Then there are c, d such that aR0c,M, cd |= B, and dR1b.
By induction hypothesis, M ′, cd |= [B]. By the construction of M ′, M ′, ac |= t0,M

′, db |= t1.
Hence ac |= t0 • [B] and ab |= t0 • [B] • t1 = [3B].
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2. ⇐ Suppose M ′, ab |= t0•[B]•t1. Then there are c, d with M ′, ac |= t0,M
′, cd |= [B],M ′, db |=

t1. By hypothesis, M, cd |= B, and by the construction of M ′, aR0c, dR1b. Hence M,ab |=
3B.

3. X = 2↓B,⇒ Suppose M,ab |= 2↓B. This entails that a < b. Now assume that M ′, ab 6|=
t0 \ [B]/t1. Then there are c, d such that M ′, ca |= t0,M

′, bd |= t1,M
′, cd 6|= [B]. By

hypothesis M, cd 6|= B, and by the construction of M ′, cR0a, bR1d. By transitivity of <,
c < d, which contradicts the assumption.

4. ⇐. Suppose M ′, ab |= t0 \ [B]/t1, and M,ab 6|= 2↓B. Then there are c, d such that cR0a
(i.e. M ′, ca |= t0) and bR1d (i.e. M ′, bd |= t1). By transitivity, c < d, and M, cd |= B. By
induction hypothesis, M ′, cd |= [B], which leads to a contradiction.

5. X = (Y ) Analogous to 3.

a

Theorem 4:

`L3 X ⇒ A iff `L [X]⇒ [A]

Left to right is an easy induction on the length of derivations. For the other direction, assume
that 6`L3 X ⇒ A. By completeness, there is a model M such that M |= X,M 6|= A. By the truth
lemma, M ′ |= [X],M ′ 6|= [A]. By soundness, 6`L [X]⇒ [A].

a

8 Conclusion

In this paper we proposed to extend the relational semantics for L that was developed in Pankrat’ev
(1994) and Andréka and Mikulás (1994) to Moorgat’s (1996) multimodal extension L3 of L.
We investigated two such extension, one being inspired by Versmissen’s (1996) translation from
L3 to L, and one by the standard Kripke semantics of unary modal operators. We established
soundness, weak completeness and strong completeness for both interpretations, thereby following
Kurtonina’s (1995) strategy of using labeled deduction to construct canonical models. Finally we
showed that one of these relational interpretations can be employed to give a semantic proof for
the completeness of Versmissen’s translation.

These results raise several issues for further research. First, we restricted attention to multimodal
Lambek calculi which comprise just one binary mode. It seems worth exploring whether natural
relational interpretations are possible for a multimodal system where several binary modes coex-
ist3 Second, the unary modes that we considered are plain residuation modalities; they neither
interact with each other nor with the binary mode. Many applications of multimodal Lambek
calculi assume interaction postulates between the modes. It remains to be seen which of these
postulates have semantic counterparts under a relational interpretation. Finally, our models where
entirely abstract, perhaps it is possible to relate the semantics developed here to more concrete
instantiations of relational interpretation that are specific to the intended linguistic applications
of the logics under discussion.

9 Acknowledgments

I am glad to thank Natasha Kurtonina for many stimulating discussions.
3 This was justly pointed out by an anonymous referee.



9 Acknowledgments 16

References
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