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Abstract. Declarative languages provide means of specifying problem solutions, 
without giving much attention to how the proposed solution is going to be 
effectively implemented. When only specification is provided, the system attempts 
execution using search techniques which may compromise efficiency. In this paper, 
we propose a new programming language that integrates functional and logic 
features together with procedural ones. In normal cases, this hybrid language should 
provide the programmer with advantages of both i.e., efficiency and clarity. Using 
this language, very rapid prototyping is possible. 

 
 
 
1  Introduction 

Purely functional and logic languages are ideal for developers of large-scale 
packages as they allow the programmers to easily prove the soundness of the 
built software. Declarative languages have many advantages, which include 
[7]: the soundness of declarative programs can be easily proven; the 
exploitation of parallelism in declarative programs is greatly simplified; the 
clarity of declarative programs is re-enforced. However, as purely functional 
and logic programs only specify the solution of a given problem without 
providing any details of the corresponding implementation, compilers of these 
programming languages are normally slow compared to compilers of 
imperative languages. Furthermore, when actually trying to write programs, it 
is often highly inconvenient to be limited to declarative features only. This is 
mainly due to efficiency of evaluation. 

Programs are bound to have an algorithmic details and specifications. In all 
main line programming languages these are inextricably linked. This is as 
much true of logic and functional programming languages like Lisp, Prolog, 
Miranda [18], Haskell [5, 16], etc. as of procedural and object-oriented ones 
like Pascal, C, Java, C++ etc. By separating the two, it is possible to have 



 
different algorithms implementing the same function definition with an 
automatic guarantee of partial correctness, rather than two obscure function 
implementations that still have to be verified with respect to a specification in 
a different language. In reality, this claim is a slight exaggeration, but it does 
point to an overall (unattainable) objective in a programming language, which 
is as far away in procedural languages as in declarative ones. The 
specifications, which a program uses cannot be truly abstract since functions 
defined using unbounded quantification may not terminate and so need not be 
executable. One needs to insist on computable definitions. 

In this paper, we propose a programming language which is hybrid. It 
offers declarative and imperative features and thus yields the advantages of 
both: clarity and efficiency. The proposed language attempts to cover most of 
the life cycle of a program which is required to be both verifiable and efficient. 
It enables the systematic development of a program starting with the 
construction of a formal specification to which more and more details can be 
added and results in a correct and relatively fast implementation. With less 
effort, one can write programs which consist of executable code and neglect 
the abstract specification level by the inclusion of specific algorithmic 
information. In such a case, very rapid prototyping is possible. We will call 
our language πlog. 

We first describe the general characteristics of the proposed language as 
well as the overall structure of πlog programs. As a new programming 
language is best conveyed through examples, we will do it through an 
illustrative example. After that, we detail the most essential features of πlog 
while giving a glance at the syntax of the language. We then give some 
implementation issues of the language compiler. Finally, we conclude the 
paper. 

2  The Language General Structure 

A πlog program is an extension of C to a functional programming language in 
which C is the command language. Thus a C program is a πlog program. More 
specifically, a πlog program is a C program in which various functions are 
defined not using C, but using a functional programming style to calculate 
their returned values. It is assumed that the reader has knowledge of C and that 
therefore the main interest is in the definition of the functions.  

The operational semantics behind the functional programming paradigm is 
now well-known [3, 4, 7, 14, 17]. It consists of using a set of equations 
considered as left-to-right rewrite rules to simplify a given term, called the 



 
subject term.  Starting from this term, the evaluation process produces a 
sequence of expressions by repeatedly replacing instances of left sides of rules 
with their corresponding right sides until no further replacements are possible.  
An instance of a left side in the subject expression is called a redex, and an 
expression with no redex is said to be in normal form. The pattern-matching 
process provides a rule whose left side matches the expression considered [8-
13]. When various redexes can be identified by the pattern-matching process, 
one redex has to be chosen to be reduced. This choice is made based on the 
reduction strategy in use. There exist several reduction strategies such as eager 
vs. lazy and bottom-up vs. top-down strategies [15]. The most commonly used 
strategy is called the outermost-leftmost strategy also called normal order.  

A πlog program is an environment composed of a set of possibly nested 
modules followed by the main body of the πlog program. Nesting of modules 
is achieved by importing them through the directives uses and refines. Each 
module is the implementation of an abstract data type and is composed of two 
main parts: a specification of the abstract data type and the implementation of 
the corresponding functions.  

• The specification part of a module is mainly a declaration part. The first 
part of a module specification includes a type name, variables, constructors 
and functions declarations. A constructor is a function that does not have 
any implementation. It is used to construct an object of a given abstract 
data type. For instance, empty and : in Example 2.1 are constructors. An 
object stack that contains the integers 1, 2 and 3 that were pushed in this 
order, would be represented as 3:2:1:empty. A function is declared by its 
name, the list of its parameter types and the type of the value returned. 

• The implementation part of a module is composed of the procedures that 
implement the functions declared before. Each procedure can declare new 
objects i.e., types and variables. The body of the procedure is composed of 
a list of rewriting rules followed by a set of directives allowing the 
compiler to decide which rule to use next. To make the language more 
expressive conditional rules are allowed. Each rule of a given procedure is 
associated with a rule strategy that helps to reduce the work needed to the 
select the next redex. The directives may specify the reduction strategy to 
reduce terms or choose one of the known reduction [15]. 

 A module can be parameterised as is illustrated in the module description 
of Example 2.1. This raises the degree of expressiveness of the proposed 
language.  

Example 2.1:  Consider a data type that describes the use of a stack. In Figure 
2.2, we show the header of the module as well as its constructors and 
functions.  



 
MODULE StackType(itemType) IS 
 TYPE stack; 
 CONSTRUCTORS 
 stack empty; 
     stack itemType:stack; 
 FUNCTIONS 

stack  push(ItemType);  
   itemType  pop(stack); 
   Boolean  emptyStack(stack); 

Figure 2.2.   Header and specification part of a module. 

 Figures 2.3(a) and 2.3(b) describes the StackType module indicated in 
Figure 2.2 functions.  For the operator, the user can suggest a reduction 
strategy. For instance,  the strategy [1, 2, 0] in procedure push suggests the 
reduction process of a term push(x, y), where x and y are stacks should first 
reduce the subterm which is substituted for x then that which is substituted for 
y and then attempt to reduce the whole term. The implementation of the 
reduction strategy suggested by the programmer is described in the Section 3. 

  PROCEDURE emptyStack; 
  VARIABALES 
   stack  s; 
   itemType  i; 
  RULES 
   1: emptyStack(empty) = true;; 
   2: emptyStack(i:s)) = false;; 
  { 
   BottomUp; 
  }; 
  PROCEDURE push [1,2,0]; 
  VARIABLE 
   stack  s; 
   itemType i;  
  RULES 
   3:push(empty,i)= i:empty;    
   4:push(s, i) = i:s;; 
  { 
   Lazy; 
  } 

Figure 2.3(a).   Module function implementation - procedures emptyStack and push. 



 
PROCEDURE pop  [1,0]; 
  VARIABALES 
   stack s, s1; 
   itemType i, j; 
  RULES 
   5: pop(empty)= null;  
   6: pop(i:s)  = i;; 
   7: pop(i:empty)  = i;  [1,0]; 
   8: pop(push(s, i)= i; [0]; 
   9: pop(s)=IF(s == empty) null 
             ELSE j  
             WHERE (s== j:s1);;  
  {}; 
 }; 

Figure 2.3(b).   Module function implementation - procedure pop. 
 
 The main body of a πlog program is a set of C instructions which include 
assignments, conditional instructions like an if-then-else and switch, constructs 
allowing iterations as while, do, and for and functions calls. The values 
returned by a function call should be computed using the rewrite rules 
specified in the body of the procedure implementing that function. For 
instance, Figure 2.4 describes how a C program could use the functions of  
module StackType described in Figure 2.2.    
 
void main() { 
 stackOfFloat  = newStackType(float); 
 stackOfStacks = newStackType(StackOfFloat); 
 stackOfFloat s1, s2, s3 = empty; 
 stackOfStacks ss = empty; 
 float x, y, z; 
 for (int i=0; i<10; i++) { 
  scanf("%f %f %f", x, y, z); 
  s1 = push(s1, x); 
  s2 = push(s2, y); 
  s3 = push(s3, z); 
  ss = push(s1:s2, s3); 
 }  
}   

Figure 2.4.  Program main body. 



 
3 Implementation Issues 

The philosophy behind the πlog language is to clearly separate algorithmic 
details, memory management and specification so that each of these aspects of 
program generation may be tackled independently. The execution of programs 
in this language is performed with greater and greater efficiency according as 
information is added. If only the specification is given then the system 
attempts execution using search techniques, but termination is not guaranteed 
to the same extent as when specific algorithmic information is given to the 
runtime system in some form. The semantics of the language guarantees how it 
is executed given this additional information and also defines the model of 
computation. However, in the absence of any control whatsoever, i.e. when 
only a specification is provided, as in OBJ [2] for example, the algorithm 
which searches for solutions is not determined. This is left to the implementer 
of the language compiler as there is no algorithm which will in general solve 
any problem that can be defined in the language. So, various heuristics are 
required which may well depend on the use to which the system is put. 

One of the great advantages of separating control, specification and data 
structures is that they may be implemented one at the time in the program 
enabling rapid prototyping and alternative choices of control to be tested. 

The runtime system [8-13] is a theorem prover, which builds up a number 
of theorems that are held available as long as is necessary [7-9]. It is these 
theorems, deduced from the original rules, which form the system’s memory. 
They have the form of additional rewrite rules which give values for functions 
needed in future computations. Thus, the memory holds natural values with 
very clear meaning: there are no obscure variables with a complex relationship 
between them. 

The algorithmic control in the form of rules which are added to the program 
may disturb the logic of the functional programming language πlog. This then 
requires a theorem-proving capability to verify the rules against the 
specification. Any implementation of the language is required to do such 
theorem-proving as it is necessary to ensure that the program meets its 
specification or report what still needs to be proved to enable verification. 
Normally, such theorem-proving capabilities will be interactive since proving 
theorems is rather a hard and undecidable process [6]. However, the compiler 
does have a switch by which the necessary verification, which is costly in 
time, may be switched off. Totally verified sections of code are marked as 
such and the proofs filed for future reference. For efficiency, code is date 
stamped so that future changes to code will only invalidate a minimal part of 
an already existent proof. Previously verified code which is thus invalidated 
uses the recorded proof in an attempt to re-verify the code. The need for 



 
verification can almost be avoided by using rewrite rules for the algorithmic 
information and copying them for the specification. Only termination and 
consistency properties then have to be checked. 

Operationally, the evaluation of a given term using the suggested reduction 
strategy can be described by the following rewriting rules: 

evaluate(t)  = rewrite(t, strategy(t)) 
rewrite(t,∅)    = t 
rewrite(t,cons(0,l) = if(match(t), evaluate(template(t)), rewrite(t, l)) 
rewrite(t,cons(x,l) = rewrite(substitute(t, x, evaluate(argument(t, x))), l) 

 
where function evaluate rewrites a term to its normal form, function rewrite 
reduces the given term using its top operator strategy, function strategy returns 
the given term’s top operator strategy, function match determines whether or 
not the given term is a reducible expression, function template returns the 
contractum of the given term, function substitute replaces a given subterm 
with another, and finally, function argument returns a given argument. 
 This straightforward implementation can be improved using the technique 
of memoisation, which consists of bookkeeping already evaluated terms.  
Marking evaluated terms improves the evaluation time by a great deal (see [7] 
for more details).   

The language πlog has the structure of a program written in a C-like 
language. Functions are defined using a functional programming style to 
calculate their values. A πlog function can be implemented by one or more 
procedures using rewrite rules. With this functional programming language, 
the user has the same algorithmic control as with imperative languages. This 
allows him to write programs which are as efficient in terms of memory space 
and execution time as if he were using an imperative programming language. 
The added control should increase efficiency by avoiding the process of 
pattern-matching that selects the rule to use and the process of redex selection 
that chooses the next subterm to rewrite. These two properties make the 
proposed language provably as efficient as an imperative language. In πlog, 
functions are defined in an environment made up of a number of abstract data 
types. This means that the types needed for the function arguments and values 
are not defined explicitly by constructing them from the basic built-in types 
such as Boolean and integer. They are constructed implicitly using the 
functions which operate on them. This includes the use of constant functions, 
i.e. functions which have no parameters. 



 
4  Conclusion 

In this paper, we proposed a new programming language that integrates 
functional and logic features together with procedural ones without detailing 
all the features available to the programmer. Normally, this hybrid language 
should provide the programmer with two advantages: efficiency due to the 
imperative constructs and clarity and provability due to the declarative 
features. 

The compiler of the πlog language is being implemented. We intend to 
evaluate the performance of such a compiler in comparison with purely 
declarative systems like the OBJ3 system [2] and a purely imperative language 
as Pascal. 

References 

1. Ehrig, H. and Mahr, B., Fundamentals of Algebraic Specifications 1: 
Equations and Initial Semantics, Springer-Verlag, 1985. 

2. Goguen, J. A. and Winkler, T., Introducing OBJ3, Technical report, 
SRI-CSL-88-9, Computer Science Laboratory in SRI International, 
August 1988. 

3. C.M. Hoffman and M.J. O’Donnell, ‘Pattern-matching in trees’, 
Journal of ACM, pp. 68-95, January 1982. 

4.  C.M. Hoffman and M.J. O’Donnell, ‘Programming with equations’, 
ACM TOPLAS, pp. 83-112, January 1982. 

5. Hudak, P. and Wadler, P., Report on the Functional Programming 
Language Haskell, Technical report, YALEU/DCS/RR656, 
Department of Computer Science, Yale University, 1988. 

6. Klop, J. W., Term Rewriting Systems From Church-Rosser to Knuth-
Bendix, International Colloquium on Automata, languages and 
Programming, vol. 443, pp. 350-369, Lecture Notes in Computer 
Science, Springer-Verlag, 1990. 

7. Nedjah, N. Pattern-matching automata for efficient evaluation in 
equation programming, Ph. D. thesis, UMIST, University of 
Manchester Institute of Science and Technology, September 1997. 

8. Nedjah, N.,  Walter, C.D. and Eldridge, S.E.,  More efficient pattern-
matching automata for overlapping patterns, Ninth International 
Workshop on Implementation of Functional Languages, St. Andrews, 
Scotland, UK, pp. 341-350, August 1997. 



 
9. Nedjah, N., Walter, C.D. and Eldridge, S.E., Optimal left-to-right 

pattern-matching automata, Sixth Conference on Algebraic and Logic 
Programming, Southampton, UK, Lecture Notes in Computer Science, 
Springer-Verlag Editors, vol. 1298, pp. 273-281, September 1997. 

10. Nedjah, N. Minimal deterministic left-to-right pattern-matching 
automata, ACM Sigplan Notices, vol. 33, no. 1, pp. 40-47,  January 
1998. 

11.  Nedjah, N. and Mourelle, L.M. Very Efficient pattern-matching for 
overlapping patterns,  Fifth International Workshop on Languages, 
Logic, Information and Computation, São Paulo, Brazil, July 1998. 

12. Nedjah, N., Walter, C.D. and Eldridge, S.E., Efficient automata-driven 
pattern-matching for equational programming, Software-Practice and 
Experience, vol. 29, no. 8, 1999. 

13. Nedjah, N. and Mourelle, L.M.  Adaptive pattern-matching for 
overlapping patterns,  Fifteenth International Symposium on Computer 
and Information Systems, Istambul, Turkey, October 2000. 

14.  Nedjah, N. and Mourelle, L., Improving Space, Time and Termination 
in Rewriting-Based Programming, The Forteenth International 
Conference on Industrial & Engineering Applications of Artificial 
Intelligence & Expert Systems, Budapest, Hungry, Lecture Notes in 
Computer Science/Lecture Notes in Artificial Intelligence, Springer-
Verlag Editors, to appear, June 2001. 

15. Peyton-Jones, S. L., The Implementation of Functional Programming 
Languages, Prentice-hall, 1987. 

16. Peyton-Jones, S. L., Hall, G., Hammond, K., et al., The Glasgow 
Haskell Compiler: a Technical Overview, Joint Framework for 
Information Technology, 1993. 

17.  R.I. Strandh, Compiling equational programs into efficient code, Ph.D. 
Thesis, The Johns Hopkins University, 1988. 

18. Turner, D. A., Miranda: a Non Strict Functional Language with 
Polymorphic Types, ACM Conference on Lisp and Functional 
Languages, vol. 20. pp. 1-16, 1985. 


