

A Structured Functional Programming Language

Nadia Nedjah and Luiza de Macedo Mourelle

Department of Systems Engineering and Computation, Faculty of Engineering,

State University of Rio de Janeiro,
Rio de Janeiro, Brazil

{nadia, ldmm}@eng.uerj.br
http://www.eng.uerj.br /~ldmm

Abstract. Declarative languages provide means of specifying problem solutions,
without giving much attention to how the proposed solution is going to be
effectively implemented. When only specification is provided, the system attempts
execution using search techniques which may compromise efficiency. In this paper,
we propose a new programming language that integrates functional and logic
features together with procedural ones. In normal cases, this hybrid language should
provide the programmer with advantages of both i.e., efficiency and clarity. Using
this language, very rapid prototyping is possible.

1 Introduction

Purely functional and logic languages are ideal for developers of large-scale
packages as they allow the programmers to easily prove the soundness of the
built software. Declarative languages have many advantages, which include
[7]: the soundness of declarative programs can be easily proven; the
exploitation of parallelism in declarative programs is greatly simplified; the
clarity of declarative programs is re-enforced. However, as purely functional
and logic programs only specify the solution of a given problem without
providing any details of the corresponding implementation, compilers of these
programming languages are normally slow compared to compilers of
imperative languages. Furthermore, when actually trying to write programs, it
is often highly inconvenient to be limited to declarative features only. This is
mainly due to efficiency of evaluation.

Programs are bound to have an algorithmic details and specifications. In all
main line programming languages these are inextricably linked. This is as
much true of logic and functional programming languages like Lisp, Prolog,
Miranda [18], Haskell [5, 16], etc. as of procedural and object-oriented ones
like Pascal, C, Java, C++ etc. By separating the two, it is possible to have

different algorithms implementing the same function definition with an
automatic guarantee of partial correctness, rather than two obscure function
implementations that still have to be verified with respect to a specification in
a different language. In reality, this claim is a slight exaggeration, but it does
point to an overall (unattainable) objective in a programming language, which
is as far away in procedural languages as in declarative ones. The
specifications, which a program uses cannot be truly abstract since functions
defined using unbounded quantification may not terminate and so need not be
executable. One needs to insist on computable definitions.

In this paper, we propose a programming language which is hybrid. It
offers declarative and imperative features and thus yields the advantages of
both: clarity and efficiency. The proposed language attempts to cover most of
the life cycle of a program which is required to be both verifiable and efficient.
It enables the systematic development of a program starting with the
construction of a formal specification to which more and more details can be
added and results in a correct and relatively fast implementation. With less
effort, one can write programs which consist of executable code and neglect
the abstract specification level by the inclusion of specific algorithmic
information. In such a case, very rapid prototyping is possible. We will call
our language πlog.

We first describe the general characteristics of the proposed language as
well as the overall structure of πlog programs. As a new programming
language is best conveyed through examples, we will do it through an
illustrative example. After that, we detail the most essential features of πlog
while giving a glance at the syntax of the language. We then give some
implementation issues of the language compiler. Finally, we conclude the
paper.

2 The Language General Structure

A πlog program is an extension of C to a functional programming language in
which C is the command language. Thus a C program is a πlog program. More
specifically, a πlog program is a C program in which various functions are
defined not using C, but using a functional programming style to calculate
their returned values. It is assumed that the reader has knowledge of C and that
therefore the main interest is in the definition of the functions.

The operational semantics behind the functional programming paradigm is
now well-known [3, 4, 7, 14, 17]. It consists of using a set of equations
considered as left-to-right rewrite rules to simplify a given term, called the

subject term. Starting from this term, the evaluation process produces a
sequence of expressions by repeatedly replacing instances of left sides of rules
with their corresponding right sides until no further replacements are possible.
An instance of a left side in the subject expression is called a redex, and an
expression with no redex is said to be in normal form. The pattern-matching
process provides a rule whose left side matches the expression considered [8-
13]. When various redexes can be identified by the pattern-matching process,
one redex has to be chosen to be reduced. This choice is made based on the
reduction strategy in use. There exist several reduction strategies such as eager
vs. lazy and bottom-up vs. top-down strategies [15]. The most commonly used
strategy is called the outermost-leftmost strategy also called normal order.

A πlog program is an environment composed of a set of possibly nested
modules followed by the main body of the πlog program. Nesting of modules
is achieved by importing them through the directives uses and refines. Each
module is the implementation of an abstract data type and is composed of two
main parts: a specification of the abstract data type and the implementation of
the corresponding functions.

• The specification part of a module is mainly a declaration part. The first
part of a module specification includes a type name, variables, constructors
and functions declarations. A constructor is a function that does not have
any implementation. It is used to construct an object of a given abstract
data type. For instance, empty and : in Example 2.1 are constructors. An
object stack that contains the integers 1, 2 and 3 that were pushed in this
order, would be represented as 3:2:1:empty. A function is declared by its
name, the list of its parameter types and the type of the value returned.

• The implementation part of a module is composed of the procedures that
implement the functions declared before. Each procedure can declare new
objects i.e., types and variables. The body of the procedure is composed of
a list of rewriting rules followed by a set of directives allowing the
compiler to decide which rule to use next. To make the language more
expressive conditional rules are allowed. Each rule of a given procedure is
associated with a rule strategy that helps to reduce the work needed to the
select the next redex. The directives may specify the reduction strategy to
reduce terms or choose one of the known reduction [15].

 A module can be parameterised as is illustrated in the module description
of Example 2.1. This raises the degree of expressiveness of the proposed
language.

Example 2.1: Consider a data type that describes the use of a stack. In Figure
2.2, we show the header of the module as well as its constructors and
functions.

MODULE StackType(itemType) IS
 TYPE stack;
 CONSTRUCTORS
 stack empty;
 stack itemType:stack;
 FUNCTIONS

stack push(ItemType);
 itemType pop(stack);
 Boolean emptyStack(stack);

Figure 2.2. Header and specification part of a module.

 Figures 2.3(a) and 2.3(b) describes the StackType module indicated in
Figure 2.2 functions. For the operator, the user can suggest a reduction
strategy. For instance, the strategy [1, 2, 0] in procedure push suggests the
reduction process of a term push(x, y), where x and y are stacks should first
reduce the subterm which is substituted for x then that which is substituted for
y and then attempt to reduce the whole term. The implementation of the
reduction strategy suggested by the programmer is described in the Section 3.

 PROCEDURE emptyStack;
 VARIABALES
 stack s;
 itemType i;
 RULES
 1: emptyStack(empty) = true;;
 2: emptyStack(i:s)) = false;;
 {
 BottomUp;
 };
 PROCEDURE push [1,2,0];
 VARIABLE
 stack s;
 itemType i;
 RULES
 3:push(empty,i)= i:empty;
 4:push(s, i) = i:s;;
 {
 Lazy;
 }

Figure 2.3(a). Module function implementation - procedures emptyStack and push.

PROCEDURE pop [1,0];
 VARIABALES
 stack s, s1;
 itemType i, j;
 RULES
 5: pop(empty)= null;
 6: pop(i:s) = i;;
 7: pop(i:empty) = i; [1,0];
 8: pop(push(s, i)= i; [0];
 9: pop(s)=IF(s == empty) null
 ELSE j
 WHERE (s== j:s1);;
 {};
 };

Figure 2.3(b). Module function implementation - procedure pop.

 The main body of a πlog program is a set of C instructions which include
assignments, conditional instructions like an if-then-else and switch, constructs
allowing iterations as while, do, and for and functions calls. The values
returned by a function call should be computed using the rewrite rules
specified in the body of the procedure implementing that function. For
instance, Figure 2.4 describes how a C program could use the functions of
module StackType described in Figure 2.2.

void main() {
 stackOfFloat = newStackType(float);
 stackOfStacks = newStackType(StackOfFloat);
 stackOfFloat s1, s2, s3 = empty;
 stackOfStacks ss = empty;
 float x, y, z;
 for (int i=0; i<10; i++) {
 scanf("%f %f %f", x, y, z);
 s1 = push(s1, x);
 s2 = push(s2, y);
 s3 = push(s3, z);
 ss = push(s1:s2, s3);
 }
}

Figure 2.4. Program main body.

3 Implementation Issues

The philosophy behind the πlog language is to clearly separate algorithmic
details, memory management and specification so that each of these aspects of
program generation may be tackled independently. The execution of programs
in this language is performed with greater and greater efficiency according as
information is added. If only the specification is given then the system
attempts execution using search techniques, but termination is not guaranteed
to the same extent as when specific algorithmic information is given to the
runtime system in some form. The semantics of the language guarantees how it
is executed given this additional information and also defines the model of
computation. However, in the absence of any control whatsoever, i.e. when
only a specification is provided, as in OBJ [2] for example, the algorithm
which searches for solutions is not determined. This is left to the implementer
of the language compiler as there is no algorithm which will in general solve
any problem that can be defined in the language. So, various heuristics are
required which may well depend on the use to which the system is put.

One of the great advantages of separating control, specification and data
structures is that they may be implemented one at the time in the program
enabling rapid prototyping and alternative choices of control to be tested.

The runtime system [8-13] is a theorem prover, which builds up a number
of theorems that are held available as long as is necessary [7-9]. It is these
theorems, deduced from the original rules, which form the system’s memory.
They have the form of additional rewrite rules which give values for functions
needed in future computations. Thus, the memory holds natural values with
very clear meaning: there are no obscure variables with a complex relationship
between them.

The algorithmic control in the form of rules which are added to the program
may disturb the logic of the functional programming language πlog. This then
requires a theorem-proving capability to verify the rules against the
specification. Any implementation of the language is required to do such
theorem-proving as it is necessary to ensure that the program meets its
specification or report what still needs to be proved to enable verification.
Normally, such theorem-proving capabilities will be interactive since proving
theorems is rather a hard and undecidable process [6]. However, the compiler
does have a switch by which the necessary verification, which is costly in
time, may be switched off. Totally verified sections of code are marked as
such and the proofs filed for future reference. For efficiency, code is date
stamped so that future changes to code will only invalidate a minimal part of
an already existent proof. Previously verified code which is thus invalidated
uses the recorded proof in an attempt to re-verify the code. The need for

verification can almost be avoided by using rewrite rules for the algorithmic
information and copying them for the specification. Only termination and
consistency properties then have to be checked.

Operationally, the evaluation of a given term using the suggested reduction
strategy can be described by the following rewriting rules:

evaluate(t) = rewrite(t, strategy(t))
rewrite(t,∅) = t
rewrite(t,cons(0,l) = if(match(t), evaluate(template(t)), rewrite(t, l))
rewrite(t,cons(x,l) = rewrite(substitute(t, x, evaluate(argument(t, x))), l)

where function evaluate rewrites a term to its normal form, function rewrite
reduces the given term using its top operator strategy, function strategy returns
the given term’s top operator strategy, function match determines whether or
not the given term is a reducible expression, function template returns the
contractum of the given term, function substitute replaces a given subterm
with another, and finally, function argument returns a given argument.
 This straightforward implementation can be improved using the technique
of memoisation, which consists of bookkeeping already evaluated terms.
Marking evaluated terms improves the evaluation time by a great deal (see [7]
for more details).

The language πlog has the structure of a program written in a C-like
language. Functions are defined using a functional programming style to
calculate their values. A πlog function can be implemented by one or more
procedures using rewrite rules. With this functional programming language,
the user has the same algorithmic control as with imperative languages. This
allows him to write programs which are as efficient in terms of memory space
and execution time as if he were using an imperative programming language.
The added control should increase efficiency by avoiding the process of
pattern-matching that selects the rule to use and the process of redex selection
that chooses the next subterm to rewrite. These two properties make the
proposed language provably as efficient as an imperative language. In πlog,
functions are defined in an environment made up of a number of abstract data
types. This means that the types needed for the function arguments and values
are not defined explicitly by constructing them from the basic built-in types
such as Boolean and integer. They are constructed implicitly using the
functions which operate on them. This includes the use of constant functions,
i.e. functions which have no parameters.

4 Conclusion

In this paper, we proposed a new programming language that integrates
functional and logic features together with procedural ones without detailing
all the features available to the programmer. Normally, this hybrid language
should provide the programmer with two advantages: efficiency due to the
imperative constructs and clarity and provability due to the declarative
features.

The compiler of the πlog language is being implemented. We intend to
evaluate the performance of such a compiler in comparison with purely
declarative systems like the OBJ3 system [2] and a purely imperative language
as Pascal.

References

1. Ehrig, H. and Mahr, B., Fundamentals of Algebraic Specifications 1:
Equations and Initial Semantics, Springer-Verlag, 1985.

2. Goguen, J. A. and Winkler, T., Introducing OBJ3, Technical report,
SRI-CSL-88-9, Computer Science Laboratory in SRI International,
August 1988.

3. C.M. Hoffman and M.J. O’Donnell, ‘Pattern-matching in trees’,
Journal of ACM, pp. 68-95, January 1982.

4. C.M. Hoffman and M.J. O’Donnell, ‘Programming with equations’,
ACM TOPLAS, pp. 83-112, January 1982.

5. Hudak, P. and Wadler, P., Report on the Functional Programming
Language Haskell, Technical report, YALEU/DCS/RR656,
Department of Computer Science, Yale University, 1988.

6. Klop, J. W., Term Rewriting Systems From Church-Rosser to Knuth-
Bendix, International Colloquium on Automata, languages and
Programming, vol. 443, pp. 350-369, Lecture Notes in Computer
Science, Springer-Verlag, 1990.

7. Nedjah, N. Pattern-matching automata for efficient evaluation in
equation programming, Ph. D. thesis, UMIST, University of
Manchester Institute of Science and Technology, September 1997.

8. Nedjah, N., Walter, C.D. and Eldridge, S.E., More efficient pattern-
matching automata for overlapping patterns, Ninth International
Workshop on Implementation of Functional Languages, St. Andrews,
Scotland, UK, pp. 341-350, August 1997.

9. Nedjah, N., Walter, C.D. and Eldridge, S.E., Optimal left-to-right

pattern-matching automata, Sixth Conference on Algebraic and Logic
Programming, Southampton, UK, Lecture Notes in Computer Science,
Springer-Verlag Editors, vol. 1298, pp. 273-281, September 1997.

10. Nedjah, N. Minimal deterministic left-to-right pattern-matching
automata, ACM Sigplan Notices, vol. 33, no. 1, pp. 40-47, January
1998.

11. Nedjah, N. and Mourelle, L.M. Very Efficient pattern-matching for
overlapping patterns, Fifth International Workshop on Languages,
Logic, Information and Computation, São Paulo, Brazil, July 1998.

12. Nedjah, N., Walter, C.D. and Eldridge, S.E., Efficient automata-driven
pattern-matching for equational programming, Software-Practice and
Experience, vol. 29, no. 8, 1999.

13. Nedjah, N. and Mourelle, L.M. Adaptive pattern-matching for
overlapping patterns, Fifteenth International Symposium on Computer
and Information Systems, Istambul, Turkey, October 2000.

14. Nedjah, N. and Mourelle, L., Improving Space, Time and Termination
in Rewriting-Based Programming, The Forteenth International
Conference on Industrial & Engineering Applications of Artificial
Intelligence & Expert Systems, Budapest, Hungry, Lecture Notes in
Computer Science/Lecture Notes in Artificial Intelligence, Springer-
Verlag Editors, to appear, June 2001.

15. Peyton-Jones, S. L., The Implementation of Functional Programming
Languages, Prentice-hall, 1987.

16. Peyton-Jones, S. L., Hall, G., Hammond, K., et al., The Glasgow
Haskell Compiler: a Technical Overview, Joint Framework for
Information Technology, 1993.

17. R.I. Strandh, Compiling equational programs into efficient code, Ph.D.
Thesis, The Johns Hopkins University, 1988.

18. Turner, D. A., Miranda: a Non Strict Functional Language with
Polymorphic Types, ACM Conference on Lisp and Functional
Languages, vol. 20. pp. 1-16, 1985.

