Computational Epistemology for Quantifiers

Nina Gierasimczuk

Institute for Logic, Language and Computation
Universiteit van Amsterdam

VIIth Tbilisi Symposium
October 5, 2007
1 PROBLEMS

2 QUANTIFIERS
 - Quantifiers of type \(\langle 1 \rangle \)
 - Quantifiers of type \(\langle 1, 1 \rangle \)

3 COMPUTATIONAL EPISTEMOLOGY

4 IDENTIFIABILITY

5 GENERAL QUESTION
Plan

1 Problems

2 Quantifiers
 - Quantifiers of type \langle 1 \rangle
 - Quantifiers of type \langle 1, 1 \rangle

3 Computational Epistemology

4 Identifiability

5 General question
PROBLEMS

- Epistemological properties of quantifiers.
- Their influence on NL comprehension.
- Linking them to learnability features.
- Compare notions of decidability and identifiability.
1. **Problems**

2. **Quantifiers**
 - Quantifiers of type $\langle 1 \rangle$
 - Quantifiers of type $\langle 1, 1 \rangle$

3. **Computational Epistemology**

4. **Identifiability**

5. **General Question**
A monadic generalized quantifier of type \((1, \ldots, 1)\) is a class \(Q\) of structures of the form \(M = (M, A_1, \ldots, A_n)\), where \(A_i\) is a subset of \(M\). Additionally, \(Q\) is closed under isomorphism.
Q OF TYPE \(\langle 1\rangle\)

Monotonicity

Definition

\(Q_M\) is \(\text{MON}^{\uparrow}\) iff: if \(A \subseteq A' \subseteq M\), then \(Q_M(A)\) implies \(Q_M(A')\).

Definition

\(Q_M\) is \(\text{MON}^{\downarrow}\) iff: if \(A' \subseteq A \subseteq M\), then \(Q_M(A)\) implies \(Q_M(A')\).
Q OF TYPE $\langle 1 \rangle$

Extendability

Definition

Q of type $\langle 1 \rangle$ satisfies EXT iff for all models M and M': $A \subseteq M \subseteq M'$ implies $Q_M(A) \iff Q_{M'}(A)$.
Restriction to CE quantifiers.

Definition

Let Q be of type $\langle 1, 1 \rangle$. Then for all M, M', all $A, B \subseteq M$, and $A', B' \subseteq M'$:

(ISOM) If $(M, A, B) \cong (M', A', B')$, then $Q_M(A, B) \iff Q_{M'}(A', B')$.

(CONS) $Q_M(A, B) \iff Q_M(A, A \cap B)$.

(EXT) If $M \subseteq M'$, then $Q_M(A, B) \iff Q_{M'}(A, B)$.
CE QUANTIFIERS
(ISOM) IF \((M, A, B) \cong (M', A', B')\), THEN \(Q_M(A, B) \iff Q_{M'}(A', B')\)
CE QUANTIFIERS - EXT

(EXT) If $M \subseteq M'$, then $Q_M(A, B) \iff Q_{M'}(A, B)$
CE QUANTIFIERS - CONS

(CONS) $Q_M(A, B) \iff Q_M(A, A \cap B)$
The scope we are interested in for both $\langle 1 \rangle$ and $\langle 1, 1 \rangle$ cases.
Q OF TYPE $\langle 1, 1 \rangle$

Monotonicity

Definition

Q of type $\langle 1, 1 \rangle$ is MON^\uparrow iff:
If $A \subseteq M$ and $B \subseteq B' \subseteq M$, then $Q^M(A, B) \Rightarrow Q^M(A, B')$.
Q OF TYPE $\langle 1, 1 \rangle$

PERSISTENCE

DEFINITION

Q of type $\langle 1, 1 \rangle$ is PER iff:
If $A \subseteq A' \subseteq M$ and $B \subseteq M$, then $Q_M(A, B) \Rightarrow Q_M(A', B)$.
Examples

<table>
<thead>
<tr>
<th>Determiner</th>
<th>MON ↑</th>
<th>EXT (for $\langle 1 \rangle$)</th>
<th>PER (for $\langle 1, 1 \rangle$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Some</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>At least n</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>At most n</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Exactly n</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

Table: Quantifiers and their properties
Monotonicity & Linguistics

- Does monotonicity influence NL comprehension?
- Does monotonicity influence NL learning?
- Monotonicity and inference patterns (B. Geurts).
- Proposal: focus on persistence.
PLAN

1 PROBLEMS

2 QUANTIFIERS
 • Quantifiers of type ⟨1⟩
 • Quantifiers of type ⟨1, 1⟩

3 COMPUTATIONAL EPISTEMOLOGY

4 IDENTIFIABILITY

5 GENERAL QUESTION
Logic of reliable inquiry - Kevin Kelly

- Inspired by learning theory.
- Similar framework.
- Verification/falsification in computational setting.
Logic of reliable inquiry - Kevin Kelly

\(\varepsilon \) — infinite string of data;
\(\varepsilon|n \) — finite initial segment of \(\varepsilon \) through the position \(n - 1 \);
\(h \) — hypothesis;
\(C \) — correctness relation;
\(C(\varepsilon, h) \) iff \(h \) is correct w.r.t. \(\varepsilon \);
\(\alpha \) — an assessment method;
\(\text{OUT} \) conjectures 1, 0, !.
Certainty in Reliable Inquiry

Definition

α produces b with certainty on (h, ε) iff there is an n s.t.:

1. $\alpha(h, \varepsilon|n) = !$, and
2. $\alpha(h, \varepsilon|n+1) = b$, and
3. for each $m < n$, $\alpha(h, \varepsilon|m) \neq !$.

Nina Gierasimczuk

Computational Epistemology for Quantifiers
Certainty in Reliable Inquiry

Definition

\(\alpha \) verifies \(h \) with certainty on \(\varepsilon \) (with respect to \(C \)) iff \(\alpha \) produces 1 with certainty on \((h, \varepsilon) \) \(\iff C(\varepsilon, h) \).

Definition

\(\alpha \) refutes \(h \) with certainty on \(\varepsilon \) (with respect to \(C \)) iff \(\alpha \) produces 0 with certainty on \((h, \varepsilon) \) \(\iff \neg C(\varepsilon, h) \).

Definition

Decidability with certainty is simply verifiability and refutability with certainty at the same time.
EXAMPLES

- At least six bikes are broken. - Verifiable with certainty
- An even number of bikes is broken. - Verifiable in the limit
EPISTEMOLOGICAL PROPERTIES OF Q o.t. \langle 1 \rangle

- 1–1 enumeration of elements of the universe.
- Assignment of \(\chi_A \) to each of them.
- Infinite sequence of 0s and 1s.
- In each step checking if finite initial segment satisfies a hypothesis (quantifier sentence).
PROPOSITION

Let Q be FO quantifier of type $\langle 1 \rangle$.
Q is MON \uparrow and EXT iff it is verifiable with certainty.

PROPOSITION

Let Q be FO quantifier of type $\langle 1 \rangle$.
$\neg Q$ is verifiable with certainty iff Q is falsifiable with certainty.
Proposition

Let Q be FO CE quantifier of type $\langle 1, 1 \rangle$. Q is persistent iff it is verifiable with certainty.

Proposition

Let Q be FO CE quantifier of type $\langle 1, 1 \rangle$. $\neg Q$ is falsifiable with certainty iff Q is verifiable with certainty.
Examples

Table: Quantifiers and their properties

<table>
<thead>
<tr>
<th>Determiner</th>
<th>verifiable</th>
<th>falsifiable</th>
<th>MON ↑</th>
<th>EXT (for ⟨1⟩)</th>
<th>PER (for ⟨1, 1⟩)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>No</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Some</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>At least n</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>At most n</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Exactly n</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>
Plan

1. Problems
2. Quantifiers
 - Quantifiers of type $\langle 1 \rangle$
 - Quantifiers of type $\langle 1, 1 \rangle$
3. Computational Epistemology
4. Identifiability
5. General question
Class of objects is chosen (e.g. class of grammars).

Player 1 picks out one object from the class (e.g. \(G \)).

Player 1 generates positive instances of this object, repetitions allowed (e.g. words from a language of \(G \)).

Player 2 knows about the class, but he does not know which object is chosen.

Player 2 has to guess which object Player 1 has in mind.
Learning the semantics of natural language
Identifiability from text in use

- Class of quantifiers is chosen.
- Player 1 picks one of them (Q)
- Player 2 is presented finite worlds in which Q is true.
- Player 2 has to identify Q.
Assuming CE, we can represent all relevant models in the form of number triangle.

\[(0,0)\]
\[(1,0) \quad (0,1)\]
\[(2,0) \quad (1,1) \quad (0,2)\]
\[(3,0) \quad (2,1) \quad (1,2) \quad (0,3)\]
\[(4,0) \quad (3,1) \quad (2,2) \quad (1,3) \quad (0,4)\]
\[\ldots \quad \ldots\]
Number triangle representation

- Graphic representation of a class of CE quantifiers.
- In particular: PER.

```
- - + +
- - + + +
- - + + + +
- - + + + + +
...
...```

Nina Gierasimczuk
Computational Epistemology for Quantifiers
NUMBER TRIANGLE REPRESENTATION

- Graphic representation of a class of CE quantifiers.
- In particular: PER.
Number triangle representation

- Graphic representation of a class of CE quantifiers.
- In particular: PER.
**Number triangle representation**

- Graphic representation of a class of CE quantifiers.
- In particular: PER.
TIEDE’S RESULT

**Theorem**

The class of FO PER Q is identifiable from text.
Plan

1 Problems

2 Quantifiers
   - Quantifiers of type \langle 1 \rangle
   - Quantifiers of type \langle 1, 1 \rangle

3 Computational Epistemology

4 Identifiability

5 General question
General Question
Relation between Ver/Fal hierarchy and identifiability

Decidability
- Gradual Ver
- Gradual Fal
- Gradual Dec
- Limit Ver
- Limit Fal
- Limit Dec
- Certain Ver
- Certain Fal
- Certain Dec

Identifiability
- Gradual Id from informant
- Gradual Id from text
- Limit Id from informant
- Limit Id from text
- Certain Id from informant
- Certain Id from text
**GENERAL QUESTION**
Relation between Ver/Fal hierarchy and identifiability

Decidability

- Gradual ver
- Gradual fal
- Gradual dec
- Limit ver
- Limit fal
- Limit dec
- Certain ver
- Certain fal
- Certain dec

Identifiability

- Gradual id from informant
- Gradual id from text
- Limit id from informant
- Limit id from text
- Certain id from informant
- Certain id from text
GENERAL QUESTION

RELATION BETWEEN VER/FAL HIERARCHY AND IDENTIFIABILITY

Decidability

- Gradual ver
- Gradual fal
- Gradual dec
- Limit ver
- Limit fal
- Limit dec
- Certain ver
- Certain fal
- Certain dec

Identifiability

- Gradual id from informant
- Gradual id from text
- Limit id from informant
- Limit id from text
- Certain id from informant
- Certain id from text

Nina Gierasimczuk
Computational Epistemology for Quantifiers
GENERAL QUESTION

Relation between Ver/Fal hierarchy and identifiability

Decidability
- Gradual
  - Gradual ver
  - Gradual fal
  - Gradual dec
- Limit
  - Limit ver
  - Limit fal
  - Limit dec
- Certain
  - Certain ver
  - Certain fal
  - Certain dec

Identifiability
- Gradual id from informant
- Gradual id from text
- Limit id from informant
- Limit id from text
- Certain id from informant
- Certain id from text
**GENERAL QUESTION**
Relation between Ver/Fal hierarchy and identifiability

Decidability
- Gradual dec
  - Limit dec
    - Certain dec
    - Certain fal
    - Limit fal
    - Certain fal
    - Gradual fal
      - Gradual dec
Identifiability
- Gradual id from informant
  - Gradual id from text
  - Limit id from informant
  - Limit id from text
  - Certain id from informant
  - Certain id from text
General question
Relation between Ver/Fal hierarchy and identifiability

Decidability
gradual ver  gradual fal
gradual dec
limit ver  limit fal
limit dec

Identifiability
gradual id from informant
gradual id from text
limit id from informant
limit id from text

Certain ver  certain fal
Certain dec
Certain id from informant
Certain id from text
GENERAL QUESTION
Relation between Ver/Fal hierarchy and identifiability

Decidability

- Gradual ver
- Gradual fal

- Gradual dec

- Limit ver
- Limit fal

- Limit dec

- Certain ver
- Certain fal

- Certain dec

Identifiability

- Gradual id from informant
- Gradual id from text

- Limit id from informant
- Limit id from text

- Certain id from informant
- Certain id from text
General question

Relation between Ver/Fal hierarchy and identifiability

Decidability

Gradual ver → Gradual fal
Gradual dec

Limit ver → Limit fal
Limit dec

Certain ver → Certain fal
Certain dec

Identifiability

Gradual id from informant
Gradual id from text
Limit id from informant
Limit id from text
Certain id from informant
Certain id from text

Nina Gierasimczuk
Computational Epistemology for Quantifiers
GENERAL QUESTION

RELATION BETWEEN VER/FAL HIERARCHY AND IDENTIFIABILITY

Decidability

- gradual ver
  - gradual dec
    - limit ver
      - limit dec
        - certain ver
          - certain dec
    - limit fal
      - certain fal

Identifiability

- gradual id from informant
  - gradual id from text
- limit id from informant
  - limit id from text
- certain id from informant
  - certain id from text
GENERAL QUESTION
RELATION BETWEEN VER/FAL HIERARCHY AND IDENTIFIABILITY

Decidability
- gradual ver
- gradual fal
- gradual dec
- limit ver
- limit fal
- limit dec
- certain ver
- certain fal
- certain dec

Identifiability
- gradual id from informant
- gradual id from text
- limit id from informant
- limit id from text
- certain id from informant
- certain id from text

Nina Gierasimczuk
Computational Epistemology for Quantifiers
GENERAL QUESTION

RELATION BETWEEN VER/FAL HIERARCHY AND IDENTIFIABILITY

Decidability

- gradual ver
- gradual dec
- gradual fal

Identifiability

- gradual id from informant
- gradual id from text
- limit id from informant
- limit id from text
- certain id from informant
- certain id from text

Nina Gierasimczuk

Computational Epistemology for Quantifiers
CONCLUSIONS AND FUTURE WORK

- Epistemological role of monotonicity - additional explanation.
- Verification less difficult than falsification?
- Check connections between persistence and comprehension.
- Investigate relationship between identifiability and decidability: learning of NL semantics; new conditions of identifiability.
THANK YOU!