A Logic for Assertion Networks

Sujata Ghosh, Erik Scorelle, Fernando R. Velázquez-Quesada

Institute for Logic, Language and Computation
Universiteit van Amsterdam
{sujata, escorell, fvelazqu}@science.uva.nl

October, 2007
A Logic for Assertion Networks

1 Background
 • Assertion network

2 Logic for Assertion network
 • Graph operations
 • A logical language

3 Conclusions
 • Final notes
A real life situation

You and your colleague share an office without windows. You are talking on the phone to your friend who is sitting in a street café. You want to know whether the sun is shining outside or not.

<table>
<thead>
<tr>
<th>Friend</th>
<th>Colleague</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Everything your colleague says is false; the sun is shining!"</td>
<td>"Everything your friend says is false; it is cloudy!"</td>
</tr>
</tbody>
</table>

What to believe?
A real life situation

You and your colleague share an office without windows. You are talking on the phone to your friend who is sitting in a street café. You want to know whether the sun is shining outside or not.

Friend: “Everything your colleague says is false; the sun is shining!”
A real life situation

You and your colleague share an office without windows. You are talking on the phone to your friend who is sitting in a street café. You want to know whether the sun is shining outside or not.

- **Friend:** “Everything your colleague says is false; the sun is shining!”
- **Colleague:** “Everything your friend says is false; it is cloudy!”
A real life situation

You and your colleague share an office without windows. You are talking on the phone to your friend who is sitting in a street café. You want to know whether the sun is shining outside or not.

- **Friend**: “Everything your colleague says is false; the sun is shining!”

- **Colleague**: “Everything your friend says is false; it is cloudy!”

What to believe?
Directed labelled graphs
Directed labelled graphs

- Agents and facts represented by vertices \((V)\).
Directed labelled graphs

- Agents and facts represented by vertices \((V)\).
- Agents’ opinions represented by labelled edges \((l : E \rightarrow \{+, -\})\).
Directly labelled graphs

- Agents and facts represented by vertices \((V)\).
- Agents’ opinions represented by labelled edges \((l : E \rightarrow \{+, -\})\).
- Directed labelled graph (DLG) \(G = (V, E, l)\).
Representing the situation

- A_c - your colleague
- A_f - your friend
- S - sun is shining
Representing the situation

- A_c - your colleague
- A_f - your friend
- S - sun is shining

\[
\begin{array}{c}
A_c \quad \rightarrow \\
\quad \quad \quad \rightarrow \\
A_f \quad \leftarrow \quad \leftarrow \\
\quad \quad \quad \leftarrow \\
S
\end{array}
\]
What to believe?

Definition (Assertion network semantics (AN))

Given $G = (V, E, I)$:
What to believe?

Definition (Assertion network semantics (AN))

Given $G = (V, E, l)$:

- Observer’s initial degree of belief (initial hypothesis):

$$H : (V \cup E) \rightarrow (\mathbb{Q} \cap [-1, 1])$$
What to believe?

Definition (Assertion network semantics (AN))

Given $G = (V, E, I)$:
- Observer’s initial degree of belief (initial hypothesis):
 $$H : (V \cup E) \rightarrow (\mathbb{Q} \cap [-1, 1])$$
- New degree of belief from previous ones:
 $$H_i = \Psi^i(H)$$
What to believe?

Definition (Assertion network semantics (AN))

Given $G = (V, E, I)$:

- Observer’s initial degree of belief (initial hypothesis):

$$H : (V \cup E) \rightarrow (\mathbb{Q} \cap [-1, 1])$$

- New degree of belief from previous ones:

$$H_i = \Psi^i(H)$$

- λ_s stable value of $s \in (V \cup E)$ if $\lim_{i \to \infty} H_i(s) = \lambda_s$

$$\text{St}_H(G, s) = \lambda_s$$
A particular ψ

Focus on belief changes in opinions (edges) and facts (terminal vertices).

non-terminal vertices terminal vertices edges
Toolkit

A Logic for Assertion Networks
A Logic for Assertion Networks

Toolkit

![Diagram of an assertion network with vertices and edges, along with a table of values for each vertex and edge.]
A Logic for Assertion Networks

Toolkit
A Logic for Assertion Networks
This work

Goal

Goal:

to define a logic to reason about assertion networks
This work

Restrictions

Some restrictions for this initial work:
This work

Restrictions

Some restrictions for this initial work:

- Finite graphs.
This work

Restrictions

Some restrictions for this initial work:

- Finite graphs.
- Initial opinions just for facts ($s \notin T \Rightarrow H(s) = 0$).
A Logic for Assertion Networks

1 Background
 - Assertion network

2 Logic for Assertion network
 - Graph operations
 - A logical language

3 Conclusions
 - Final notes
Intuitive idea

- New agents with opinion about existing agents.
- A distinguished non-terminal node (an already considered agent).
- New nodes and edges representing new agents and their opinions.
Intuitive idea

- New agents with opinion about existing agents.
Intuitive idea

- New agents with opinion about existing agents.
- A distinguished non-terminal node (an already considered agent).
Intuitive idea

- New agents with opinion about existing agents.
- A distinguished non-terminal node (an already considered agent).
- New nodes and edges representing new agents and their opinions.
Negation, conjunction and disjunction

\[G_1 = (G_1, v_1) \text{ and } G_2 = (G_2, v_2) \text{ two pointed DLG:} \]
Negation, conjunction and disjunction

\[\mathcal{G}_1 = (G_1, v_1) \text{ and } \mathcal{G}_2 = (G_2, v_2) \text{ two pointed DLG:} \]

\[\neg v_1 \]

\[\neg v_1 \downarrow \]

\[\neg \mathcal{G}_1 \]

\[\ominus \mathcal{G}_1 \]
Graph operations

Negation, conjunction and disjunction

\[G_1 = (G_1, v_1) \text{ and } G_2 = (G_2, v_2) \text{ two pointed DLG:} \]
Negation, conjunction and disjunction

\[G_1 = (G_1, v_1) \text{ and } G_2 = (G_2, v_2) \] two pointed DLG:

\[\neg v_1 \quad \neg v_1 \quad v_1 \land v_2 \quad v_1 \lor v_2 \quad v_1 \land v_2 \quad v_1 \lor v_2 \]
Examples

G_1

G_2

G_3

A Logic for Assertion Networks
Examples

G_1

G_2

G_3

ΘG_2

$G_1 \odot G_3$
Analyzing simple graphs

\[G_1 = v_1 \xrightarrow{+} w_1 \quad \text{and} \quad G_2 = v_2 \xrightarrow{+} w_2. \]
Analyzing simple graphs

\[G_1 = v_1 \rightarrow^+ w_1 \quad \text{and} \quad G_2 = v_2 \rightarrow^+ w_2. \]

<table>
<thead>
<tr>
<th>(H(w_1))</th>
<th>(\text{St}_{H}(G_1))</th>
<th>(\text{St}_{H}(\Theta G_1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1]</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-1, 0)</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>
Analyzing simple graphs

\[\mathcal{G}_1 = v_1 \rightarrow w_1 \quad \text{and} \quad \mathcal{G}_2 = v_2 \rightarrow w_2. \]

<table>
<thead>
<tr>
<th>$H(w_1)$</th>
<th>$\text{St}_H(\mathcal{G}_1)$</th>
<th>$\text{St}_H(\ominus \mathcal{G}_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1)</td>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-1, 0]</td>
<td>-1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$H(w_1)$</th>
<th>$H(w_2)$</th>
<th>$\text{St}_H(\mathcal{G}_1)$</th>
<th>$\text{St}_H(\mathcal{G}_2)$</th>
<th>$\text{St}_H(\mathcal{G}_1 \odot \mathcal{G}_1)$</th>
<th>$\text{St}_H(\mathcal{G}_1 \oplus \mathcal{G}_2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1)</td>
<td>(0, 1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>[-1, 0]</td>
<td>1</td>
<td>-1</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>(0, 1)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>[-1, 0]</td>
<td>0</td>
<td>-1</td>
<td>-0.5</td>
<td>-1</td>
</tr>
<tr>
<td>[-1, 0]</td>
<td>(0, 1)</td>
<td>-1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-1, 0]</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>-0.5</td>
<td>-1</td>
</tr>
<tr>
<td>[-1, 0]</td>
<td>[-1, 0]</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Some properties for simple graphs

\[G_1 = \overset{+}{v_1} \rightarrow w_1 \quad \text{and} \quad G_2 = \overset{+}{v_2} \rightarrow w_2. \]
Some properties for simple graphs

\[G_1 = v_1 \xrightarrow{+} w_1 \quad \text{and} \quad G_2 = v_2 \xrightarrow{+} w_2 \, . \]

- Duality for \(\ominus \):
 \[\text{St}_H(G_1) = \text{St}_H(\ominus \ominus G_1) \]
Graph operations

Some properties for simple graphs

\[G_1 = v_1 \rightarrow^+ w_1 \quad \text{and} \quad G_2 = v_2 \rightarrow^+ w_2. \]

- Duality for \(\ominus \):
 \[\text{St}_H(G_1) = \text{St}_H(\ominus \ominus G_1) \]

- Idempotence for \(\odot \) and \(\oplus \):
 \[\text{St}_H(G_1) = \text{St}_H(G_1 \odot G_1) \quad \text{St}_H(G_1) = \text{St}_H(G_1 \oplus G_1) \]
Some properties for simple graphs

\[G_1 = v_1 \rightarrow^+ w_1 \quad \text{and} \quad G_2 = v_2 \rightarrow^+ w_2. \]

- **Duality for \(\ominus \):**
 \[\text{St}_H(G_1) = \text{St}_H(\ominus \ominus G_1) \]

- **Idempotence for \(\odot \) and \(\oplus \):**
 \[\text{St}_H(G_1) = \text{St}_H(G_1 \odot G_1) \quad \text{St}_H(G_1) = \text{St}_H(G_1 \oplus G_1) \]

- **Commutativity for \(\odot \) and \(\oplus \):**
 \[\text{St}_H(G_1 \odot G_2) = \text{St}_H(G_2 \odot G_1) \quad \text{St}_H(G_1 \oplus G_2) = \text{St}_H(G_2 \oplus G_1) \]
A Logic for Assertion Networks

1. Background
 - Assertion network

2. Logic for Assertion network
 - Graph operations
 - A logical language

3. Conclusions
 - Final notes
A logical language

Syntax

Definition (Syntax)

Given a set Φ of atomic propositions (agents), L_{ANT} is the smallest set of agent terms containing Φ and closed under \neg, \land, \lor.
Definition (Syntax)

Given a set Φ of atomic propositions (agents), L_{ANT} is the smallest set of agent terms containing Φ and closed under \neg, \land, \lor.
Semantics

\(\mathcal{G} \) the class of all pointed DLGs.
Semantics

\[\mathcal{G} \] the class of all pointed DLGs.

Definition (Semantic model)

A pair \(\langle K, H \rangle \) where

Definition (Semantics)
Semantics

\(\mathcal{G} \) the class of all pointed DLGs.

Definition (Semantic model)

A pair \(\langle K, H \rangle \) where

- \(K : \Phi \to \mathcal{G} \) is an \(\mathcal{L}_{DLG} \)-assignment, extended for \(\mathcal{L}_{ANT} \) as
 - \(K(\varphi \land \psi) := K(\varphi) \odot K(\psi) \)
 - \(K(\neg \varphi) := \ominus K(\varphi) \)
 - \(K(\varphi \lor \psi) := K(\varphi) \oplus K(\psi) \)

Definition (Semantics)
Semantics

\(\mathcal{G} \) the class of all pointed DLGs.

Definition (Semantic model)

A pair \(\langle K, H \rangle \) where

- \(K : \Phi \rightarrow \mathcal{G} \) is an \(\mathcal{L}_{DLG} \)-assignment, extended for \(\mathcal{L}_{ANT} \) as

 \[
 K(\varphi \land \psi) := K(\varphi) \odot K(\psi) \quad K(\neg \varphi) := \ominus K(\varphi) \\
 K(\varphi \lor \psi) := K(\varphi) \oplus K(\psi)
 \]

- \(H \) is an initial hypothesis.

Definition (Semantics)
Semantics

\mathcal{G} the class of all pointed DLGs.

Definition (Semantic model)

A pair $\langle K, H \rangle$ where

- $K : \Phi \rightarrow \mathcal{G}$ is an \mathcal{L}_{DLG}-assignment, extended for \mathcal{L}_{ANT} as

 $K(\varphi \land \psi) := K(\varphi) \odot K(\psi) \quad K(\neg \varphi) := \ominus K(\varphi)$

 $K(\varphi \lor \psi) := K(\varphi) \oplus K(\psi)$

- H is an initial hypothesis.

Definition (Semantics)

$\langle K, H \rangle \models \varphi$ iff $\text{St}_H(K(\varphi)) > 0$
Semantics

\(\mathcal{G} \) the class of all pointed DLGs.

Definition (Semantic model)

A pair \(\langle K, H \rangle \) where

- \(K : \Phi \rightarrow \mathcal{G} \) is an \(L_{DLG} \)-assignment, extended for \(L_{ANT} \) as
 \[
 K(\varphi \land \psi) := K(\varphi) \odot K(\psi) \\
 K(\neg \varphi) := \ominus K(\varphi) \\
 K(\varphi \lor \psi) := K(\varphi) \oplus K(\psi)
 \]

- \(H \) is an initial hypothesis.

Definition (Semantics)

\[\langle K, H \rangle \models \varphi \quad \text{iff} \quad \text{St}_H(K(\varphi)) > 0 \]

\[\langle K, H \rangle \models_{\geq} \varphi \quad \text{iff} \quad \text{St}_H(K(\varphi)) \geq 0 \]
Semantical entailment relation

Intuitive idea:
Semantical entailment relation

Intuitive idea:
- How beliefs over one agent influences the beliefs in other.
- Same general situation (discarding disjoint graphs and unrelated initial hypothesis).
Semantical entailment relation

Intuitive idea:
- How beliefs over one agent influences the beliefs in other.
- Same general situation (discarding disjoint graphs and unrelated initial hypothesis).

Definition (Entailment relation)

\(\varphi, \psi \) agent terms, with one of them a subterm of the other.
Semantical entailment relation

Intuitive idea:

- How beliefs over one agent influences the beliefs in other.
- Same general situation (discarding disjoint graphs and unrelated initial hypothesis).

Definition (Entailment relation)

φ, ψ agent terms, with one of them a subterm of the other.

$\varphi \models_{\langle K, H \rangle} \psi$ if $\langle K, H \rangle \models_{\geq} \psi$ whenever $\langle K, H \rangle \models_{>} \varphi$
Semantical entailment relation

Intuitive idea:
- How beliefs over one agent influences the beliefs in other.
- Same general situation (discarding disjoint graphs and unrelated initial hypothesis).

Definition (Entailment relation)
\(\varphi, \psi\) agent terms, with one of them a subterm of the other.

\[
\varphi \models_{\langle K, H \rangle} \psi \quad \text{if} \quad \langle K, H \rangle \models_{\geq} \psi \quad \text{whenever} \quad \langle K, H \rangle \models_{\rightarrow} \varphi
\]

\[
\varphi \models_{K} \psi \quad \text{if} \quad \varphi \models_{\langle K, H \rangle} \psi \quad \text{for all} \quad H
\]
Semantical entailment relation

Intuitive idea:
- How beliefs over one agent influences the beliefs in other.
- Same general situation (discarding disjoint graphs and unrelated initial hypothesis).

Definition (Entailment relation)

\(\varphi, \psi \) agent terms, with one of them a subterm of the other.

\[
\begin{align*}
\varphi & \models_{\langle K, H \rangle} \psi \quad \text{if} \quad \langle K, H \rangle \models_{\geq} \psi \quad \text{whenever} \quad \langle K, H \rangle \models_{\rightarrow} \varphi \\
\varphi & \models_{K} \psi \quad \text{if} \quad \varphi \models_{\langle K, H \rangle} \psi \quad \text{for all} \ H
\end{align*}
\]

Believing in \(\varphi \) forces the observer to not disbelieve in \(\psi \)
Examples

\[A_f \xrightarrow{-} A_c \]

\[S \]

\[K(p) \]

\[A_m \rightarrow A_f \xrightarrow{-} A_c \]

\[S \]

\[K(\neg p) \]
Examples

\[
K(p)
\]

\[
K(\neg p)
\]

<table>
<thead>
<tr>
<th>(H(S))</th>
<th>(\text{St}_H(K(\neg p)))</th>
<th>(\text{St}_H(K(p)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 1]</td>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>[-1, 0)</td>
<td>1</td>
<td>-1</td>
</tr>
</tbody>
</table>
Examples

\[A_f \xrightarrow{-} A_c \xrightarrow{-} S \]

\[K(p) \]

\[A_m \xrightarrow{-} A_f \xrightarrow{-} A_c \xrightarrow{-} S \]

\[K(\neg p) \]

\[
\begin{array}{|c|c|c|}
\hline
H(S) & St_H(K(\neg p)) & St_H(K(p)) \\
\hline
(0, 1] & -1 & 1 \\
0 & 0 & 0 \\
[-1, 0) & 1 & -1 \\
\hline
\end{array}
\]

\[\neg p \not\models_K p \]
Examples
Examples

\(K(p) \)

\(K(q) \)

\(K(p \land q) = K(p) \circ K(q) \)
A logical language

Examples

\[K(p) \]

\[K(q) \]

\[K(p \land q) = K(p) \circ K(q) \]

<table>
<thead>
<tr>
<th>(H(w_p))</th>
<th>(H(w_q))</th>
<th>(St_H(K(p \land q)))</th>
<th>(St_H(K(p)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,1)</td>
<td>(0,1)</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>(0,1)</td>
<td>0</td>
<td>-0.5</td>
<td>-1</td>
</tr>
<tr>
<td>(0,1)</td>
<td>[-1,0)</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>0</td>
<td>(0,1]</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>[-1,0)</td>
<td>-0.5</td>
<td>0</td>
</tr>
<tr>
<td>[-1,0)</td>
<td>(0,1]</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>[-1,0)</td>
<td>0</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>[-1,0)</td>
<td>[-1,0)</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

We have

\[p \land q \models_K p \]

Similarly:

\[p \models_K p \lor q \]

\[\neg p \land \neg q \models_K \neg(p \lor q) \]

\[\neg(p \lor q) \models_K \neg(p \land \neg q) \]
A Logic for Assertion Networks

1. Background
 - Assertion network

2. Logic for Assertion network
 - Graph operations
 - A logical language

3. Conclusions
 - Final notes
Summary
Summary

- DLGs for representing communication situations.
Summary

- DLGs for representing communication situations.
- Assertion network semantics.
Summary

- DLGs for representing communication situations.
- Assertion network semantics.
- A logical language modelling AN.
Summary

- DLGs for representing communication situations.
- Assertion network semantics.
- A logical language modelling AN.
- Simple graph operations defined and analyzed.
Further work
Further work

- Alternative definitions of ψ.
Further work

- Alternative definitions of ψ.
- Generalization of the whole scenario (too much restrictions has been imposed).
Further work

- Alternative definitions of ψ.
- Generalization of the whole scenario (too much restrictions has been imposed).
- Another graph operations (relating facts instead of agents)
Further work

- Alternative definitions of ψ.
- Generalization of the whole scenario (too much restrictions has been imposed).
- Another graph operations (relating facts instead of agents).
- A more universal entailment relation rather than the very contextual one given here.
Thanks