Constructing an annotated corpus for Georgian – Tools and resources

Paul Meurer

Uni Computing; University of Bergen, Norway

Kutaisi, September 29, 2011
1. Building an annotated corpus for Georgian
2. Morphosyntactic annotation
3. Disambiguation
Outline

1. Building an annotated corpus for Georgian
2. Morphosyntactic annotation
3. Disambiguation
Designing an annotated corpus

Questions to consider:

- **Scope**: domain coverage, longitudinal (diachronic) coverage, dialectal, spoken material?
- **Size**: e.g. Russian National Corpus: 150 mio words, BNC, ANC: 100 mio, EANC: 110 mio
- **Balancing** vs. maximal size
- **Sources**: OCR-scanning, web harvesting, digital originals, others. A lot of work has to be invested into formatting and cleaning of the material (boilerplate removal, correction of scanning errors, duplicate removal etc.)
- **Copyright** matters
Questions to consider:

- **Grammatical annotation** level: lemma, POS, morphosyntax, Named Entities, syntax, semantics, discourse, etc.; which frameworks to use?

- **Meta annotation**: Title, source, author, translator, year/date, genre, topic etc. (see e.g. EAGLES standard)

- An appropriate **corpus tool** to make the corpus accessible and searchable
A corpus for Georgian

My aim: a large annotated corpus of written standard modern Georgian, no balancing, for linguistic research

Sources: Texts from the Internet only
 - www.open.ge (newspapers)
 - www.civil.ge (news)
 - www.tavisupleba.ge (news and background)
 - lib.ge etc. (literature)

Size by now: 125 million words, growing

Grammatical annotation (subcorpus): lemma, morphosyntax; ambiguity: 1.2

Meta annotation: Title, source, author, translator, year/date

Search tool: Korpuskel
Outline

1. Building an annotated corpus for Georgian
2. Morphosyntactic annotation
3. Disambiguation
Morphology: Parsing model

First approach:
- Finite state transducer augmented with feature structure unification (general model of Georgian inflection)
- Disjunctive unification with a lexicon of existing forms to discard non-existing verb analyses
- Implemented in Common Lisp, based on Parc Xerox’s old fsa module

New implementation:
- based on fst (Xerox finite state tool, soon open source)
- automatically derived from old implementation
- flag diacritics mimic feature structure unification; compiled out at the end ⇒ pure finite state
- lexicon compiled into the transducer
- interfaces well with LFG Grammar
Morphology

The lexicon
- Verb entries derived from Kita Tschenkélis ‘Georgisch-Deutsches Wörterbuch’ (52 000 entries, 3 823 verb entries)
- Other entries: Tschenkéli, Rayfield et al. (A Comprehensive English-Georgian Dictionary, 131 644 entries); material from Levan Chkhaidze.

Coverage
- Measured on 2/3 of “Data Tutašxia”: 1.3% (3.4%) unknown words, 3.5% (6.9%) unknown types (mainly names, Old Georgian, Russian, typos, missing adverbials)

Challenges
- foreign names
- named entities (difficult b/o missing case distinction)
- Old and Middle Georgian words and spellings
- dialect words
Verbal morphology: Superparadigms

Kita Tschenkéli’s “Deutsch-Georgisches Wörterbuch”:

- Verb forms are grouped hierarchically according to **root**, **verbal class** (transitive, unergative, unaccusative, indirect; causative, stative passive), and **preverb**, in that order.
- Very valuable: detailed information about **valency**.
- **Participles** are missing and are being added manually.

The full set of paradigms deriveable from a given root I call a **Superparadigm**.
Morphology: Example analyses

‘wine’

\(\acute{g}vino \rightarrow \dot{g}vino\)

\(\acute{g}vino\) N Nom Sg Full
Morphology: Example analyses

‘wine’

\(\dot{g}vino\) →

\(\dot{g}vino\) N Nom Sg Full

‘big’

\(didi\) →

\(didi\) A Dat Reduced
\(didi\) A Adv Reduced
Morphology: Example analyses

‘wine’

gvino →
gvino N Nom Sg Full

‘big’
did →
didi A Dat Reduced
didi A Adv Reduced

‘it is for the girls, too, he said’
gogo-eb-isa-tvis-ac-aa-o →
gogo N Anim Gen Pl Full Tvis C Aux IndSpeech3
Morphology: Example analyses

‘wine’

\(\dot{g}vino \rightarrow \dot{g}vino \ N \ Nom \ Sg \ Full \)

‘big’

\(did \rightarrow \)

\(\text{didi} \ A \ Dat \ Reduced \)
\(\text{didi} \ A \ Adv \ Reduced \)

‘it is for the girls, too, he said’

\(gogo-eb-isa-tvis-ac-aa-o \rightarrow \)

\(\text{gogo} \ N \ Anim \ Gen \ Pl \ Full \ Tvis \ C \ Aux \ IndSpeech3 \)

‘in childhood’

\(bavšvob-isa-s \rightarrow bavšvoba \ N \ DGen \ DSg \ Dat \ Sg \)
Morphology: Example analyses

‘he apparently painted it’/‘he will paint it for her’/‘unpaintable’ (Dat)

da-\textit{u-xaṭ-av-s} → da-\textit{xaṭva} V Trans Base Fut <\textit{S-DO3-OBen}> <\textit{NomSubj}> <\textit{DatObj}> <\textit{DatObjBen}> Subj3Sg Obj3 ObjBen3

da-\textit{xaṭva} V Trans Base Perf <\textit{S-DO}> <\textit{DatSubj}> <\textit{NomObj}> Obj3 Subj3Sg

da-\textit{xaṭva} VPart NegPart Dat Sg Full
Morphology: Example analyses

‘he apparently painted it’/‘he will paint it for her’/‘unpaintable’ (Dat)

\textit{da-u-xaṭ-av-s} \rightarrow

\textit{da-xaṭva} V Trans Base Fut <S-DO3-OBen> <NomSubj> <DatObj> <DatObjBen> Subj3Sg Obj3 ObjBen3

\textit{da-xaṭva} V Trans Base Perf <S-DO> <DatSubj> <NomObj> Obj3 Subj3Sg

\textit{da-xaṭva} VPart NegPart Dat Sg Full

Analysis output for verb forms is:

\textbf{Masdar} + Paradigm ID + features

In corpus annotation, the Paradigm ID is dropped.
Morphology: Open problems

Problem: Not all verb forms have an unambiguous masdar

- apasebs → še-paseba / da-paseba / čamo-paseba
- but not: → paseba

The correct one can at most be inferred from context.

Possible solution:

- apasebs → *-paseba
The tagset I

- **POS**: N Prop Pron Pp A Alnt Q ALLQ Det Adv Cj Card Ord V VPart Neg Period ExclPoint IntMark Ellipsis Comma Semicolon Dash Quote LParen RParen
- **Subclass**: Poss Pers Rel Refl Interr Digits Alphabetic Pot
- **Case**: Nom Erg Dat Gen Inst Adv Voc
- **Number**: Sg Pl OldPl
- **Person**: 1 2 3 Poss1sg Poss2sg Poss3sg Poss1pl Poss2pl Poss3pl
- **Declension type**: Full Reduced Bound Free
- **Double declension tags**: DGen DSg DPI
- **Postpositions**: Dan Dmi Ebr Ebriv Cin Gan Si Tan Ken Mde Mdis Mebr Tvis Vit Ze Iani
The tagset II

- **Tense**: Pres Impf ConjPres Fut Cond ConjFut Aor Opt Perf PluPerf ConjPerf Imp
- **Participle**: Masdar PresPart PastPart FutPart NegPart
- **Verb class**: Trans Unacc Unerg Inv Caus
- **Verb valency**: <S> <S-DO> <S-DO3-OBen> ...
- **Verb agreement**: Subj1 Subj1Pl Subj1Sg Subj2 Subj2Pl Subj2Sg Subj3 Subj3Pl Obj1 Obj1Pl Obj1Sg Obj2 Obj2Pl Obj2Sg Obj3
- **Argument case**: <NomSubj> <ErgSubj> <DatSubj> <NomObj> <DatObj> <GenObj> <DatObjTh> ...
- **Clitics**: IndSpeech1 IndSpeech2 IndSpeech3 C Ve Ga Long Aux
- **Semantics**: Title Meas Mass Coll Temp Anim Inanim
- **Style**: Old Subnorm Dialect Rare Bracket
- **NE tags**: Name FirstName LastName City Institution Geo River Sea Area
Tools for morphology development

- Lexicon stored in database, rules stored in files
- Web interface to the morphology
- Paradigm and superparadigm display
 - used for editing
 - helps in detecting missing forms and overgeneration
- Regression testing on a large corpus
Outline

1. Building an annotated corpus for Georgian
2. Morphosyntactic annotation
3. Disambiguation
Disambiguation

Morphosyntactic annotation is ambiguous and can (partially) be **disambiguated** based on context.

Possible approaches: statistical and rule-based taggers.

Advantages of a rule-based approach:
- better suited for rich tagsets
- ambiguity/precision ratio can be controlled
- can be used as a preprocessing tagger for LFG analysis
Constraint Grammar

Constraint Grammar (CG)

Fred Karlsson v. 1 (1990), Eckhard Bick v. 3

- Rules operate on morphosyntactically analyzed text
- Rules either REMOVE, SELECT, ADD or REPLACE a tag or a set of grammatical tags in a given sentence context
- The last reading is never discarded, this makes CG a very robust formalism
- Levels of analysis: morphosyntax, syntactic functions, dependencies
- Fast open source implementation: vislcg3
Removing rare forms

REMOVE ("xoli" N Voc) ;

REMOVE ("<xart>" "xari") ;
REMOVE ("<ert>" "eri") ;
REMOVE ("<an>" "ani") ;

REMOVE (Voc) IF (0 (Nom)) ;

SELECT ("da" Cj) IF (NOT -1 (Poss Nom)) ;
Constraint Grammar: Example rules II

Negation

SELECT V IF (-1 Neg) (NOT -1 (Aux)) ;
SELECT (Neg) IF (1 V) ;
SELECT (Neg) IF (NOT 1 V) ;
REMOVE V IF (1C Neg) ;

Modal “unda”

SELECT (V Modal) IF (1 OPT) ;
SELECT (V Modal) IF (1 Neg) (2 OPT) ;
SELECT (V Modal) IF (-1 OPT) ;
SELECT OPT IF (-1 (V Modal)) ;
Disambiguation

Constraint Grammar: Example rules III

Agreement

SELECT (Pron Pers Erg 1 Sg)
 IF (0* ErgSubj + Subj1Sg
 BARRIER CLB | (V) - (Modal))

SELECT (V Subj1Sg)
 IF (0C ErgSubj)
 (0* (Pron Pers Erg 1 Sg)
 BARRIER CLB | (V) - (Modal)) ;

REMOVE (V Subj1Sg <NomSubj>)
 IF (0* (Nom Full) BARRIER CLB) ;
Case disambiguation

TEMPLATE NPGen =
 (? NA + Gen)
 OR (? NA + Gen + Reduced LINK 1 T:NPGen) ;

REMOVE (Gen)
 IF (NOT 1 (Pp))
 (NOT 1 Gen)
 (NOT 1 NACProp)
 (NEGATE 1 ("da" Cj) | (",") | (Adv) LINK 1 Gen)
 (NEGATE 1 T:NPGen LINK 1 Gen)
 (NOT 0* GenArg BARRIER CLB) ;
Constraint Grammar: Challenges

Ambiguous Adjective attachment

gardacvlili “deceased”
- gardacvlili A Nom Reduced
- gardacvlili A Gen Reduced

mdguris “staying traveller”
- mdguri N Gen Sg Full

koneba “belongings”
- koneba N Nom Sg Full
Constraint Grammar: Challenges

Forms that are difficult to disambiguate

daículo

- daçqoba V Unacc Aor <S> Subj3Sg
- daçqoba V Trans Opt <S-DO-R> Subj2Sg Obj3
- daçqoba V Trans Aor <S-DO-R> Subj3Sg Obj3
- daçqeba V Unacc Aor <S> Subj3Sg
- daçqeba V Trans Opt <S-DO-R> Subj2Sg Obj3
- daçqeba V Trans Aor <S-DO-R> Subj3Sg Obj3
Plan:** Statistical disambiguation

Idea: A word might be ambiguous as a common form of two nominal or verbal paradigms. If one of the paradigms is much commoner than the other, this can be computed by counting the occurrences (in a large corpus) of those forms that are not common to both paradigms.

Examples:

- **bičebi** *(biča/biči)*
 - common forms: 3017
 - `biči` only: 10232
 - `biča` only: 9

- **çamoviğer** *(Trans/Unacc)*
 - common forms: 701
 - `Trans` only: 5031
 - `Unacc` only: 0