How to Cover without Lifting Relations

Dirk Pattinson and Luigi Santocanale

Imperial College London
Universite de Provence

TbiLLC 2011
The Classical Cover Modality

Standard Syntax of Modal Logic

\[L_{\Box, \Diamond} \ni \phi, \psi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \Box \phi \mid \Diamond \phi \quad (p \in V) \]

Modal Logic in Terms of the Cover Modality

\[L_{\nabla} \ni \phi, \psi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \nabla \Phi \quad (p \in V, \Phi \subseteq_f L_{\nabla}) \]

Semantics

Suppose \(M = (W, \sigma : W \to \mathcal{P}(W), \pi : W \to \mathcal{P}(V)) \) is a Kripke model.

\[x \models \nabla \Phi \text{ iff } \begin{align*}
& \forall \phi \in \Phi \exists y \in \sigma(x). y \models \phi \\
& \forall y \in \sigma(x) \exists \phi \in \Phi. y \models \phi
\end{align*} \]

"\(\Phi \) and the successors of \(x \) mutually cover one another"
Why the Cover Modality?

Back and Forth Translation

Forth.

\[\nabla \Phi \equiv \Box \bigvee_{\phi \in \Phi} \phi \land \bigvee_{\phi \in \Phi} \Diamond \phi \]

Back.

\[\Box \phi \equiv \nabla \{ \phi \} \lor \nabla \emptyset \]
\[\Diamond \phi \equiv \nabla \{ \phi, T \} \]

(we don’t lose any expressiveness)

Correspondence between Syntax and Semantics

- Kripke models \((W, \sigma, \pi)\) come with a \textit{structure} \(\sigma : W \to \mathcal{P}(W)\)
- \(\nabla\)-formulas come with a \textit{constructor} \(\mathcal{P}_f(\mathcal{L}_\nabla) \to \mathcal{L}_\nabla\)

\((\textit{finite} \text{ powersets give \textit{finitary} languages})\)

General Recipe?

\[
\begin{align*}
\text{Semantics: Structures} & \quad \sigma : W \to TW \\
\text{Syntax: Constructors} & \quad \nabla : T_f \mathcal{L} \to \mathcal{L}
\end{align*}
\]
Experiment: Probabilistic Frames

Discrete Probability Distributions

\[DX = \{ \mu : X \rightarrow [0, 1] \mid \sum_{x \in X} \mu(x) = 1, \#\{x \in X \mid \mu(x) \neq 0\} < \infty \} \]

Probabilistic Kripke Models

\[M = (W, \sigma : W \rightarrow D(W), \pi : W \rightarrow P(V)) \]

(these are discrete Markov chains)

Probabilistic Modal Logic

\[L_\nabla \ni \phi, \psi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \nabla \Phi \]

(\(p \in V, \Phi \in D(L_\nabla) \))

(probability distributions over formulae are formulae)
Satisfaction for Probabilistic Modal Logic

Semantics and the Magic Square

Ssee $\mathcal{M} = (W, \sigma, \pi)$ is a probabilistic model and $\nabla \mu \in \mathcal{L}_{\nabla}$, i.e. $\mu \in \mathcal{D}(\mathcal{L}_{\nabla})$.

Then $w \models \nabla \mu$ iff we can fill the ‘magic square’

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>\cdots</th>
<th>w_k</th>
<th>\sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ϕ_1</td>
<td></td>
<td></td>
<td></td>
<td>q_1</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td></td>
<td></td>
<td>\vdots</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ϕ_n</td>
<td></td>
<td></td>
<td></td>
<td>q_n</td>
<td></td>
</tr>
<tr>
<td>\sum</td>
<td>p_1</td>
<td>p_2</td>
<td>\cdots</td>
<td>p_k</td>
<td></td>
</tr>
</tbody>
</table>

- $p_j = \sigma(w)(x_j)$ is prob of x_j
- $q_i = \mu(\phi_i)$ is prob of ϕ_i
- w/ϕ-entry is 0 if $x \not\models \phi$

can be filled according to the rules on the right.

Question.

How far does this generalisation carry? Can we automagically construct magic squares?
White Covers: The General Principle

Definition (\(T\)-models)

Suppose \(T : \text{Set} \to \text{Set}\) is a functor. Then \(T\)-models are triples \((W, \sigma, \pi)\) with \(\sigma : W \to TW\) and \(\pi : W \to \mathcal{P}(W)\).

Definition (\(T\)-Language)

Write \(T_f(X) = \bigcup \{TY \mid Y \subseteq_f X\}\) for the finitary part of \(T\).

\[\mathcal{L}_\nabla^T \ni \phi, \psi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \nabla \Phi \quad (p \in V, \Phi \in T_f \mathcal{L}_\nabla)\]

Definition (Semantics)

If \(R \subseteq X \times Y\) is a relation, write

\[\hat{T}(R) = \{(s, t) \in TX \times TY \mid \exists w \in TR. T\pi_1(w) = s \text{ and } T\pi_2(w) = t\}\]

for the relation lifting of \(T\) and put

\[w \models \nabla \Phi \iff (\sigma(w), \Phi) \in \hat{T}(\models)\]
Results and Limitations

Some Results (*terms and conditions apply*)

- Bisimulation invariance and Hennesy-Milner Property [Moss]
- Complete Axiomatisation(s) [Kupke, Kurz, Venema]
- Fixpoint Logics / Distributive Law [Venema]

Limitations: Compatibility with Relational Composition

Required: \(\hat{T}(R \circ S) = \hat{T}R \circ \hat{T}S \)
where \(\hat{T} \) is the relation lifting of \(T \) (even for bisimulation invariance).

Examples (*t’s & c’s fail*)

- Neighbourhood frames: \(W \to \mathcal{P}\mathcal{P}(W) \)
- Monotone nbhd frames: \(W \to \{ N \in \mathcal{P}\mathcal{P}(W) : N \ \text{upclosed} \} \)
- Selection function frames: \(W \to (\mathcal{P}(W) \to \mathcal{P}(W)) \)
Our Approach

White Nablas: \mathcal{L}_∇

Syntax.
\[\nabla : T_f \mathcal{L}_\nabla^T \rightarrow \mathcal{L}_\nabla \]

Semantics.
\[x \models \nabla \Phi \iff \sigma(x) \hat{T}(\models) \Phi \]

Black Nablas: $\mathcal{L}_\blacktriangle$

Syntax.
\[\blacktriangle : T_C(\Sigma) \rightarrow \mathcal{L}_\blacktriangle^T \]

Semantics.
\[x \models \blacktriangle \Phi \iff T(t) \circ \sigma(x) = \Phi \]

(\(\Sigma \subseteq f \mathcal{L}_\blacktriangle^T\), \(C(\Sigma)\) are \(\neg\)-complete subsets and \(t\) is the local theory map.)

Conceptual Digression

- satisfaction for \(\mathcal{L}_\nabla\) involves \(\hat{T}(\models)\) which can fail
- satisfaction for \(\mathcal{L}_\blacktriangle\) involves \(T(t)\) which always works
Example 1: ▼ for Kripke Frames

\[\Sigma = \{ p, q, r \} \]

\[\Phi = \{ \{ p, q, \neg r \} \} \]

\[w \models \nabla \Phi \]
Example 2: ▼ for Probabilistic Frames

\[\Sigma = \{p, q\} \]

\[p, q, \neg r \]

\[\Phi = 0.2 \cdot \{p, q\} + 0.2 \cdot \{p, q\} + 0.6 \cdot \{\neg p, \neg q\} \]

\[w \models \nabla 0.2 \cdot \{p, q\} + 0.2 \cdot \{p, q\} + 0.6 \cdot \{\neg p, \neg q\} \]

\[= \nabla 0.4 \cdot \{p, q\} + 0.6 \cdot \{\neg p, \neg q\} \]
Black Nablas, Formally

Definition (Syntax)

Suppose $T : \text{Set} \to \text{Set}$.

$$\mathcal{L}_{\nabla}^T \ni \phi, \psi ::= p \mid \phi \land \psi \mid \phi \lor \psi \mid \neg \phi \mid \nabla \Phi$$

where $p \in V$ and $\Phi \in TC(\Sigma)$ for $\Sigma \subseteq \mathcal{L}_{\nabla}^T \setminus \neg \mathcal{L}_{\nabla}^T$.

(recall $C(\Sigma) = \{ \Delta \subseteq \Sigma \cup \neg \Sigma \mid \forall \phi \in \Sigma. (\phi \in \Delta \text{ or } \neg \phi \in \Delta) \}$)

Definition (Semantics)

Given a T-model $\mathbb{M} = (W, \sigma : W \to TW, \pi : W \to \mathcal{P}(V))$, put

$$w \models \nabla \Phi \iff T(t \upharpoonright \Sigma) \circ \sigma(w) = \Phi$$

where $t \upharpoonright \Sigma : w \mapsto \{ \phi \in \Sigma \cup \neg \Sigma \mid \mathbb{M}, w \models \phi \}$ is the (Σ-) local theory map.
Examples and Questions

Examples
- Kripke frames
- neighbourhood frames
- monotone nbhd frames
- probabilistic frames
- conditional frames
- etc.

What is the benefit of ▼?
- Bisimulation invariance and the Hennessy-Milner property
- The finite model property
- Conjunction and Negation Elimination
- Simple Tableaux Calculus

in a uniform framework not requiring that relation lifting is well-behaved.
Translatability for Kripke Semantics

Kripke Semantics: $\mathcal{L}_{\Box,\Diamond}$ to \mathcal{L}^P_{\Diamond}

$\Box \phi = \Diamond \emptyset \lor \Diamond \{\{\phi\}\}$

$\Diamond \phi = \Diamond \{\{\phi\}\} \lor \Diamond \{\{\phi\}\}, \{\neg \phi\}\}$

(for us, this direction would be enough)

Kripke Semantics: \mathcal{L}^T_{\Diamond} to $\mathcal{L}_{\Box,\Diamond}$

$c \models \Diamond \Phi \iff c \models \Box \bigvee_{\alpha \in \Phi} (\land \alpha \land \neg \bigvee (\Sigma \setminus \alpha)) \land \bigwedge_{\alpha \in \Phi} \Diamond (\land \alpha) \land \neg \bigvee (\Sigma \setminus \alpha)$
Translatability for Monotone Neighbourhood Frames

Monotone Neighbourhood Models

\[M = (W, \sigma : W \rightarrow \mathcal{N}(W), \pi : W \rightarrow \mathcal{P}(V)) \]

(recall \(\mathcal{N}(W) = \{ N \in \mathcal{PP}(X) | N \text{ upclosed}\} \))

Semantics

\[M, w \models \square \phi \iff \{ w' | w' \models \phi \} \in \sigma(w) \]

('\(\phi \) is a neighbourhood of \(w \'))

Translation: \(\mathcal{L}_{\square, \Diamond} \) to \(\mathcal{L}_{\nabla}^\mathcal{P} \)

\[\square \phi \equiv \nabla \uparrow \{ \alpha_0 \} \lor \nabla \uparrow \{ \alpha_0, \alpha_1 \} \]

where \(\alpha_0 = \{ \{ \phi \} \} \), \(\alpha_1 = \{ \neg \phi \} \).
Bisimulation Invariance

Definition (T-morphisms)

A *T-morphism* \(f : (W, \sigma, \pi) \to (W', \sigma', \pi') \) is a map \(f : W \to W' \) such that

\[
\begin{align*}
W & \xrightarrow{f} W' \\
\sigma & \downarrow \quad \downarrow \sigma' \\
TW & \xrightarrow{Tf} TW'
\end{align*}
\]

and

\[
\begin{align*}
W & \xrightarrow{f} W' \\
\pi & \downarrow \quad \downarrow \pi' \\
\mathcal{P}(V) & \xrightarrow{f} \mathcal{P}(V)
\end{align*}
\]

commute. A pair \((w, w') \in W \times W'\) is *behaviourally equivalent* if it can be identified by a pair of *T*-morphisms.

Special Case: Kripke Frames, i.e. \(T = \mathcal{P} \)

- \(\mathcal{P}\)-morphisms are \(p \)-morphisms aka functional bisimulations
- behavioural equivalence is bisimilarity
Proposition (Morphisms preserve Semantics)

Let $f : (W, \sigma, \pi) \to (W', \sigma', \pi')$ be a T-morphism. Then, for all $\phi \in \mathcal{L}_\Box^T$:

$$w \models \phi \iff f(w) \models \phi.$$

Proof. For $\phi = \Box \Psi$: w and $f(w)$ inductively have the same local theories.

Corollary (Behavioural Equivalence implies Logical Equivalence)

Suppose that (w, w') are behaviourally equivalent. Then, for all $\phi \in \mathcal{L}_\Box^T$:

$$w \models \phi \iff w' \models \phi.$$

Proof. $w \models \phi \iff f(w) \models \phi \iff g(w') \models \phi \iff w' \models \phi$.
From Logical to Behavioural Equivalence

Proposition

If T is finitary (\simeq finitely branching) and \sim is logical equivalence, then

$$(W, \sigma, \pi) \rightarrow (W/\sim, \sigma/\sim, \pi/\sim)$$

is a well-defined T-morphism for all T-models (W, σ, π).

Proof. Find $W_0 \subseteq f W$ with $\sigma(w), \sigma(w') \in TW_0$ and observe that $\sim\upharpoonright_{W_0 \times W_0}$ can be characterised by finitely many formulae.

Corollary

If T is finitary, then logical and behavioural equivalence coincide.

Proof. $w \sim w' \iff [w']_\sim = [w]_\sim$.

Pattinson and Santocanale (ICL and UProv) How to Cover without Lifting Relations

Imperial College London

TbiLLC 2011 17 / 1
Coherent Models and the Truth Lemma

Definition (Coherent Models)

Let $\Delta \subseteq L^T_\Box$ be negation closed. Then $M = (W, \sigma, \pi)$ is coherent over Δ if

- $W = \{ \Theta \subseteq \Delta \mid \Theta$ maximally satisfiable $\}$
- $\Box \Phi \in \Theta \iff T(t \uparrow \Phi) \circ \sigma(\Theta) = \Phi$
- $p \in \Theta \iff p \in \pi(\Theta)$

Lemma (Truth Lemma)

If $M = (W, \sigma, \pi)$ is coherent over Δ, then

$$\Theta \models \phi \iff \phi \in \Theta$$

for all $\phi \in \Delta$.

Existence Lemma and the Small Model Property

Lemma (Existence Lemma)

If Δ is finite and negation closed, then coherent models exist.

Proof. For every maximally satisfiable subset $\Theta \subseteq \Delta$ pick $w \models \Theta$ and define $\sigma(\Theta)$ by replacing points with local theories.

Corollary (Small Model Property)

If $\phi \in \mathcal{L}_T^\downarrow$ is satisfiable, then ϕ is satisfiable in an exponential-size model.

Proof. Choose Δ to consist of the subformulas of ϕ and their negations.
Conjunction Elimination

Definition (Conjunction under T)

Let $\Phi_i \in TC(\Sigma_i)$ for $i = 1, 2$. Then

$$\Phi_1 \land \Phi_2 = \{ \Delta \in TC(\Sigma_1 \cup \Sigma_2) \mid T(\lambda\Theta.\Theta \cap (\Sigma_i \cup \neg \Sigma_i)) = \Phi_i, i = 1, 2 \}$$

denote the 'conjunction under T' of Φ_1 and Φ_2.

Note. Conjunction under T gives all consistent possibilities to satisfy both $\Box \Phi_1$ and $\Box \Phi_2$.

Lemma (Conjunction Elimination Lemma)

$$w \models \Box \Phi_1 \land \Box \Phi_2 \iff \exists \Psi \in \Phi_1 \land \Phi_2. w \models \Box \Psi$$

Proof. If $\Box \Phi_1 \land \Box \Phi_2$ is satisfiable, put $\Psi = T(t \mid_{\Sigma_1 \cup \Sigma_2} \circ \sigma(w))$.
Negation Elimination

Definition (Negation under \(T \))

Let \(\Phi \in TP(\Sigma) \). Then

\[
\neg \Phi = \{ \Delta \in TC(\Sigma) \mid \Delta \neq \Phi \}
\]

denotes the *negation under \(T \)* of \(\Phi \).

Note. Negation under \(T \) gives *all possibilities* to satisfy \(\neg \Box \Phi \).

Lemma (Negation Elimination)

\[
w \models \neg \Box \Phi \iff \exists \Psi \in \neg \Phi. w \models \Psi
\]

Proof. Put \(\Psi = T(t \upharpoonright \Sigma) \circ \sigma(w) \).
Tableaux Calculus

Extra Assumption
Suppose that TX is finite whenever X is finite.

Prolegomena

Sequents. finite subsets Γ, Δ, \ldots of L^T, read conjunctively.

Tableaux. Sequent labelled trees constructed according to rules (below)

Closed Tableaux. Maximal such trees.

Completeness. Unsatisfiability of $\Gamma \iff$ existence of closed tableau with root Γ.

Tableau Rules: Propositional Part

\[
\begin{align*}
(\land) & \quad \frac{\Gamma, \phi \land \psi}{\Gamma, \phi, \psi} \\
(\lor) & \quad \frac{\Gamma, \phi \lor \psi}{\Gamma, \phi} \quad \frac{\Gamma, \phi \lor \psi}{\Gamma, \psi} \\
(Ax) & \quad \frac{\Gamma, p, \neg p}{\Gamma}
\end{align*}
\]
Modal Rules

Tableau Rules: Propositional Rules plus

\[
\begin{align*}
&\quad \frac{\neg \Box \Phi, \Gamma}{\Box \Psi, \Gamma \mid \Psi \in \neg \Phi} \quad \frac{\Box \Phi_1 \land \Box \Phi_2, \Gamma}{\Box \Psi, \Gamma \mid \Psi \in \Phi_1 \land \Phi_2} \\
&\quad (\text{Ing}) \frac{\Box \Phi, \Gamma}{\Psi} (\Gamma \subseteq V \cup \neg V \text{ consistent}, \Psi \in \text{Ing}(\Phi))
\end{align*}
\]

where \(\text{Ing}(\Phi) = \bigcap \{ \Psi \subseteq C(\Sigma) \mid \Phi \in T\Psi \} \) are the ingredients of \(\Phi \).

Lemma (Invertibility)

\textit{The premise of a rule is satisfiable iff one if its conclusions is satisfiable.}

\textit{Proof.} For (Ing), choose satisfying models for all conclusions and glue.

Theorem (Completeness)

\textit{The tableau calculus for } \mathcal{L}^T_{\Box} \text{ is complete.}

\textit{Proof.} By invertibility it suffices to observe that all tableaux are finite.
Conclusions

Conceptual Achievements

- *uniform* framework for designing logics over large class of models
- ‘standard’ languages are encodable
- removed relation-lifting barrier

Technical Achievements

- bisimulation invariance and Hennessy-Milber property
- small model property
- complete axiomatisation

Loose Ends

- fixpoint extensions (← non-monotonicity?)
- extensions: nominals, global modality . . .
- satisfiability games and automata