Recursive Enumerability Doesn’t Always Give a Decidable Axiomatization

Stepan Kuznetsov*
Steklov Mathematical Institute, RAS (Moscow)

Valentina Lugovaya and Anastasiia Ryzhova
Moscow State University

It is well-known that if a theory (deductively closed set of formulae) over a well-behaved logic (for example, classical or intuitionistic logic) is recursively enumerable (r.e.), then it has a decidable, and even a primitively recursive axiomatization [2]. This observation, known as Craig’s theorem, or Craig’s trick, is indeed very general. If we denote the deductive closure (set of theorems) for an axiomatization \(\mathcal{A} \) by \([\mathcal{A}] \) and let \([\mathcal{A}] \) be recursively enumerated as follows: \(\varphi_1, \varphi_2, \varphi_3, \ldots (\varphi_k = f(k), \text{where } f \text{ is a computable function}) \), then the set \(\mathcal{A}' = \{ \varphi_1, \varphi_2 \land \varphi_3, \varphi_3 \land \varphi_3, \ldots \} \) will be decidable (the decision algorithm, given a formula \(\psi \), starts enumerating \(\mathcal{A}' \), compares the elements with \(\psi \), and stops with the answer “no” when the size of the formula exceeds the size of \(\psi \): further formulae will be only bigger), and, on the other hand, \(\mathcal{A}' \) serves as an alternative axiomatization for the theory, since \([\mathcal{A}'] = [\mathcal{A}] \).

The only thing we need from the logic for this construction to work is the following property: for any formula \(\psi \) there exists, and can be effectively constructed, an equivalent formula \(\psi' \) of greater size than \(\psi \). Then we take \(\mathcal{A}' = \{ \varphi_1, \varphi_2', \varphi_3', \ldots \} \) as the needed decidable axiomatization: since \(' \) increases the size of formula, the \(n \)-th formula in this sequence has size at least \(n \); therefore, in our search for a given \(\psi \) in \(\mathcal{A}' \) we have to check only a

*The work of Stepan Kuznetsov was supported by the Russian Science Foundation under grant 14-50-00005.
finite number of formulae. This works even for substructural systems that
do’t enjoy $\psi \leftrightarrow \psi \land \psi$. For example, once there is an operation \circ that has
a unit 1, Craig’s theorem is valid: $A \leftrightarrow A \circ 1 = A'$.

Thus, it looks interesting to find a logic for which Craig’s theorem fails.
Of course, one could easily construct degenerate examples, like a “logic”
without any rules of inference: then $[A]$ is always A, and if it was r.e., but
not decidable, it doesn’t have a decidable axiomatization. So we’re seeking
for an example among interesting, useful logical systems.

And such an example exists—it is the product-free fragment of the Lamp-
bek calculus [3]. We denote this calculus by L and present it here as a
Gentzen-style sequential calculus; a non-sequential (“Hilbert-style”) version
also exists [4]. Formulae of L are built from a set of variables \(\text{Var} = \{p_0, p_1, p_2, p_3, \ldots\} \) using two binary connectives, \land and \lor. Sequents are ex-
pressions of the form $A_1, \ldots, A_n \rightarrow B$, where A_i and B are formulae and
$n \geq 1$ (empty antecedents are not allowed). The axioms and rules of L are
as follows (here capital Greek letters denote sequences of formulae):

\[
\begin{align*}
A \rightarrow A & \\
\Pi \rightarrow A \land B & \text{ where } \Pi \text{ is non-empty} \\
\Pi, A \rightarrow B & \text{ where } \Pi \text{ is non-empty} \\
\Pi \rightarrow B \lor A & \\
\Pi \rightarrow A, \Gamma, \Delta \rightarrow C & \\
\Gamma, \Pi, \Delta \rightarrow C & \text{ (cut)}
\end{align*}
\]

Let \mathcal{A} be an arbitrary set of sequents. We say that a sequent $\Pi \rightarrow A$ is
derivable from \mathcal{A} (denoted by $\mathcal{A} \vdash_L \Pi \rightarrow A$), if there exists a derivation tree
where inner nodes are applications of rules (including cut: in this setting it
is not eliminable), and leafs are instances of axioms or sequents from \mathcal{A}. The
theory axiomatized by \mathcal{A} (the deductive closure of \mathcal{A}) is $[\mathcal{A}] = \{\Pi \rightarrow A \mid
\mathcal{A} \vdash_L \Pi \rightarrow A\}$. Clearly, if \mathcal{A} is r.e., then so is $[\mathcal{A}]$. Finally, \mathcal{A}_1 and \mathcal{A}_2 are
equivalent, $\mathcal{A}_1 \approx \mathcal{A}_2$, if $[\mathcal{A}_1] = [\mathcal{A}_2]$.

Theorem. There exists such a recursively enumerable \mathcal{A} that there is no
decidable \mathcal{A}' equivalent to \mathcal{A}.

Let $q = p_0$ and let $\mathcal{E} = \{p_i \rightarrow q \mid i \geq 1\}$.

Lemma. If $\mathcal{A} \not\subseteq \mathcal{E}$ and $\mathcal{A}' \approx \mathcal{A}$, then $\mathcal{A}' \cap \mathcal{E} = \mathcal{A}$.

2
This Lemma immediately yields our goal: if \mathcal{A} is a recursively enumerable undecidable subset of \mathcal{E}, it gives undecidability of any \mathcal{A}' equivalent to \mathcal{A}.

We prove the Lemma by a semantic argument, via formal language models for \mathcal{L}. Let Σ be an alphabet; Σ^+ stands for the set of all non-empty words over Σ. An interpretation w is a function that maps formulae of \mathcal{L} to subsets of Σ^+, defined arbitrarily on variables and propagated as follows:

$$w(A \setminus B) = w(A) \setminus w(B) = \{ u \in \Sigma^+ \mid (\forall v \in w(A)) vu \in w(B) \}$$

$$w(B / A) = w(B) / w(A) = \{ u \in \Sigma^+ \mid (\forall v \in w(A)) uv \in w(B) \}$$

A sequent $A_1, \ldots, A_n \rightarrow B$ is true under interpretation w, if $w(A_1) \cdot \ldots \cdot w(A_n) \subseteq w(B)$, where $M \cdot N = \{ uw \mid u \in M, v \in N \}$. The calculus is sound w.r.t. this interpretation: if all formulae of \mathcal{A} are true under w and $\mathcal{A} \vdash_{L} \Pi \rightarrow B$, then $\Pi \rightarrow B$ is also true under w. (A weak completeness result, for $\mathcal{A} = \varnothing$, is shown in [1]. Here we need only soundness.)

We consider a countable alphabet, $\Sigma = \{ a_1, a_2, \ldots \}$.

First, we show that $\mathcal{A} \not\models_{L} p_i \rightarrow p_j$ for $i \neq j, i, j \geq 1$. Consider an interpretation $w_1(p_i) = \{ a_i \}$, $w_1(q) = \Sigma^+$. All sequents from \mathcal{A} are true under w_1, while $p_i \rightarrow p_j$ isn’t. Therefore, $(p_i \rightarrow p_j) \notin \mathcal{A}'$ if $i \neq j, i, j \geq 1$.

Second, we show that $\mathcal{A} \not\models_{L} E_1 \setminus E_2 \rightarrow p_i$ and $\mathcal{A} \not\models_{L} E_2 / E_1 \rightarrow p_i$ for any $i \geq 0$ and any formulae E_1 and E_2. The counter-interpretation here is as follows: $w_2(p_i) = \{ a_i \} \cup \Sigma^{\geq 2}$, $w_2(q) = \{ a_j \mid (p_j \rightarrow q) \in \mathcal{A} \} \cup \Sigma^{\geq 2}$, where $\Sigma^{\geq 2}$ is the set of all words of length at least 2. All sequents from \mathcal{A} are true under w_2. By induction on A we show that $w_2(A) \supseteq \Sigma^{\geq 2}$ for any formula A. Then, since wv is always in $\Sigma^{\geq 2} \subseteq w_2(E_2)$, we have $w_2(E_1 \setminus E_2) = w_2(E_2 / E_1) = \Sigma^+$, but $w_2(p_i)$ is not Σ^+ for any i (including 0).

Third, we show that if $\mathcal{A} \vdash_{L} p_i \rightarrow q$, then $(p_i \rightarrow q) \in \mathcal{A}$. If not, then interpretation w_2 defined above falsifies $p_i \rightarrow q$ keeping all sequents in \mathcal{A} true. This yields $\mathcal{A}' \cap \mathcal{E} \subseteq \mathcal{A}$ (since all sequents in \mathcal{A}' are derivable from \mathcal{A}).

Finally, we establish the converse inclusion by contraposition. Let $(p_k \rightarrow q) \notin \mathcal{A}'$ and show that $(p_k \rightarrow q) \notin \mathcal{A}$. Consider the following interpretation: $w_3(p_i) = \{ a_i \} \cup \Sigma^{\geq 2}$, $w_3(q) = \{ a_j \mid (p_j \rightarrow q) \in \mathcal{A}' \} \cup \Sigma^{\geq 2}$. Evidently, w_3 falsifies $p_k \rightarrow q$. It remains to show that all sequents from \mathcal{A}' are true under w_3. There are several possible cases for a sequent from \mathcal{A}'.

1. The sequent is of the form $A \rightarrow A$ (including $q \rightarrow q$ or $p_i \rightarrow p_i$). This is an axiom, it is true everywhere.

2. The sequent is of the form $p_i \rightarrow q$. Then it is true by definition.
3. The sequent is of the form $p_i \rightarrow p_j$, $i \neq j$, $i, j \geq 1$. Then this sequent is not derivable from A (see above) and therefore cannot belong to A'.

4. The sequent is of the form $E_1 \setminus E_2 \rightarrow p_i$ or $E_2 / E_2 \rightarrow p_i$. Again, it couldn’t be derivable from A and couldn’t belong to A'.

5. The sequent is of the form $A \rightarrow F_1 \setminus F_2$ or $A \rightarrow F_2 / F_1$. As for w_2, for w_3 we have $w_3(F_1 \setminus F_2) = w_3(F_2 / F_1) = \Sigma^+$. The sequent is true.

Hence, $A' \not\vDash_L p_k \rightarrow q$, therefore $(p_k \rightarrow q) \not\in A$. This finishes the proof.

Notice that this result is not at all robust: slight modifications of the calculus restore Craig’s theorem. First, actually one can increase the size of all formulae, except variables, by the following equivalences: $A / B \leftrightarrow A / ((A / B) \setminus A)$ and $B \setminus A \leftrightarrow (A / (B \setminus A)) \setminus A$. In our construction, we played on an infinite number of variables, for which such increasing is impossible. Thus, Craig’s theorem holds for any fragment of L with a finite set of variables. Second, if we allow sequents with empty left-hand sides (and remove non-emptiness restrictions from the rules of L), we have $A \leftrightarrow (A / A) \setminus A$ for any formula A, which also yields Craig’s theorem.

Acknowledgments The first author thanks Ilya Shapirovsky for asking the question whether Craig’s theorem holds for the Lambek calculus.

References

