The role of intuitionistic reasoning in the development of the proof mining methodology
dedicated to the memory of Anne S. Troelstra (1939-2019)

Ulrich Kohlenbach

Department of Mathematics

TECHNISCHE UNIVERSITÄT DARMSTADT

Anne Troelstra Memorial Event, Amsterdam, March 6, 2020
Brief background on Proof Mining
In my 1990 PhD thesis (1st referee: Horst Luckhardt, 2nd referee: Anne S. Troelstra) applied ‘proof mining’ (Dana Scott) to problems in analysis.
In my 1990 PhD thesis (1st referee: Horst Luckhardt, 2nd referee: Anne S. Troelstra) applied ‘proof mining’ (Dana Scott) to problems in analysis.

- Uses versions of Gödel’s functional interpretation (combined with negative translation and majorization (Howard): full modularity.

Analysis particularly rewarding since the appropriate choice of representations of analytical objects matters (e.g. standard representations of CSM and CTB spaces, Troelstra 1966-69).

Interesting proofs that use WKL (Troelstra, JSL 1974) but allow for a WKL-elimination: uniqueness statements. (∈∀→∀).

Carrying all this out in an extended case study: moduli and constants of strong unicity in best Chebycheff approximation (later with P. Oliva also for L_1-approximation).
Proof Mining in the 90’s (concrete Polish spaces, WKL)

In my 1990 PhD thesis (1st referee: Horst Luckhardt, 2nd referee: Anne S. Troelstra) applied ‘proof mining’ (Dana Scott) to problems in analysis.

- Uses versions of Gödel’s functional interpretation (combined with negative translation and majorization (Howard): full modularity.
- Analysis particularly rewarding since the appropriate choice of representations of analytical objects matters (e.g. standard representations of CSM and CTB spaces, Troelstra 1966-69).

Interesting proofs that use WKL (Troelstra, JSL 1974) but allow for a WKL-elimination:

- Uniqueness statements ($\in \forall \to \forall$).

Carrying all this out in an extended case study: moduli and constants of strong unicity in best Chebycheff approximation (later with P. Oliva also for L_1-approximation).
In my 1990 PhD thesis (1st referee: Horst Luckhardt, 2nd referee: Anne S. Troelstra) applied ‘proof mining’ (Dana Scott) to problems in analysis.

- Uses versions of Gödel’s functional interpretation (combined with negative translation and majorization (Howard): full modularity.

- Analysis particularly rewarding since the appropriate choice of representations of analytical objects matters (e.g. standard representations of CSM and CTB spaces, Troelstra 1966-69).

- Interesting proofs that use WKL (Troelstra, JSL 1974) but allow for a WKL-elimination: uniqueness statements ($\in \forall \rightarrow \forall$).
Proof Mining in the 90’s (concrete Polish spaces, WKL)

In my 1990 PhD thesis (1st referee: Horst Luckhardt, 2nd referee: Anne S. Troelstra) applied ‘proof mining’ (Dana Scott) to problems in analysis.

- Uses versions of Gödel’s functional interpretation (combined with negative translation and majorization (Howard): full modularity.
- Analysis particularly rewarding since the appropriate choice of representations of analytical objects matters (e.g. standard representations of CSM and CTB spaces, Troelstra 1966-69).
- Interesting proofs that use WKL (Troelstra, JSL 1974) but allow for a WKL-elimination: uniqueness statements ($\in \forall \to \forall$).
- Carrying all this out in an extended case study: moduli and constants of strong unicity in best Chebycheff approximation (later with P. Oliva also for L^1-approximation).
Proof Mining since 2000 (abstract classes of spaces)

Around 2000: started to apply proof mining in metric fixed point theory:

Let X be some Banach space, $C \subseteq X$, $T: C \to C$ a selfmap that e.g. is nonexpansive:

$$\forall x, y \in C \left(\|Tx - Ty\| \leq \|x - y\| \right).$$

Consider appropriate iterations such as the Krasnoselski-Mann iteration

$$x_{n+1} = (1 - \lambda_n)x_n + \lambda_n Tx_n,$$

$x_0 \in C$, for suitable $(\lambda_n) \subset [0,1]$.

Under appropriate conditions (x_n) converges to a fixed point of T.

Under much more general conditions (e.g. (x_n) being bounded), one has asymptotic regularity

$$\|x_n - Tx_n\| \to 0.$$
Proof Mining since 2000 (abstract classes of spaces)

Around 2000: started to apply proof mining in metric **fixed point theory**:

Setting: Let X be some Banach space, $C \subseteq X$, $T : C \to C$ a selfmap that e.g. is nonexpansive

\[\forall x, y \in C \ (\|Tx - Ty\| \leq \|x - y\|). \]

Consider appropriate iterations such as the Krasnoselski-Mann iteration

\[x_{n+1} := (1 - \lambda_n)x_n + \lambda_n Tx_n, \quad x_0 := x \in C, \]

for suitable $(\lambda_n) \subset [0, 1]$.

Around 2000: started to apply proof mining in metric **fixed point theory**:

Setting: Let X be some Banach space, $C \subseteq X$, $T : C \rightarrow C$ a selfmap that e.g. is nonexpansive

$$\forall x, y \in C \left(\| Tx - Ty \| \leq \| x - y \| \right).$$

Consider appropriate iterations such as the Krasnoselski-Mann iteration

$$x_{n+1} := (1 - \lambda_n)x_n + \lambda_n Tx_n, \quad x_0 := x \in C,$$

for suitable $(\lambda_n) \subset [0, 1]$.

Under appropriate conditions (x_n) converges to a a fixed point of T.
Proof Mining since 2000 (abstract classes of spaces)

Around 2000: started to apply proof mining in metric fixed point theory:

Setting: Let X be some Banach space, $C \subseteq X$, $T : C \rightarrow C$ a selfmap that e.g. is nonexpansive

$$\forall x, y \in C \ (\|Tx - Ty\| \leq \|x - y\|).$$

Consider appropriate iterations such as the Krasnoselski-Mann iteration

$$x_{n+1} := (1 - \lambda_n)x_n + \lambda_n Tx_n, \ x_0 := x \in C,$$

for suitable $(\lambda_n) \subset [0, 1]$.

Under appropriate conditions (x_n) converges to a a fixed point of T.

Under much more general conditions (e.g. (x_n) being bounded), one has asymptotic regularity

$$\|x_n - Tx_n\| \rightarrow 0.$$
Why rewarding for proof mining?

- $\|x_n - Tx_n\| \to 0$ has form $\forall \exists$ since $(\|x_n - Tx_n\|)$ is decreasing.

Hence: extractability of full rates of convergence for $\|x_n - Tx_n\| \to 0$.

Numerous similar results not only in fixed point theory but also ergodic theory, convex optimization, nonlinear semigroup theory etc.

The finitary proof-theoretic analysis makes it easy to generalize things to geodesic settings (with L. Leuștean).

Extracted bounds are highly uniform: new qualitative information!
Why rewarding for proof mining?

- $\|x_n - Tx_n\| \rightarrow 0$ has form $\forall \exists$ since $(\|x_n - Tx_n\|)$ is decreasing.

Hence: extractability of full rates of convergence for $\|x_n - Tx_n\| \rightarrow 0$.

- Numerous similar results not only in fixed point theory but also ergodic theory, convex optimization, nonlinear semigroup theory etc.

The finitary proof-theoretic analysis makes it easy to generalize things to geodesic settings (with L. Leuștean).

Extracted bounds are highly uniform: new qualitative information!
Why rewarding for proof mining?

- $\|x_n - T x_n\| \to 0$ has form $\forall \exists$ since $(\|x_n - T x_n\|)$ is decreasing.
 Hence: extractability of full rates of convergence for $\|x_n - T x_n\| \to 0$.

- Numerous similar results not only in fixed point theory but also ergodic theory, convex optimization, nonlinear semigroup theory etc.

- The finitary proof-theoretic analysis makes it easy to generalize things to geodesic settings (with L. Leuștean).
Why rewarding for proof mining?

- $\|x_n - Tx_n\| \to 0$ has form $\forall \exists$ since $\left(\|x_n - Tx_n\| \right)$ is decreasing.

 Hence: extractability of full rates of convergence for $\|x_n - Tx_n\| \to 0$.

- Numerous similar results not only in fixed point theory but also ergodic theory, convex optimization, nonlinear semigroup theory etc.

- The **finitary proof-theoretic analysis** makes it easy to generalize things to geodesic settings (with L. Leuştean).

- Extracted bounds are highly uniform: **new qualitative information!**
Since 2004: rates of metastability

If \(\| x_n - T x_n \| \) is not monotone or one studies the convergence of \((x_n)\) itself, in general no computable rate of convergence possible.

Let \((x_n)\) be a Cauchy sequence in a metric space \((X, \rho)\), i.e.

\[
\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall i, j \geq n (\rho(x_i, x_j) \leq 2^{-k}) \in \forall \exists
\]
Since 2004: rates of metastability

If \((\|x_n - T x_n\|)\) is not monotone or one studies the convergence of \((x_n)\) itself, in general no computable rate of convergence possible.

Let \((x_n)\) be a Cauchy sequence in a metric space \((X, \rho)\), i.e.

\[
\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall i, j \geq n (\rho(x_i, x_j) \leq 2^{-k}) \in \forall \exists
\]

is noneffectively equivalent to its Gödel functional interpretation

\[
\forall k \in \mathbb{N} \forall g \in \mathbb{N}^{\mathbb{N}} \exists n \in \mathbb{N} \forall i, j \in [n; n + g(n)] (\rho(x_i, x_j) < 2^{-k}) \in \exists
\]
Since 2004: rates of metastability

If \((\|x_n - T x_n\|)\) is not monotone or one studies the convergence of \((x_n)\) itself, in general no computable rate of convergence possible.

Let \((x_n)\) be a Cauchy sequence in a metric space \((X, \rho)\), i.e.

\[
\forall k \in \mathbb{N} \exists n \in \mathbb{N} \forall i, j \geq n \left(\rho(x_i, x_j) \leq 2^{-k} \right) \in \forall \exists
\]

is noneffectively equivalent to its Gödel functional interpretation

\[
\forall k \in \mathbb{N} \forall g \in \mathbb{N}^{\mathbb{N}} \exists n \in \mathbb{N} \forall i, j \in [n; n+g(n)] \left(\rho(x_i, x_j) < 2^{-k} \right) \in \forall \exists
\]

Herbrand normal form or metastability (Tao).
Since 2004: rates of metastability

If \((\|x_n - Tx_n\|)\) is not monotone or one studies the convergence of \((x_n)\) itself, in general no computable rate of convergence possible.

Let \((x_n)\) be a Cauchy sequence in a metric space \((X, \rho)\), i.e.

\[
\forall k \in \mathbb{N} \ \exists n \in \mathbb{N} \ \forall i, j \geq n \ (\rho(x_i, x_j) \leq 2^{-k}) \in \forall \exists
\]

is noneffectively equivalent to its Gödel functional interpretation

\[
\forall k \in \mathbb{N} \ \forall g \in \mathbb{N}^\mathbb{N} \ \exists n \in \mathbb{N} \ \forall i, j \in [n; n+g(n)] \ (\rho(x_i, x_j) < 2^{-k}) \in \forall \exists
\]

Herbrand normal form or metastability (Tao).

A bound \(\Phi(k, g)\) on ‘\(\exists n\)’ in the latter formula is a rate of metastability (introduced by Kreisel in 1951 as no-counterexample interpretation).
Why rewarding for proof mining?

- Unlike proofs of asymptotic regularity, proofs of the convergence of (x_n) make **full use of noneffective nonlinear analysis.**
Why rewarding for proof mining?

- Unlike proofs of asymptotic regularity, proofs of the convergence of \((x_n)\) make **full use of noneffective nonlinear analysis**.
- Proofs analyzed so far use: weak compactness, projections, Banach limits (AC), maximally monotone operators (AC)...
Why rewarding for proof mining?

- Unlike proofs of asymptotic regularity, proofs of the convergence of (x_n) make **full use of noneffective nonlinear analysis**.
- Proofs analyzed so far use: **weak compactness**, **projections**, **Banach limits (AC)**, **maximally monotone operators (AC)**...
- Proofs use **structural properties** of X such as uniform smoothness and convexity etc.
Why rewarding for proof mining?

- Unlike proofs of asymptotic regularity, proofs of the convergence of (x_n) make **full use of noneffectiveness nonlinear analysis**.
- Proofs analyzed so far use: **weak compactness**, **projections**, **Banach limits** (AC), **maximally monotone operators** (AC)...
- Proofs use **structural properties** of X such as uniform smoothness and convexity etc.
- Huge gap between **ideal principles** used and the **concreteness** of the theorem proven: Cauchy-property (Π^0_3).
Why rewarding for proof mining?

- Unlike proofs of asymptotic regularity, proofs of the convergence of \((x_n)\) make **full use of noneffective nonlinear analysis**.
- Proofs analyzed so far use: **weak compactness, projections**, **Banach limits (AC)**, **maximally monotone operators (AC)**...
- Proofs use **structural properties** of \(X\) such as uniform smoothness and convexity etc.
- Huge gap between **ideal principles** used and the **concreteness** of the theorem proven: Cauchy-property (\(\Pi^0_3\)).
- Concrete bounds numerically interesting. Often information on the **algorithmic learnability** of a rate of convergence which - if a gap condition is satisfied - yields **oscillation bounds** (Safarik/K., Avigad/Rute).
Inspiration from Troelstra’s work on Intuitionism I:

Closure under Fan Rules
(Troelstra JSL 1974,1977)
The fan rule

In his 74/77 JSL-papers, Troelstra proved among many other things:

Theorem (Troelstra 74,77)

Let H^ω be intuitionistic arithmetic in all types or analysis E-HA^ω, N-HA^ω or EL. Then H^ω is closed under the fan rule, i.e.

$$H^\omega \vdash \forall f^1 \exists n^0 A(f, n) \Rightarrow H^\omega \vdash \forall g^1 \exists n^* \forall f \leq g \exists n \leq n^* A(f, n).$$
The fan rule

In his 74/77 JSL-papers, Troelstra proved among many other things:

Theorem (Troelstra 74,77)

Let H^ω be intuitionistic arithmetic in all types or analysis E-HA^ω, N-HA^ω or EL. Then H^ω is closed under the **fan rule**, i.e.

$$H^\omega \vdash \forall f^1 \exists n^0 A(f, n) \Rightarrow H^\omega \vdash \forall g^1 \exists n^* \forall f \leq g \exists n \leq n^* A(f, n).$$

- Troelstra 1974 uses modified realizability (with truth) and the uniform continuity of closed terms $t^2 \in T$.

Ulrich Kohlenbach

Intuitionistic reasoning and proof mining
In his 74/77 JSL-papers, Troelstra proved among many other things:

Theorem (Troelstra 74,77)

Let H^ω be intuitionistic arithmetic in all types or analysis E-HA$^\omega$, N-HA$^\omega$ or EL. Then H^ω is closed under the fan rule, i.e.

$$H^\omega \vdash \forall f^1 \exists n^0 \ \text{A}(f, n) \ \Rightarrow \ H^\omega \vdash \forall g^1 \exists n^* \ \forall f \leq g \ \exists n \leq n^* \ A(f, n).$$

- Troelstra 1974 uses modified realizability (with truth) and the uniform continuity of closed terms $t^2 \in T$.
The fan rule

In his 74/77 JSL-papers, Troelstra proved among many other things:

Theorem (Troelstra 74,77)

Let \mathbb{H}_ω be intuitionistic arithmetic in all types or analysis E-HA^{ω}, N-HA^{ω} or EL. Then \mathbb{H}_ω is closed under the **fan rule**, i.e.

$$\mathbb{H}_\omega \vdash \forall f \exists n^0 A(f, n) \Rightarrow \mathbb{H}_\omega \vdash \forall g \exists n^* \forall f \leq g \exists n \leq n^* A(f, n).$$

- Troelstra 1974 uses modified realizability (with truth) and the uniform continuity of closed terms $t^2 \in T$.
- Troelstra 1977 uses a notion of **fan computability** and Troelstra/van Dalen 1988 **uniform forcing**.
Consider extensional Heyting arithmetic E-$HA^{\omega \cdot X} [X, d, b]$ over all finite types over the base types \mathbb{N}, X where X represents an abstract b-bounded metric space with

$$x =_X y := d_X(x, y) = \mathbb{R} 0.$$
Consider extensional Heyting arithmetic \(\text{E-HA}^\omega \cdot X[d, b] \) over all finite types over the base types \(\mathbb{N}, X \) where \(X \) represents an abstract \emph{b-bounded} metric space with

\[
x =_X y := d_X(x, y) =_{\mathbb{R}} 0.
\]

Let

\[
\text{CA}_\exists : \exists \Phi \forall x (\Phi(x) =_{\mathbb{N}} 0 \iff \neg A(x)),
\]

where \(x \) is an arbitrary tuple of variables of \emph{arbitrary types} and \(A \) an \emph{arbitrary formula}.

Let \(\text{AC} \) be the axiom-of-choice schema in all types.

A fan-type rule for abstract spaces

A simple version reads as follows:

Theorem (Gerhardy/K. APAL 2006)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{N} (resp. in X). s is a closed term. If (for arbitrary A, B)

$$E$-${\text{HA}}^{\omega,X}[X, d, b] + AC + CA \vdash \forall x^1 \forall y \leq \rho \ s(x) \forall z^\tau \ (\neg B \rightarrow \exists n^{\mathbb{N}} A)$$

then one can extract a functional $\Phi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \rightarrow \mathbb{N}$ in Gödel’s T s.t.

$$\forall x^1 \forall y \leq \rho \ s(x) \forall z^\tau \exists n \leq \Phi(x, b) \ (\neg B \rightarrow A)$$

holds in any b-bounded metric space.
A fan-type rule for abstract spaces

A simple version reads as follows:

Theorem (Gerhardy/K. APAL 2006)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{N} (resp. in X). s is a closed term. If (for arbitrary A, B)

$$\text{E-HA}^\omega,X [X, d, b] + \text{AC} + \text{CA} \vdash \forall x^1 \forall y \leq_\rho s(x) \forall z^\tau (\neg B \rightarrow \exists n^{\mathbb{N}} A)$$

then one can extract a functional $\Phi : \mathbb{N}^\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ in Gödel's T s.t.

$$\forall x^1 \forall y \leq_\rho s(x) \forall z^\tau \exists n \leq \Phi(x, b) (\neg B \rightarrow A)$$

holds in any b-bounded metric space.

Also for $\text{WE-HA}^\omega,X [X, d, b] + \text{M}^\omega + \text{KL}$ with B_\forall.

Ulrich Kohlenbach

Intuitionistic reasoning and proof mining
A fan-type rule for abstract spaces

A simple version reads as follows:

Theorem (Gerhardy/K. APAL 2006)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{N} (resp. in X). s is a closed term. If (for arbitrary A, B)

$$
\text{E-HA}^{\omega,X}[X, d, b] + \text{AC} + \text{CA}_- \vdash \forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau (\neg B \rightarrow \exists n^\mathbb{N} A)
$$

then one can extract a functional $\Phi : \mathbb{N}^\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ in Gödel’s T s.t.

$$
\forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau \exists n \leq \Phi(x, b) (\neg B \rightarrow A)
$$

holds in any b-bounded metric space.

Also for $\text{WE-HA}^{\omega,X}[X, d, b] + \text{M}^{\omega} + \text{KL}$ with B_{\forall}.

Methods: monotone versions of extensions of mr resp. Dialectica.
The usual fan rule as a special case

- The **usual fan rule** for intuitionistic systems such as E-HA$^\omega$ is the special case without classical principles such as CA$^\leftarrow$, without abstract spaces X and for $\rho = 1$.
The usual fan rule as a special case

- The **usual fan rule** for intuitionistic systems such as E-HA$^\omega$ is the special case without classical principles such as CA, without abstract spaces X and for $\rho = 1$.
- The proof in K.1992 allowed for arbitrary types ρ and so **no longer** rests on **continuity** but on **majorizability**.
The usual fan rule as a special case

- The **usual fan rule** for intuitionistic systems such as E-HA$^\omega$ is the special case without classical principles such as CA\neg, without abstract spaces X and for $\rho = 1$.

- The proof in K.1992 allowed for arbitrary types ρ and so no longer rests on continuity but on majorizability.

- In 1995, I showed that the same is true if noneffective principles such as CA\neg or M$^\omega + KL$ (not both!) are added.
The usual fan rule as a special case

- The **usual fan rule** for intuitionistic systems such as E-HA°ω is the special case without classical principles such as CA¬, without abstract spaces X and for ρ = 1.
- The proof in K.1992 allowed for arbitrary types ρ and so no longer rests on continuity but on majorizability.
- In 1995, I showed that the same is true if noneffective principles such as CA¬ or Mω+KL (not both!) are added.
- Despite some efforts, I never managed to find an application for ρ > 1 in mainstream mathematics. However: there are many applications for τ = X and for τ = X^X!
Classically (Σ_1^0-LEM), the fan rule seems to fail miserably: consider

$$\forall f \in 2^\mathbb{N} \exists n \in \mathbb{N} \ \forall k \in \mathbb{N} (f(k) = 0 \rightarrow f(n) = 0).$$

However, it holds (even in the much generalized form) if A_\exists is purely existential (and one weakens the extensionality axiom to a quantifier-free rule and restricts AC to quantifier-free formulas):
The fan rule from a classical point of view

Classically (Σ^0_1-LEM), the fan rule seems to fail miserably: consider

$$\forall f \in 2^{\mathbb{N}} \; \exists n \in \mathbb{N} \; \forall k \in \mathbb{N} (f(k) = 0 \rightarrow f(n) = 0).$$

However: it holds (even in the much generalized form) if A_\exists is purely existential (and one weakens the extensionality axiom to a quantifier-free rule and restricts AC to quantifier-free formulas):
Theorem (K.2005)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{N} (resp. in X). s is a closed term. If

$$WE-PA^\omega,X[X, d, b]+QF-AC \vdash \forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau \exists n^{\mathbb{N}} A_\exists$$

then one can extract a functional $\Phi : \mathbb{N}^\mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ in Gödel’s T s.t.

$$\forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau \exists n \leq \Phi(x, b) A_\exists$$

holds in any b-bounded metric space.

With some mild restrictions on the types, we may add dependent choice DC, where then Φ will be bar recursive.

Method: extended version of monotone Dialectica with negative translation.
Theorem (K.2005)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{IN} (resp. in X). s is a closed term. If

$$\text{WE-PA}^\omega, X [X, d, b] + \text{QF-AC} \vdash \forall x^1 \forall y \leq_\rho s(x) \forall z^\tau \exists n^{\mathbb{IN}} A_{\exists}$$

then one can extract a functional $\Phi : \mathbb{IN}^\mathbb{IN} \times \mathbb{IN} \to \mathbb{IN}$ in Gödel’s T s.t.

$$\forall x^1 \forall y \leq_\rho s(x) \forall z^\tau \exists n \leq \Phi(x, b) A_{\exists}$$

holds in any b-bounded metric space.

With some mild restrictions on the types, we may add dependent choice DC, where then Φ will be bar recursive.
Theorem (K.2005)

Let ρ (resp. τ) be an arbitrary type with values in \mathbb{N} (resp. in X). s is a closed term. If

$$\text{WE-PA}^{\omega,X}[X, d, b]+\text{QF-AC} \vdash \forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau \exists n^{\mathbb{N}} A_{\exists}$$

then one can extract a functional $\Phi : \mathbb{N}^{\mathbb{N}} \times \mathbb{N} \to \mathbb{N}$ in Gödel’s T s.t.

$$\forall x^1 \forall y \leq_{\rho} s(x) \forall z^\tau \exists n \leq \Phi(x, b) A_{\exists}$$

holds in any b-bounded metric space.

With some mild restrictions on the types, we may add dependent choice DC, where then Φ will be bar recursive.

Method: extended version of monotone Dialectica with negative translation.
Other admissible structures X

- Hyperbolic, CAT(0), CAT($\kappa > 0$), normed, their completions, Hilbert, uniformly convex, uniformly smooth (not: separable, strictly convex or smooth) spaces.

- Also several spaces X_1, \ldots, X_n (Günzel/K.)
Other admissible structures X

- Hyperbolic, $\text{CAT}(0)$, $\text{CAT}(\kappa > 0)$, normed, their completions, Hilbert, uniformly convex, uniformly smooth (not: separable, strictly convex or smooth) spaces.

- Also several spaces X_1, \ldots, X_n (Günzel/K.)

- All normed structures definable in positive bounded logic, e.g. abstract L_p and $C(K)$-spaces (Günzel/K. 2016).
The unbounded case

Here \(z^T \) needs to be majorizable (extending Howard’s notion: Gerhardy/K.2008): \(y, x \) functionals of types \(\rho, \hat{\rho} := \rho[\mathbb{N}/X] \) and \(a^X \)

\[
\begin{align*}
\text{\(x^\mathbb{N} \succ^a_{\mathbb{N}} y^\mathbb{N} \equiv x \geq y \)} \\
\text{\(x^\mathbb{N} \succ^a_X y^X \equiv x \geq d_X(a, y) \)).}
\end{align*}
\]
The unbounded case

Here z^τ needs to be majorizable (extending Howard’s notion: Gerhardy/K. 2008): y, x functionals of types $\rho, \hat{\rho} := \rho[\mathbb{N}/X]$ and a^X

\[
x^\mathbb{N} \gtrsim^a y^\mathbb{N} \equiv x \geq y
\]
\[
x^\mathbb{N} \gtrsim^a x^X \equiv x \geq d_X(a, y).
\]

For complex types $\rho \rightarrow \tau$ this is extended in a hereditary fashion.
The unbounded case

Here z^τ needs to be majorizable (extending Howard’s notion: Gerhardy/K.2008): y, x functionals of types $\rho, \hat{\rho} := \rho[\mathbb{N}/X]$ and a^X

\[
\begin{align*}
x^\mathbb{N} \mathrel{\geq^a} y^\mathbb{N} & : \equiv x \geq y \\
x^\mathbb{N} \mathrel{\geq^a} x^X & : \equiv x \geq d_X(a, y).
\end{align*}
\]

For complex types $\rho \to \tau$ this is extended in a hereditary fashion.

Example:

\[
f^* \mathrel{\geq^a} f \equiv \forall n \in \mathbb{N}, x \in X[n \geq d_X(a, x) \to f^*(n) \geq d_X(a, f(x))].
\]
The unbounded case

Here z^τ needs to be majorizable (extending Howard’s notion: Gerhardy/K.2008): y, x functionals of types $\rho, \hat{\rho} := \rho[\mathbb{N}/X]$ and a^X

$$
x^\mathbb{N} \preceq^a y^\mathbb{N} \equiv x \geq y
$$

$$
x^\mathbb{N} \preceq_X^a y^X \equiv x \geq d_X(a, y).
$$

For complex types $\rho \rightarrow \tau$ this is extended in a hereditary fashion.

Example:

$$
f^* \preceq_X^a f \equiv \forall n \in \mathbb{N}, x \in X[n \geq d_X(a, x) \rightarrow f^*(n) \geq d_X(a, f(x))].
$$

If $f : X \rightarrow X$ is nonexpansive (n.e.), i.e. $d_X(f(x), f(y)) \leq d_X(x, y)$.
The unbounded case

Here z^τ needs to be majorizable (extending Howard’s notion: Gerhardy/K.2008): y, x functionals of types $\rho, \hat{\rho} := \rho[\mathbb{N}/X]$ and a^X

$$x^\mathbb{N} \gtrsim a_{\mathbb{N}}^X y^\mathbb{N} : \equiv x \geq y$$

$$x^\mathbb{N} \gtrsim a_X^X y^X : \equiv x \geq d_X(a, y).$$

For complex types $\rho \rightarrow \tau$ this is extended in a hereditary fashion.

Example:

$$f^* \gtrsim a_{X \rightarrow X}^X f \equiv \forall n \in \mathbb{N}, x \in X[n \geq d_X(a, x) \rightarrow f^*(n) \geq d_X(a, f(x))].$$

If $f : X \rightarrow X$ is nonexpansive (n.e.), i.e. $d_X(f(x), f(y)) \leq d_X(x, y)$.

Then for $d_X(a, f(a)) \leq b$ and $f^*(n) := n + b$: $f^* \gtrsim a_{X \rightarrow X}^X f$.

The bound then depends also on f^*.
The unbounded case

Here z^τ needs to be majorizable (extending Howard’s notion:
Gerhardy/K.2008): y, x functionals of types $\rho, \hat{\rho} := \rho[IN/X]$ and a^X

\[
x^IN \gtrsim^a IN y^IN :\equiv x \geq y \\
x^IN \gtrsim^a X y^X :\equiv x \geq d_X(a, y).
\]

For complex types $\rho \rightarrow \tau$ this is extended in a hereditary fashion.

Example:

\[
f^* \gtrsim^a_{X \rightarrow X} f \equiv \forall n \in IN, x \in X[n \geq d_X(a, x) \rightarrow f^*(n) \geq d_X(a, f(x))].
\]

If $f : X \rightarrow X$ is nonexpansive (n.e.), i.e. $d_X(f(x), f(y)) \leq d_X(x, y)$.

Then for $d_X(a, f(a)) \leq b$ and $f^*(n) := n + b$: \[f^* \gtrsim^a_{X \rightarrow X} f\]

The bound then depends also on f^*.

In a normed setting: $a := 0_X$.
Inspiration from Troelstra’s work on Intuitionism II:
Conservation results for the Fan Principle
(Troelstra JSL 1974)
Let EL$^+$ be elementary intuitionistic analysis plus AC$^{\mathbb{IN}, \mathbb{IN}}$ plus a continuity principle CONT$_1$. Consider FAN in the form (equivalent to Troelstra’s definition of FAN over EL$^+$)

$$\forall f \in 2^{\mathbb{IN}} \exists n \in \mathbb{IN} A(f, n) \rightarrow \exists n^* \in \mathbb{IN} \forall f \in 2^{\mathbb{IN}} \exists n \leq n^* A(f, n).$$

Theorem (Troelstra, JSL 1974)

EL$^+$ + FAN is conservative over HA.
Let EL^+ be elementary intuitionistic analysis plus $\text{AC}^{\mathbb{IN}, \mathbb{IN}}$ plus a continuity principle CONT_1. Consider FAN in the form (equivalent to Troelstra’s definition of FAN over EL^+)

$$\forall f \in 2^{\mathbb{IN}} \exists n \in \mathbb{IN} \ A(f, n) \rightarrow \exists n^* \in \mathbb{IN} \forall f \in 2^{\mathbb{IN}} \exists n \leq n^* A(f, n).$$

Theorem (Troelstra, JSL 1974)

$\text{EL}^+ + \text{FAN}$ is conservative over HA.

Further contributions in Troelstra 1974:

- For WKL (stated for the first time in print and called KL) it is proven that $\text{EL}^c + \text{WKL}$ is conservative over PA.
Let EL^+ be elementary intuitionistic analysis plus $\text{AC}^{\mathbb{N},\mathbb{N}}$ plus a continuity principle CONT_1. Consider FAN in the form (equivalent to Troelstra’s definition of FAN over EL^+)

$$\forall f \in 2^{\mathbb{N}} \exists n \in \mathbb{N} \ A(f, n) \rightarrow \exists n^* \in \mathbb{N} \forall f \in 2^{\mathbb{N}} \exists n \leq n^* \ A(f, n).$$

Theorem (Troelstra, JSL 1974)

$\text{EL}^+ + \text{FAN}$ is conservative over HA.

Further contributions in Troelstra 1974:

- For WKL (stated for the first time in print and called KL) it is proven that $\text{EL}^c + \text{WKL}$ is conservative over PA.
- If instead of 0,1-trees one allows (still quantifier-free) trees with at most two branchings then it becomes classically as strong as ACA.
Let EL^+ be elementary intuitionistic analysis plus $\text{AC}^{\text{IN},\text{IN}}$ plus a continuity principle CONT_1. Consider FAN in the form (equivalent to Troelstra’s definition of FAN over EL^+)

$$\forall f \in 2^{\text{IN}} \exists n \in \text{IN} \ A(f, n) \rightarrow \exists n^* \in \text{IN} \forall f \in 2^{\text{IN}} \exists n \leq n^* A(f, n).$$

Theorem (Troelstra, JSL 1974)

$\text{EL}^+ + \text{FAN}$ is conservative over HA.

Further contributions in Troelstra 1974:

- For WKL (stated for the first time in print and called KL) it is proven that $\text{EL}^c + \text{WKL}$ is conservative over PA.
- If instead of 0,1-trees one allows (still quantifier-free) trees with at most two branchings then it becomes classically as strong as ACA.
- If 0,1-trees of arbitrary logical complexity are allowed, then full comprehension (over numbers) becomes classically derivable.
Let EL^+ be elementary intuitionistic analysis plus $\text{AC}_{\mathbb{N},\mathbb{N}}$ plus a continuity principle CONT_1. Consider FAN in the form (equivalent to Troelstra’s definition of FAN over EL^+)

$$\forall f \in 2^{\mathbb{N}} \exists n \in \mathbb{N} A(f, n) \rightarrow \exists n^* \in \mathbb{N} \forall f \in 2^{\mathbb{N}} \exists n \leq n^* A(f, n).$$

Theorem (Troelstra, JSL 1974)

$\text{EL}^+ + \text{FAN}$ is conservative over HA.

Further contributions in Troelstra 1974:

- For WKL (stated for the first time in print and called KL) it is proven that $\text{EL}^c + \text{WKL}$ is conservative over PA.
- If instead of 0,1-trees one allows (still quantifier-free) trees with at most two branchings then it becomes classically as strong as ACA.
- If 0,1-trees of arbitrary logical complexity are allowed, then full comprehension (over numbers) becomes classically derivable.

In Troelstra’s 1977 Handbook article: elimination of choice sequences used to show conservativity of FAN.
Conservation of generalized fan principles

- The **generalized fan rules** (both in the semi-constructive and in the classical case) can be also stated as **implications**: **uniform boundedness principles** (K.1995 without X, K. 2006 with X).
The **generalized fan rules** (both in the semi-constructive and in the classical case) can be also stated as **implications**: uniform boundedness principles (K.1995 without X, K. 2006 with X).

In the classical case (and with the type X) one again has a restriction to \exists-formulas: \exists-UBX.
The **generalized fan rules** (both in the semi-constructive and in the classical case) can be also stated as **implications**: uniform boundedness principles (K.1995 without X, K. 2006 with X).

In the classical case (and with the type X) one again has a restriction to \exists-formulas: \exists-UB^X.

While \exists-UB^X is false in $S^{\omega,X}$ it yields classically correct bounds for conclusions of the above form (with no complexity contribution).
The **generalized fan rules** (both in the semi-constructive and in the classical case) can be also stated as **implications**: **uniform boundedness principles** (K.1995 without X, K. 2006 with X).

In the classical case (and with the type X) one again has a restriction to \exists-formulas: \exists-UB^X.

While \exists-UB^X is false in $S^{\omega,X}$ it yields classically correct bounds for conclusions of the above form (with no complexity contribution).

Even more general forms for uniform boundedness principles are studied in the context of **bounded functional interpretation** as **‘bounded collection principles’** (Engracia 2009, Ferreira 2009).
Consequences of \exists-UBX

Over $\text{WE-PA}^{\omega, X}[X, d, b] + \text{QF-AC}$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is complete.
- If X is separable then it is totally bounded.
- Every function $F : X \to X$ is uniformly continuous.
- If $F : X \to \mathbb{R}$ has approximate zeros, then it has zeros.
- For W-hyperbolic X: every nonexpansive $F : X \to X$ has fixed points.
- If X is strictly convex then it is uniformly convex (many more in: Gündel/K. 2016).

\exists-UBX serves as a constructive substitute to ultrapowers. Recently shown to allow to replace some uses of weak sequential compactness (Ferreira, Leuștean, Pinto 2019).
Consequences of \exists-UBX

Over $\text{WE-PA}^X\omega[X, d, b]+QF-AC$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is **complete**.

$∃$-UBX serves as a constructive substitute to ultrapowers. Recently shown to allow to replace some uses of weak sequential compactness (Ferreira, Leuştean, Pinto 2019).
Consequences of \exists-UBX

Over $\text{WE-PA}^{\omega, X}[X, d, b] + \text{QF-AC}$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is **complete**.
- If X is **separable** then it is **totally bounded**.
Consequences of \exists-UBX

Over $\text{WE-PA}^X, \omega, [X, d, b] + \text{QF-AC}$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is **complete**.
- If X is **separable** then it is **totally bounded**.
- Every function $F : X \to X$ is **uniformly continuous**.

\exists-UBX serves as a constructive substitute to ultrapowers. Recently shown to allow to replace some uses of weak sequential compactness (Ferreira, Leuştean, Pinto 2019).

Ulrich Kohlenbach
Intuitionistic reasoning and proof mining.
Consequences of \exists-UBX

Over $\text{WE-PA}^\omega_{\cdot}^X[X, d, b]+\text{QF-AC}$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is complete.
- If X is separable then it is totally bounded.
- Every function $F : X \to X$ is uniformly continuous.
- If $F : X \to \mathbb{R}$ has approximate zeros, then it has zeros.
Consequences of \exists-UB^X

Over $\text{WE-P}A^\omega,^X[X, d, b] + \text{QF-AC}$, the principle \exists-UB^X proves the following classically in general false facts (K.2006):

- X is complete.
- If X is separable then it is totally bounded.
- Every function $F : X \rightarrow X$ is uniformly continuous.
- If $F : X \rightarrow \mathbb{R}$ has approximate zeros, then it has zeros.
- For W-hyperbolic X: every nonexpansive $F : X \rightarrow X$ has fixed points. If X is strictly convex then it is uniformly convex (many more in: Günzel/K. 2016).
Consequences of \exists-UBX

Over $\text{WE-PA}^{\omega,X}[X, d, b]+\text{QF-AC}$, the principle \exists-UBX proves the following classically in general false facts (K.2006):

- X is **complete**.
- If X is **separable** then it is **totally bounded**.
- Every function $F : X \to X$ is **uniformly continuous**.
- If $F : X \to \mathbb{R}$ has **approximate zeros**, then it has **zeros**.
- For W-hyperbolic X: every **nonexpansive** $F : X \to X$ has **fixed points**. If X is **strictly convex** then it is **uniformly convex** (many more in: Günzel/K. 2016).

\exists-UBX serves as a **constructive substitute** to **ultrapowers**.
Consequences of $\exists\text{-UB}^X$

Over $\text{WE-PA}^\omega, X [X, d, b] + \text{QF-AC}$, the principle $\exists\text{-UB}^X$ proves the following classically in general false facts (K.2006):

- X is complete.
- If X is separable then it is totally bounded.
- Every function $F : X \to X$ is uniformly continuous.
- If $F : X \to \mathbb{R}$ has approximate zeros, then it has zeros.
- For W-hyperbolic X: every nonexpansive $F : X \to X$ has fixed points. If X is strictly convex then it is uniformly convex (many more in: Günzel/K. 2016).

$\exists\text{-UB}^X$ serves as a constructive substitute to ultrapowers. Recently shown to allow to replace some uses of weak sequential compactness (Ferreira, Leuștean, Pinto 2019).
Inspiration from Troelstra’s work on Intuitionism III:
Troelstra 1973 for the first time clearly formulated the various options to interpret \(\equiv_\rho \) in higher type intuitionistic arithmetic.
Troelstra 1973 for the first time clearly formulated the various options to interpret \equiv_ρ in higher type intuitionistic arithmetic.

Troelstra 1973 stated the failure of the deduction theorem for weakly extensional systems based on QF-ER.
Troelstra 1973 for the first time clearly formulated the various options to interpret $=_{\rho}$ in higher type intuitionistic arithmetic.

Troelstra 1973 stated the failure of the deduction theorem for weakly extensional systems based on QF-ER.

This failure turned out to be a \textbf{blessing} in contexts such as $\text{WE-PA}^\omega[X, d, \ldots]$ as it allows one to treat \textbf{discontinuous} situations!
Troelstra 1973 for the first time clearly formulated the various options to interpret $=_{\rho}$ in higher type intuitionistic arithmetic.

Troelstra 1973 stated the **failure of the deduction theorem** for weakly extensional systems based on QF-ER.

This failure turned out to be a **blessing** in contexts such as $\text{WE-PA}^\omega[X, d, \ldots]$ as it allows one to treat **discontinuous** situations!

Troelstra stressed in many papers the role of **enrichment of data** making objects extensional in the enriched data.
Troelstra 1973 for the first time clearly formulated the various options to interpret $=_{\rho}$ in higher type intuitionistic arithmetic.

Troelstra 1973 stated the **failure of the deduction theorem** for weakly extensional systems based on QF-ER.

This failure turned out to be a **blessing** in contexts such as $\text{WE-PA}^\omega[X,d,\ldots]$ as it allows one to treat **discontinuous** situations!

Troelstra stressed in many papers the role of **enrichment of data** making objects extensional in the enriched data.

Intensional aspects of choice sequences.
Full extensionality gets translated by monotone FI into uniform continuity (on bounded sets).
Full extensionality gets translated by monotone FI into uniform continuity (on bounded sets).

However, one may use special instances of extensionality which translate into notions weaker than uniform continuity.
Extensionality without continuity (Leustean, Nicolae, K.)

Full extensionality gets translated by monotone FI into **uniform continuity** (on bounded sets).

However, one may use **special instances** of extensionality which translate into notions **weaker than uniform continuity**.

Frequent use of extensionality: \(T : C \to C \subseteq X, F(T) \) fixed point set.

\[
\forall x \in C, p \in F(T) \ (x =_x p \to x \in F(T))
\]
Full extensionality gets translated by monotone FI into uniform continuity (on bounded sets).

However, one may use special instances of extensionality which translate into notions weaker than uniform continuity.

Frequent use of extensionality: $T : C \to C \subseteq X$, $F(T)$ fixed point set.

$$\forall x \in C, p \in F(T) (x =_x p \to x \in F(T))$$

which translates into existence of moduli δ_T, ω_T s.t.

$$\forall \varepsilon > 0 \forall x, p \in C (\|p - Tp\| \leq \delta_T(\varepsilon) \land \|x - p\| \leq \omega_T(\varepsilon) \to \|x - Tx\| \leq \varepsilon).$$
Full extensionality gets translated by monotone FI into uniform continuity (on bounded sets).

However, one may use special instances of extensionality which translate into notions weaker than uniform continuity.

Frequent use of extensionality: \(T : C \to C \subseteq X, F(T) \) fixed point set.

\[
\forall x \in C, p \in F(T) (x =_x p \to x \in F(T))
\]

which translates into existence of moduli \(\delta_T, \omega_T \) s.t.

\[
\forall \varepsilon > 0 \forall x, p \in C (\|p - Tp\| \leq \delta_T(\varepsilon) \land \|x - p\| \leq \omega_T(\varepsilon) \to \|x - Tx\| \leq \varepsilon).
\]

Important in fixed point theory: mappings with Suzuki’s condition

\[
\forall x, p \in C (\|p - Tx\| \leq \mu \|p - Tp\| + \|x - y\|) \quad (\mu \geq 1).
\]

Then \(\delta_T(\varepsilon) = \varepsilon/4, \omega_T(\varepsilon) = \varepsilon/(2\mu) \). No continuity requirement!
Inspiration from Troelstra’s work on Intuitionism IV:
Restricted forms of LEM (e.g. Troelstra/van Dalen 1988)
The role of classical logic

Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.
The role of classical logic

Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.

- In general, the use of the law-of-excluded-middle **LEM rules out a computable rate of convergence** (Specker sequences).
The role of classical logic

Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.

- In general, the use of the law-of-excluded-middle **LEM rules out a computable rate of convergence** (Specker sequences).
- If proof formalizes in $\text{HA}^\omega[X, d, \ldots] + \text{AC} + (\neg \varphi \lor \neg \neg \varphi)$, one can extract **uniform rate of convergence that is prim.rec.** in the sense of Hilbert-Gödel (K. 1995, Gerhardy-K. 2006).
Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.

- In general, the use of the law-of-excluded-middle **LEM rules out a computable rate of convergence** (Specker sequences).
- If proof formalizes in $\text{HA}^\omega[X, d, \ldots] + \text{AC} + (\neg \varphi \vee \neg \neg \varphi)$, one can extract **uniform rate of convergence that is prim.rec.** in the sense of Hilbert-Gödel (K. 1995, Gerhardy-K. 2006).
 Also covers full comprehension for negated or \exists-free formulas.
The role of classical logic

Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.

- In general, the use of the law-of-excluded-middle LEM rules out a computable rate of convergence (Specker sequences).
- If proof formalizes in $\text{HA}^\omega[X, d, \ldots]+\text{AC}+(\neg\varphi \lor \neg\neg\varphi)$, one can extract uniform rate of convergence that is prim.rec. in the sense of Hilbert-Gödel (K. 1995, Gerhardy-K. 2006).
 Also covers full comprehension for negated or \exists-free formulas.
- Same for $\text{HA}^\omega[X, d, \ldots]+\text{AC}+\text{KL}+M^\omega$, where M^ω is Markov’s principle in all types and KL is König’s lemma (K.1995,2008).
Consider proof p of the Cauchyness of a sequence (x_n) in a metric space.

- In general, the use of the law-of-excluded-middle LEM rules out a computable rate of convergence (Specker sequences).
- If proof formalizes in $\text{HA}^\omega[X, d, \ldots]+\text{AC}+(\neg\varphi \lor \neg\neg\varphi)$, one can extract uniform rate of convergence that is prim.rec. in the sense of Hilbert-Gödel (K. 1995, Gerhardy-K. 2006). Also covers full comprehension for negated or \exists-free formulas.
- Same for $\text{HA}^\omega[X, d, \ldots]+\text{AC}+\text{KL}+\text{M}_\omega$, where M_ω is Markov’s principle in all types and KL is König’s lemma (K.1995,2008).
- Naive formalization of the monotone convergence principle uses Σ^0_2-DNE: $\neg\neg\exists x\in\mathbb{N}\forall y\in\mathbb{N}\varphi_{qf}(x, y) \rightarrow \exists x\in\mathbb{N}\forall y\in\mathbb{N}\varphi_{qf}(x, y)$, but using more induction, weaker Σ^0_1-LEM($t(x_n)$) suffices (Toftdal 2004).
By the above, Σ^0_1-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).
By the above, Σ^0_1-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).

In the case of monotone sequences $(x_n) \subset [0, C]$ one always has the trivial fluctuation bound $2^k \cdot C$.
By the above, \(\Sigma^0_1 \)-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).

In the case of monotone sequences \((x_n) \subseteq [0, C]\) one always has the trivial fluctuation bound \(2^k \cdot C\).

This might suggest to conjecture that \(\Sigma^0_1 \)-LEM based proofs always allow for effective fluctuation bounds.
Reasoning with Σ^0_1-LEM

- By the above, Σ^0_1-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).
- In the case of monotone sequences $(x_n) \subset [0, C]$ one always has the trivial fluctuation bound $2^k \cdot C$.
- This might suggest to conjecture that Σ^0_1-LEM based proofs always allow for effective fluctuation bounds.
- **This is false:** any Cauchyness proof of some definable sequence (x_n) in $\mathbf{PA}^\omega[X, d, \ldots]$ can be converted to $\mathbf{HA}^\omega[X, d, \ldots] + \Sigma^0_1$-LEM (use a relativized Friedman A-translation, see also Hayashi 2002).
By the above, Σ^0_1-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).

In the case of monotone sequences $(x_n) \subset [0, C]$ one always has the trivial fluctuation bound $2^k \cdot C$.

This might suggest to conjecture that Σ^0_1-LEM based proofs always allow for effective fluctuation bounds.

This is false: any Cauchyness proof of some definable sequence (x_n) in $\mathit{PA}^\omega[X, d, \ldots]$ can be converted to $\mathit{HA}^\omega[X, d, \ldots] + \Sigma^0_1$-LEM (use a relativized Friedman A-translation, see also Hayashi 2002).

Question: does forbidding nested repeated use of Σ^0_1-LEM suffice to guarantee effective fluctuation bounds?
Reasoning with Σ^0_1-LEM

- By the above, Σ^0_1-LEM in a sense is the weakest amount of classical logic to allow for convergence proofs without computable rate of convergence (Specker sequences).

- In the case of monotone sequences $(x_n) \subset [0, C]$ one always has the trivial fluctuation bound $2^k \cdot C$.

- This might suggest to conjecture that Σ^0_1-LEM based proofs always allow for effective fluctuation bounds.

- **This is false:** any Cauchyness proof of some definable sequence (x_n) in $\text{PA}^\omega[X, d, \ldots]$ can be converted to $\text{HA}^\omega[X, d, \ldots] + \Sigma^0_1$-LEM (use a relativized Friedman A-translation, see also Hayashi 2002).

- **Question:** does forbidding nested repeated use of Σ^0_1-LEM suffice to guarantee effective fluctuation bounds? **Later: No! But...**
Effective \((B, L)\)-learnability

Definition (Safarik/K., 2014)

Consider a \(\Sigma^0_2 \) formula \(\varphi \equiv \exists n \in \mathbb{N} \forall x \in \mathbb{N} \ \varphi_{qf}(x, n, a) \) which is monotone in \(n \), i.e.

\[
\forall n \in \mathbb{N} \ \forall n' \geq n \forall x \in \mathbb{N} \ (\varphi_{qf}(x, n, a) \rightarrow \varphi_{qf}(x, n', a)).
\]
Effective \((B, L)\)-learnability

Definition (Safarik/K., 2014)

Consider a \(\Sigma^0_2\) formula \(\varphi \equiv \exists n \in \mathbb{N} \forall x \in \mathbb{N} \varphi_{qf}(x, n, a)\) which is monotone in \(n\), i.e.

\[
\forall n \in \mathbb{N} \forall n' \geq n \forall x \in \mathbb{N} (\varphi_{qf}(x, n, a) \rightarrow \varphi_{qf}(x, n', a)).
\]

\(\varphi\) is \((B,L)\)-learnable, if there are function(al)s \(B\) and \(L\) s.t.

\[
\exists i \leq B(a) \forall x \varphi_{qf}(x, c_i, a), \text{ where}
\]

\[
\begin{align*}
c_0 &:= 0, \\
c_{i+1} &:= \begin{cases}
L(x, a), & \text{for the } x \text{ with } \neg \varphi_{qf}(x, c_i, a) \wedge \forall y < x \varphi_{qf}(y, c_i, a) \text{ if } \exists \\
c_i, & \text{otherwise.}
\end{cases}
\end{align*}
\]
A hierarchy of quantitative forms of Cauchy statements

1. rate ρ of convergence \Rightarrow

2. bound ($b := \rho$) on the number of fluctuations \Rightarrow

3. $(B, L) -$learnability ($B := b, L(n) := n + 1$) \Rightarrow

4. rate of metastability Ω.

Proposition (Safarik/K., 2014)

The hierarchy is strict in the sense that the existence of computable witnesses for level n not even follows from primitive recursive witnesses for level $n - 1$ ($2 \leq n \leq 4$).

Separation of levels 1 and 2: Specker sequences!

The other separations are more complicated (especially 3 versus 4).

Ulrich Kohlenbach
Intuitionistic reasoning and proof mining
A hierarchy of quantitative forms of Cauchy statements

1. rate ρ of convergence \Rightarrow

Proposition (Safarik/K., 2014)
The hierarchy is strict in the sense that the existence of computable witnesses for level n not even follows from primitive recursive witnesses for level $n-1$ ($2 \leq n \leq 4$).

Separation of levels 1 and 2: Specker sequences!
The other separations are more complicated (especially 3 versus 4).

Ulrich Kohlenbach
Intuitionistic reasoning and proof mining
A hierarchy of quantitative forms of Cauchy statements

1. rate ρ of convergence \Rightarrow
2. bound ($b := \rho$) on the number of fluctuations \Rightarrow

Proposition (Safarik/K., 2014)
The hierarchy is strict in the sense that the existence of computable witnesses for level n not even follows from primitive recursive witnesses for level $n-1$ ($2 \leq n \leq 4$).

Separation of levels 1 and 2: Specker sequences!
The other separations are more complicated (especially 3 versus 4).
A hierarchy of quantitative forms of Cauchy statements

1. rate ρ of convergence \(\Rightarrow\)
2. bound \((b := \rho)\) on the number of fluctuations \(\Rightarrow\)
3. \((B, L)\)-learnability \((B := b, L(n) := n + 1)\) \(\Rightarrow\)
A hierarchy of quantitative forms of Cauchy statements

1. rate ρ of convergence \Rightarrow
2. bound ($b := \rho$) on the number of fluctuations \Rightarrow
3. (B, L)-learnability ($B := b, L(n) := n + 1$) \Rightarrow
4. rate of metastability Ω.

Proposition (Safarik/K., 2014)

The hierarchy is strict in the sense that the existence of computable witnesses for level n not even follows from primitive recursive witnesses for level $n - 1$ ($2 \leq n \leq 4$).
A hierarchy of quantitative forms of Cauchy statements

1. **rate ρ of convergence** \Rightarrow
2. **bound ($b := \rho$) on the number of fluctuations** \Rightarrow
3. **(B, L)-learnability** ($B := b, L(n) := n + 1$) \Rightarrow
4. **rate of metastability** Ω.

Proposition (Safarik/K.,2014)

The **hierarchy is strict** in the sense that the existence of computable witnesses for level n not even follows from primitive recursive witnesses for level $n - 1$ ($2 \leq n \leq 4$).

Separation of levels 1 and 2: Specker sequences!
The other separations are more complicated (especially 3 versus 4).
A metatheorem for \((B, L)\)-bounds

Theorem (Safarik/K., 2014)

Let \(\psi_{qf}, \varphi_{qf}\) be quantifier-free s.t. \(\varphi := \exists n \forall x \psi_{qf}(x, n)\) is monotone.

Suppose \(T := \text{HA}^\omega [X, d, \ldots] + \text{AC} + \text{M}^\omega + \text{IP}^\omega\). proves a sentence

\[
\forall a \exists k \in \mathbb{N} \left\{ \left(\forall m \leq k \left(\exists u \in \mathbb{N} \psi_{qf}(u, m, a) \lor \forall v \in \mathbb{N} \neg \psi_{qf}(v, m, a) \right) \right) \rightarrow \exists n \in \mathbb{N} \forall x \in \mathbb{N} \varphi_{qf}(x, n, a) \right\}.
\]

Then one can extract by monotone functional interpretation (self-majorizing) primitive recursive (Gödel) functionals \(B^*, L^*\) s.t. \(\varphi\) is \((B^*, L^*)\)-learnable uniformly in majorants \(a^*\) for \(a\).
The metatheorem is optimal in the sense that the restrictions on the proof do not suffice for effective fluctuation bounds (the separating example for 2./3. formalizes in this context).
The metatheorem is optimal in the sense that the restrictions on the proof **do not suffice for effective fluctuation bounds** (the separating example for 2./3. formalizes in this context).

The metatheorem **explains the special form** \((f_2 \circ \tilde{g} \circ f_1)^b(0)\) **of numerous metastability bounds** extracted.
The metatheorem is optimal in the sense that the restrictions on the proof do not suffice for effective fluctuation bounds (the separating example for 2./3. formalizes in this context).

The metatheorem explains the special form \((f_2 \circ \tilde{g} \circ f_1)^b(0)\) of numerous metastability bounds extracted.

If a certain gap condition is satisfied by \((B^*, L^*)\), then one gets fluctuation bounds.
Thank you Professor Troelstra!