Second Philosophy, Pluralism and the Multiverse

Fenner Tanswell

September 21, 2012
Prologue

- Penelope Maddy’s “Defending the Axioms” (2011).
Prologue

- Penelope Maddy’s “Defending the Axioms” (2011).
- Change from her old views from “Realism in Mathematics” which were hardcore realist.
Methodological naturalism: seeing philosophy as essentially scientific.
Methodological naturalism: seeing philosophy as essentially scientific.

Practice first.
“Imagine a simple inquirer who sets out to discover what the world is like, the range of what there is and its various properties and behaviors. She begins with her ordinary perceptual beliefs, gradually develops more sophisticated methods of observation and experimentation, of theory construction and testing, and so on; she is idealized to the extent that she is equally at home in all the various empirical investigations, from physics, chemistry, and astronomy to botany, psychology, and anthropology.” Maddy, p. 38.
“She believes that ordinary physical objects are made up of atoms, that plants live and grow by photosynthesis, that humans use language to describe the world to one another, that social groups tend to behave in certain ways, and so on. She also believes that she and her fellow inquirers are engaged in a highly fallible, but partly and potentially successful exploration of the world, and like anything else, she looks into the matter of how and why the methods she and others use in their inquiries work when they do and don’t work when they don’t; in these ways, she gradually improves her methods as she goes.” Maddy, p. 39.
Four Examples of Set Theory in Practice

- Firstly, Cantor’s introduction of sets to make use of infinite point sets in considering convergence of trigonometric series, where sets are introduced for a specific and effective tool for solving a mathematical problem.
Four Examples of Set Theory in Practice

- Firstly, Cantor’s introduction of sets to make use of infinite point sets in considering convergence of trigonometric series, where sets are introduced for a specific and effective tool for solving a mathematical problem.

- Dedekind’s introduction of sets gave them as new objects to serve a wide array of mathematical goals such as rigorous definitions of real number and continuity and a foundation of arithmetic.
Thirdly, Maddy looks at Zermelo’s defence of the axiom of choice based on it being fruitful and productive, where choice is recognised as being necessary for set theory to solve scientific problems.
Thirdly, Maddy looks at Zermelo's defence of the axiom of choice based on it being fruitful and productive, where choice is recognised as being necessary for set theory to solve scientific problems.

Finally, Maddy turns to the contemporary case of determinacy, in particular $\text{AD}^L(\mathbb{R})$ (asserting the determinacy of all sets of reals in the smallest inner model containing all the real numbers) which has fallen into favour because it is fruitful, is implied by large cardinal axioms and implied by almost all sufficiently strong mathematical theories.
“This study of actual set-theoretic methods also confirms the Second Philosopher’s initial impression that this is an inquiry governed by norms distinct from familiar observation, theory-formation and testing: for example, she isn’t accustomed to embracing new entities to increase her expressive powers (as in Cantor) or to encourage definitions of a certain desirable kind (as in Dedekind), or to rejecting a theory because it produces less interesting consequences (as with the alternative to determinacy’s theory of projective sets that results from $V = L$).” Maddy, p. 53.
Take the chat at face-value and go with the simplest hypothesis.
Thin Realism

- Take the chat at face-value and go with the simplest hypothesis.
- Sets exist and facts about them are truths.
Take the chat at face-value and go with the simplest hypothesis.

Sets exist and facts about them are truths.

“Under the circumstances, the Second Philosopher is naturally inclined to entertain the simplest hypothesis that accounts for the data: sets just are the sort of thing set theory describes; this is all there is to them; for questions about sets, set theory is the only relevant authority.” Maddy, p. 61.
Thin Realism

- Take the chat at face-value and go with the simplest hypothesis.
- Sets exist and facts about them are truths.

“Under the circumstances, the Second Philosopher is naturally inclined to entertain the simplest hypothesis that accounts for the data: sets just are the sort of thing set theory describes; this is all there is to them; for questions about sets, set theory is the only relevant authority.” Maddy, p. 61.

- Compare to Robust Realism.
Hold on a second! We know about truth and existence.
Hold on a second! We know about truth and existence.

“Set theory is the activity of developing a theory of sets that will effectively serve a concrete and ever-evolving range of mathematical purposes. Such a Second Philosopher would see no reason to think that sets exist or that set-theoretic claims are true—her well-developed methods of confirming existence and truth aren’t even in play here—but she does regard set theory, and pure mathematics with it, as a spectacularly successful enterprise, unlike any other.” Maddy, p. 89.
The Continuum Hypothesis

CH: $2^\aleph_0 = \aleph_1$.
The Continuum Hypothesis

CH: $2^\aleph_0 = \aleph_1$.

- Robust Realist: True or false thanks to the abstract objects.
The Continuum Hypothesis

CH: $2^{\aleph_0} = \aleph_1$.

- Robust Realist: True or false thanks to the abstract objects.
- Second Philosopher: “Her analysis is simpler: ‘CH or not-CH’ is a theorem, established by her best methods as a fact about V; therefore CH is either true or false there.” Maddy, p. 61.
“...if the new methods seem a bit odd, but still of-a-piece with the old, then she concludes that she’s made a surprising discovery, that the world includes abstracta as well as concreta. If, on the other hand, she regards the new methods and would-be objects as sharply discontinuous with what came before, she has no grounds for thinking pure mathematics is true, so she concludes that this new practice—valuable as it is—isn’t in the business of developing a body of truths.” Maddy, pp. 101-102.
She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.
Objective Reality

- She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.
- Mathematical depth, here, is used to refer to properties of mathematics like effectiveness, fruitfulness, interest, importance etc.
Objective Reality

- She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.
- Mathematical depth, here, is used to refer to properties of mathematics like effectiveness, fruitfulness, interest, importance etc.
- e.g. not restricting group theory to commutative groups;
She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.

Mathematical depth, here, is used to refer to properties of mathematics like effectiveness, fruitfulness, interest, importance etc.

e.g. not restricting group theory to commutative groups; adopting the axiom of choice and large cardinals;
She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.

Mathematical depth, here, is used to refer to properties of mathematics like effectiveness, fruitfulness, interest, importance etc.

e.g. not restricting group theory to commutative groups; adopting the axiom of choice and large cardinals; determinacy for projective sets;
Objective Reality

- She declares that the objective reality underlying both positions is the “topography of mathematical depth” Maddy, p. 80.
- Mathematical depth, here, is used to refer to properties of mathematics like effectiveness, fruitfulness, interest, importance etc.
- e.g. not restricting group theory to commutative groups; adopting the axiom of choice and large cardinals; determinacy for projective sets; and allowing zero, negative numbers and complex numbers!
So the Thin Realist may assert that the fruitful sets exist and the resulting set theory is a body of truths, while the Arealist may think that mathematics does not even enter the realms of truth and existence, but both are rooted in Second Philosophy, thus prioritise practice over philosophy, and the methods of set-theoretic practice ultimately follow the direction of mathematical depth, fruitfulness and effectiveness.
Why so Classical?

- Maddy uses Second Philosophy to justify Thin Realism and Arealism but both are needlessly classical.
Maddy uses Second Philosophy to justify Thin Realism and Arealism but both are needlessly classical.

Why not go Intuitionistic on it? e.g. IZF, HA, smooth infinitesimal analysis
Maddy uses Second Philosophy to justify Thin Realism and Arealism but both are needlessly classical.

Why not go Intuitionistic on it? e.g. IZF, HA, smooth infinitesimal analysis Or paraconsistent??? e.g. rescue naïve comprehension.
Why so Classical?

- Maddy uses Second Philosophy to justify Thin Realism and Arealism but both are needlessly classical.
- Why not go Intuitionistic on it? e.g. IZF, HA, smooth infinitesimal analysis Or paraconsistent??? e.g. rescue naïve comprehension.
- “A plurality or multiplicity of approaches to central questions of truth and proof is simply an observable fact.” Hellman & Bell, p. 65.
“...that constructive mathematics is of value even to those who reject the philosophical assumptions of its founders. It provides a clear and precise insight into difficulties that numerical analysts and others who are interested in obtaining quantitative information about solutions of equations face on a regular basis.” Davies, p. 253.
“...that constructive mathematics is of value even to those who reject the philosophical assumptions of its founders. It provides a clear and precise insight into difficulties that numerical analysts and others who are interested in obtaining quantitative information about solutions of equations face on a regular basis.” Davies, p. 253.

“I interpolate that one does not have to be an intuitionist or a dialetheist to take intuitionist or paraconsistent mathematics to be legitimate. It suffices that these are interesting mathematical enterprises.” Priest, p. 2.
Escape Attempts

- But set theorists ARE working with classical logic!
Escape Attempts

- But set theorists ARE working with classical logic! DENIED.
Escape Attempts

- But set theorists ARE working with classical logic! DENIED.
- But classical logic is so lovely!
Escape Attempts

- But set theorists ARE working with classical logic! DENIED.
- But classical logic is so lovely! DENIED.
Escape Attempts

- But set theorists ARE working with classical logic! DENIED.
- But classical logic is so lovely! DENIED.
- Different logics, but talking about different things.
Masters of the Multiverse

“The universe view is the commonly held philosophical position that there is a unique absolute background concept of set, instantiated in the corresponding absolute set-theoretic universe, the cumulative universe of all sets...” Hamkins, p. 1.
“The universe view is the commonly held philosophical position that there is a unique absolute background concept of set, instantiated in the corresponding absolute set-theoretic universe, the cumulative universe of all sets...” Hamkins, p. 1.

Hamkins proposes an opposing view, the multiverse view, which holds that there isn’t one concept of set but many distinct concepts of sets, each with a corresponding set-theoretic universe in which it is instantiated.
“The universe view is the commonly held philosophical position that there is a unique absolute background concept of set, instantiated in the corresponding absolute set-theoretic universe, the cumulative universe of all sets...” Hamkins, p. 1.

Hamkins proposes an opposing view, the multiverse view, which holds that there isn’t one concept of set but many distinct concepts of sets, each with a corresponding set-theoretic universe in which it is instantiated.

“Our most powerful set-theoretic tools, such as forcing, ultrapowers and canonical inner models, are most naturally and directly understood as methods of constructing alternative set-theoretic universes.” Hamkins, p. 3.
Thanks