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Introduction

Graphs

A graph is a pair G = (V,E), where V is a set and E ✓ V 2

✓
V

2

◆
[today]

I Elegant and intuitive models of relations
I Many (!) applications in Mathematics, Logic, Computer Science,

Physical/Biological/Social systems, ...
I In 2012, both the Nobel Prize in Economics (A. Roth and L. Shapley)

and the Abel Prize (E. Szemerédi) were given for work in Graph Theory!

I Nice visual representations:
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Introduction

Example: Schröder-Bernstein, Schmröder-Bernstein...

Theorem (Schröder-Bernstein).

If 9f : A ! B and 9g : B ! A, both injections, then 9h : A ! B bijection.

Proof (G. Kőnig).

Define a graph G = (A ]B,E) by putting {a, b} 2 E i↵ f(a) = b or g(b) = a
(hence each vertex has degree  2).
Each of G is

a single edge, a path which is in one direction, a path which is in
two directions, or a cycle of length.
In any case you can choose edges so that each vertex is contained in exactly one
chosen edge (this is called a perfect matching). ⌅
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Theorem (Schröder-Bernstein).

If 9f : A ! B and 9g : B ! A, both injections, then 9h : A ! B bijection.

Proof (G. Kőnig).
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Define a graph G = (A ]B,E) by putting {a, b} 2 E i↵ f(a) = b or g(b) = a
(hence each vertex has degree  2).
Each component of G is a single edge, a path which is infinite in one direction, a
path which is infinite in two directions, or a cycle of even length.

In any case you can choose edges so that each vertex is contained in exactly one
chosen edge (this is called a perfect matching). ⌅



Introduction
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Introduction

Classes of graphs

I Depending on the application, sometimes we can make sure the graphs we
use have some properties.

I For instance, in our last example they contained no odd cycles.

I Sometimes these properties can help solve problems we are interested in.

I Underlying our last proof: “If the maximum degree of G is at most 2 and
no component of G has odd cardinality, then G has a perfect matching”.

I Hence, a lot of focus is placed on studying specific classes of graphs.
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Introduction

It’s all relative

In Graph Theory, a few preorders are quite relevant (and will play a big role today).

When H can be obtained from G by...

I removing vertices (and all of their edges) and/or removing edges,
we say H is a subgraph of G, denoted H ✓ G;

I removing vertices (and all of their edges),
we say H is an induced subgraph of G, denoted H  G;

I removing and/or contracting edges,

we say H is a minor of G, denoted H 4 G.

(These are partial orders when the graphs are finite, but not in general)
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Introduction

The main character enters the scene

One of the more common ways of characterizing (or defining) a class of graphs is
using a forbidden set:

I A set F is a forbidden set (FS) for a class C when, for any graph G, we have

G 2 C
()

G does not contain any H 2 F ,

where “containment” is according to the relation we are interested in.

I Intuitively, when F is nice in some way, this can say a lot about C .

I For instance, in the example we saw, the fact that G contained no odd
cycles was quite crucial.
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But when can you do this?

However, not every class of graphs has a FS.

I In fact, for any set X in any preordered set hP, Ri, we have that

X has a FS
()

X is downwards-closed w.r.t. R,

but in the general case we can only prove that X is a FS for X.

With graphs, in a sense we can always do better, with nicer FS.
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Making sense

One notion of “niceness” could be a type of minimality:

I F is a minimal FS when anything strictly below elements of F is not
forbidden.

I These are the FSs used in finite Graph Theory; indeed
F = {G 62 C : G� v 2 C for all v}, but determining F is ad hoc.

I Every minimal FS is an antichain.
In posets, the converse holds as well.

I They are unique whenever they exist.

But niceness can appear in other shapes, too (and sometimes it has to).

We will focus on 3 such shapes — forbidden sets which are...

I Minimal;

I Antichains;

I Finite.
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Minimal

An easy su�cient condition

Theorem.

If R is well-founded, then every set closed under R has a minimal FS.

So every class of finite graphs that is closed under , ✓, or 4, has a minimal FS.

But not so for infinite graphs; the class of graphs with finitely many edges is
closed under , but cannot have a minimal FS.
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Minimal

Characterization

It is easy to see that well-foundedness of the preordered set is not necessary.

In fact, not even well-foundedness of hX,R \X
2i is necessary in order for X to

have a minimal FS.

But it is not far o↵:

Theorem.

X has a minimal FS
()

in hX,R \X
2i, every closed set has a minimal element.

So here is a problem with graphs with infinitely many edges:
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Antichain

Finitely many edges, revisited

Theorem (attributed to J. Kratochv́ıl).

The class of graphs with finitely many edges has a forbidden –antichain
composed of the countable star, the countable matching, and the countable clique.

But is this true for all classes of infinite graphs closed under induced subgraphs?
What about for subgraphs?

As we will see, for minors a lot more holds.
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Antichain

Quotienting away your troubles

Given a preordered set hP, Ri, define an equivalence relation ⇠ on P by

x ⇠ y :() xRy and yRx.

Notation:

I [x] : the equivalence class of x 2 P;

I [X] := {[x] : x 2 X}, for X ✓ P;

I [R] : the partial order given by [x][R][y] i↵ xRy.



Antichain

Characterization

Theorem.

X has a forbidden antichain in hP, Ri
()

[X] has a minimal FS in h[P], [R]i

Proof.

(=)) If F is a forbidden antichain for X, then [F ] is a forbidden antichain for [X].
But h[P], [R]i is a poset, so [F ] is a minimal FS.

((=) If [F ] is a minimal FS for [X], then let F 0 be composed of exactly one
element from each [x] 2 [F ].
Then F 0 is a forbidden antichain for X. ⌅

In the proof of ((=) we made a clear use of AC.

Indeed, this use was essential...
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Alwayz into somethin’...

Theorem.

((=) of the last Theorem is equivalent to AC.

Proof.

Let F be a family of disjoint, non-empty sets.

Define P :=
�S

F
�
[ F , and let R be the preorder on P given by

xRy :() x = y, or y 2 x 2 F , or 9X 2 F such that x, y 2 X.

Now, [
S
F ] ⇡ {[X] : X 2 F} is a minimal FS for [F ] ⇡ F in h[P], [R]i.

Thus F has a forbidden antichain in hP, Ri, i.e., F has a choice set. ⌅
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Finite

Graph Minor Theorem

The relation of graph minor came into the spotlight with (K. Wagner’s version of)
K. Kuratowski’s theorem:

Theorem (K. Kuratowski 1930, K. Wagner 1937).

A graph is planar i↵ it does not contain K5 or K3,3 as a minor.

I A class with a finite FS has many good properties (specially for algorithms).

(Note that the class of planar graphs is closed under minors.)

One of the most celebrated recent developments in Graph Theory is:

Theorem (Graph Minor Theorem, N. Robertson and P. Seymour 2004).

Any class of finite graphs closed under minors has a finite FS.

I Proof published in a series of 20 papers spanning 21 years!
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Finite

Easy su�cient condition

A preordered set hP, Ri is well-quasi-ordered when it is well-founded and contains
no infinite antichains.

Theorem.

If hP, Ri is well-quasi-ordered, then every set closed under R has a finite FS.

I Di�cult part of the Graph Minor Theorem: no infinite antichains.

But it is also easy to see that well-quasi-ordered-ness is not necessary.



Finite

Other cardinalities?

Using some heavier-duty Set Theory and Topology, counterexamples to almost all
infinite versions of the Graph Minor Theorem have been found:

Theorem (R. Thomas 1986, P. Komjáth 1995).

For every  > @0, there exist 2 graphs of size  which form a 4-antichain.

I Still an open question for  = @0.



Finite

What about  and ✓?

Changing 4 to  or ✓, the “Graph Minor Theorem” is false for all cardinalities.

But given that finite FSs are so nice, we would still like to characterize which sets
of graphs closed under those relations have finite FSs.

No such characterization is known yet.

However, if one ever appears, it won’t be pretty...



Finite

Sketchy

Theorem (Informal statement).

It is undecidable whether a computable class of finite graphs closed under  has a
finite FS.

Informal sketch of proof.

Fact. It is undecidable whether a given decidable set X ✓ N is finite.

Now let F := {Cn+3 : n 2 X}, where Ck is the cycle of length k.

The class of finite graphs C defined by forbidding F is computable and closed
under , and has a finite FS i↵ F is finite.

But F is finite i↵ X is finite. ⌅

I Same theorem and proof hold for ✓.
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A couple of questions

There’s work to be done

I What if the change V 2 �!
�V
2

�
had never happened?

I Considering all the possible combinations of

(minimal FS, antichain FS, finite FS)
⇥

(finite graphs, infinite graphs)
⇥

(✓, , 4),

the only one we haven’t said anything about is whether any set of (possibly)
infinite graphs closed under subgraphs has a forbidden antichain.

I Some classes of finite graphs have NP-complete recognition, i.e., if you can
find a polinomial-time algorithm to decide whether a graph is in the class,
then P=NP (and you get a million bucks).

So these classes seem to have some “intrinsic complexity”.

Is there something interesting that can be said about their FSs?
(unfortunately, it looks like the answer is “no”)
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A couple of questions

Thanks!
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