
The complexity of mathematical

practice

• Proofs and Refutations: dealing with proofs

is a complex matter

• Is Euler’s theorem an exemplar or not?

• What to do when there is no proof?

• Why prove one case of a universal

statement? (cfr. Fermat)

• What was Hilbert doing in 1900 in Paris?



• Sketch of a theory of mathematical practice:

– macroscopic level

– mesoscopic level

– microscopic level

• Philosophical impact of such a theory

– explanatory value of proofs

– role of aesthetics in quality of proofs

– what is an “interesting” problem? 



The macroscopic level

• Discussion still dominated by the question

of revolutions in mathematics

• What are they, if anything:

– ontological?

– epistemological?

– semiotical?

• Philosophical importance obvious



What does seem reasonable is that large-scale

periods can be identified (Koetsier):

• The Pythagorean “tradition”

• The Euclidean “tradition”

• The “Age of Rigour”

• The foundationalist period

• …

Fundamental problem: how to characterize

such a period?
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The mesoscopic level

• Level of “research programmes”

• Examples:

(a) The Erlanger Program (Felix Klein)

‘In geometry, Felix Klein proposed that the many 
varieties of space provided by non-Euclidean and 
other geometries could be classified and hence 
organized in terms of their groups of symmetries -
the full linear group, the orthogonal group, the 
projective group, and others.’ (MacLane, 1986: 
407)



(b) The Langlands Program

• Infinite dimensional representations of Lie 
groups as a tool to solve problems in number 
theory

‘... Langlands’ program is a synthesis of several 
important themes in classical number theory. It is also 
- and more significantly - a program for future 
research. This program emerged around 1967 in the 
form of a series of conjectures, and it has 
subsequently influenced recent research in number 
theory in much the same way the conjectures of A. 
Weil shapes the course of algebraic geometry since 
1948.’ (Gelbart, 1984: 178)



(c) Hilbert’s Program: no comment

• Interesting detail: in the notebooks (notebook Cod. 

ms. Hilbert 600:3) a 24th problem is mentioned:

• Find algorithms that, given a proof of a theorem, 

reduce the proof to its shortest and/or simplest

version

• Conjecture: failure to formulate the problem in a 

formally satisfactory way

(Larry WOS & Ruediger THIELE, “Hilbert’s New Problem”, 

Bulletin of the Section of Logic, vol. 30, nr. 3, 2001, pp. 165-

175.)



(d) The classification of finite simple groups:
‘The state of the original proof is such that if 
everyone who worked on it should vanish, it 
would be very hard for future generations of 
mathematicians to reconstruct the proof out of the 
literature.’ (Cipra, 1996: 89)

• 3 aims:
(i) To make uniform the different proof methods 

that have been used over the thirty year period

(ii) To reduce the size of the proof to something 
like 5.000 pages, perhaps even shorter and to 
publish the proof as a single proof 

(iii) To eliminate all errors present



(e) Category Theory Program (?)

‘The situation bears some resemblance to that in 
geometry after the discovery of consistency proofs 
for non-Euclidean geometry showed that there was 
not one geometry, but many. This meant that 
geometries could be formulated with many 
different systems of axioms, some of which were 
relevant to higher analysis and some to physics. ... 
Similarly, the initial idea of a collection leads to 
substantially different versions of set theory, some 
of which ... have relevance to other parts of 
Mathematics, though not yet (?) to Physics.’
(MacLane, 1986: 385-386)



Elements that characterize a 

research program

• Background theory/theories

• Conjectures

• Estimates of likelihood to find answers

(positive or negative)

• (Partial) agreement on methods to use

• “Paradigmatic” examples



The daily life of a mathematician

• Proof methods

– The reductio proof

– Proof by infinite descent

– Proof by cases

– Mathematical induction

– Career induction

– (Partial) computer proof

– “Experimental” proof



• Note: different from logician’s idea of proof



• Heuristic methods related to proofs:

Most famous example: Σ 1/n² = π²/6 

Euler first reasons about polynomials of finite even degree 
2n, of the following form:

bo - b1x² + b2x
4 - ... + (-1)nbnx

2n = 0 

with roots: r1, -r1, r2, -r2, ..., rn, -rn.

He shows that the following holds: 

b1 = bo(1/r1² + 1/r2² + ...  + 1/rn²) (*)

Now take the polynomial of infinite degree:

1 - x2/3! + x4/5! - x6/7! + ... = 0,

with roots:  π, -π, 2π, -2π, 3π, -3π, .... ,

(as it is the series expansion of sin(x)/x), will satisfy (*), thus

1/3! = 1/π² + 1/4π² + 1/9π² + ...,

or:1 + 1/4 + 1/9 + ... = π²/6. QED (?)



• Perhaps less known:

Σ 1/(2n)² = π²/24, i.e., the sum of the reciprocals  

of all even squares,

Σ 1/(2n+1)² = π²/8, i.e., the sum of the reciprocals  

of all odd squares,

Σ 1/n4 = π4/90, i.e., the sum of the reciprocals of 

all fourth powers.



• A fine illustration of the mathematicians’

idea of what a proof should look like is the 

Apéry case

Z(s) = Σ
n

1/ns

for n = 2k, Z(2k) = (-1)k-1(2π)2kB
2k

/(2.(2k)!), 

where B
2k

is the 2k-th Bernoulli number, 

i.e., the 2k-th coefficient in the equation:

x/(ex-1)= Σ B
i
xi/k!



Are Z(3), Z(5), ..., rational or irrational? In June 
1978, Roger Apéry presented a proof of the 
irrationality of Z(3).

What was “wrong” with Apéry’s formally correct proof? 

Mathematicians gave the following comments:

(i) The proof was ‘mysterious’ and consisted of a series 
of ‘miracles’. 

n3un = (34n3 - 51n2 + 27n - 5)un-1 - (n-1)3un-2.

Apéry claimed the following: if one starts with uo = 1 and 
u1 = 5, then all un are integers!

(ii) The proof offers no clues at all for other values of Z(s) 
for s = 2n+1.

(iii) Apéry did not use any ‘new’ proof methods.



Short aside:
• Source of mathematical beauty can be

found here:

Adaptation of Birkhoff’s formula

M = O/C

Where O = importance of the theorem

C = complexity of the proof

Thus: a simple proof for an important 
statement is the best one can have



• Finding the “right” concepts:

Nice example: Bernhard Riemann (1859):

“Uber die Anzahl der Primzahlen unter einer

gegebenen Grösse” (“On the Number of 

Prime Numbers less than a Given Quantity”)

From
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he defines:

And then he defines:

And, in addition, a new function is defined:
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• In short: the paper is almost entirely about
generating new concepts (and the famous
hypothesis is really a side remark)

“One now finds indeed approximately this number
of real roots within these limits, and it is very
probable that all roots are real. Certainly one
would wish for a stricter proof here; I have 
meanwhile temporarily put aside the search for
this after some fleeting futile attempts, as it
appears unnecessary for the next objective of my
investigation.”



• “Experimental” mathematics to gain insights or

to find patterns

• Example: Collatz Conjecture

Given a natural number n, repeat the following operation T:

either n/2 if n is even

or (3n+1)/2 if n is odd

Take 7 – 11 – 17 – 26 – 13 – 20 – 10 – 5 – 8 – 4 – 2 – 1

Conjecture: for every n, 1 will occur in the sequence



Ranging from 1 

to 9999, this

graph shows 

the “total

stopping time”, 

i.e., the length

of the sequence

from beginning

to the first time 

1 is 

encountered



• This list is not exhaustive

– Use of diagrams in proofs

– The general issue of visualisation

– The matter of style

– Use of metamathematical considerations (what
if theproblem is undecidable?)

On the microscopical level the 
mathematician’s activity is a (rather) 
complex mixture of different practices, 
just one of which is theorem proving



The curious nature of the 

mathematical universe

• Why only partial success is to be expected

• Example 1:

Let π(n) = number of prime numbers ≤ n. 

Let Li(n) be the function:

where ln(x) is the natural logarithm of x.

2
(1/ ln( )

n

x dx∫



For finite values for n, one notes, by direct 

calculation, that, although the difference is small, 

Li(n) > π(n)

Calculations up to 109 showed that this is the case. It 

seemed more than reasonable to conclude that this 

is always the case. 

Littlewood has shown that the difference 

Li(n) - π(n) changes sign infinitely many times! 

The first estimate for what value of n this is 

supposed to happen, was given by Skewes:

10^(10^(10^34)))



• Example 2:

π = [(1/105)[Σ
n

e-n²/10^10]]², 

where n goes from -∞ to ∞

This formula gives the correct value for π up 

to 42 billion digits and only then do things 

go wrong!



• In addition: the road to the universe is just as 

tricky: proofs from the unexpected

Example:

Consider a real function f: R → R. 

A real function f is symmetric if f(x) = f(-x),

anti-symmetric if f(x) = -f(-x) 

Show that any real function is the sum of a 

symmetric and anti-symmetric function.



Probably one would tend to ‘subtract’ from f a 
symmetric function g and then try to show 
that f - g is an anti-symmetric function 
under certain conditions. Whereas the 
answer is just this:

f(x) = [f(x) + f(-x)]/2 + [f(x) - f(-x)]/2.

Obviously f(x) + f(-x) = f(-x) + f(x) and f(x) -
f(-x) = -[f(-x) - f(x)] QED



To conclude:

• Philosophers of mathematics cannot restrict
themselves to mere foundational problems, 
e.g., what are numbers, …

• “Stable” notions (proof, axiom, …) are to
be seen rather as “flexible” notions

• The additional elements have philosophical
importance: concept generation, 
justification, explanation, style, beauty


