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Preface

SEMDIAL, the Workshop on the Semantics and Pragmatics of Dialogue is taking place in Aix-en-
Provence at the Laboratoire Parole et Langage (LPL) for its 22nd occurence and become AixDIAL
for this occasion. LPL being an interdisciplinary lab is extremely keen in receiving such a workshop
combining experimental, corpus, computational and formal approaches of dialogue.
We received a total of 28 full paper submissions, 17 of which were accepted after a peer-review
process, during which each submission was reviewed by a panel of three experts. We are extremely
grateful to the Programme Committee members for their very detailed and helpful reviews. The
poster session hosts 18 additional submissions that came in response to a call for late-breaking
posters and demos. All accepted full papers and poster abstracts are included in this volume. The
AixDIAL programme features three keynote presentations by Judith Holler, Olivier Pietquin and
Michael Wagner. The later is a joint keynote with our joint event ’Prosody and Meaning in Aix’.
We thank them for participating in SemDial and are honoured to have them at the workshop.
AixDIAL has received generous financial support from the Institute Language Communication and
the Brain) (http://www.blri.fr/), Laboratoire Parole et Langage (http://www.lpl-aix.fr/), Labora-
toire d’Informatique et des Systèmes (LIS) (http://www.lis-lab.fr/) and Institut Universitaire de
France (http://www.iufrance.fr/). We are very grateful for this sponsorship.
Last but not least we would like to thank our local team from Laboratoire Parole Language headed
by Stéphanie Desous, and everyone else who helped with all aspects of the organisation, including
our Master and PhD students helpers.

Laurent Prévot, Magalie Ochs and Benoît Favre
November 2018

iii

http://www.blri.fr/
http://www.lpl-aix.fr/
http://www.lis-lab.fr/
http://www.iufrance.fr/


Programme Committee

Philippe Blache CNRS & Aix Marseille Université (LPL)
Harry Bunt Tilburg University
Heather Burnett CNRS-Université de Paris 7
Sara Bögels Max Planck Institute for Psycholinguistics
Mathilde Dargnat Nancy University and ATILF-CNRS
Paul Dekker ILLC/University of Amsterdam
Emilie Destruel The University of Iowa
Benoît Favre Aix Marseille Université (LIS)
Raquel Fernández University of Amsterdam
James German Aix Marseille Université (LPL)
Jonathan Ginzburg Université Paris-Diderot (Paris 7)
Eleni Gregoromichelaki King’s College London
Julian Hough Bielefeld University
Christine Howes University of Gothenburg
Julie Hunter Universitat Pompeu Fabra and Université Paul Sabatier
Amy Isard The University of Edinburgh
Andrew Kehler University of California San Diego
Simon Keizer Heriot-Watt University
Ruth Kempson Kings College London
Staffan Larsson University of Gothenburg
Alex Lascarides The University of Edinburgh
Pierre Lison Norwegian Computing Center
Ochs Magalie Aix Marseille Université (LIS)
Elin Mc Ready Dept. of English, Aoyama Gakuin University
Gregory Mills University of Groningen, Netherlands
Laurent Prévot Aix Marseille Université (LPL)
Matthew Purver Queen Mary University of London
David Schlangen Bielefeld University
Gabriel Skantze KTH Royal Institute of Technology
Matthew Stone Rutgers University
Ye Tian Amazon Alexa
Shu-Chuan Tseng Institute of Linguistics, Academia Sinica, Taiwan
Grégoire Winterstein Université du Québec à Montréal

iv



Table of Contents

Invited Talks
Multimodal pragmatics: language and the body in interaction . . . . . . . . . . . . . . . . . 2
Judith Holler
Guesswhat?! - Learning strategies for visually grounded dialogue . . . . . . . . . . . . . . . 3
Olivier Pietquin
Toward a Bestiary of the Intonational Tunes of English . . . . . . . . . . . . . . . . . . . . . 4
Michael Wagner

Full Papers
Learning to describe multimodally from parallel unimodal data? A pilot study on verbal and

sketched object descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Ting Han, Sina Zariess, Kazunori Komatani and David Schlangen
Laughter Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Chiara Mazzocconi, Vladislav Maraev and Jonathan Ginzburg
Identifying, Classifying and Resolving Non-Sentential Utterances in Customer Support Systems 26
Poulami Debnath, Shubhashis Sengupta and Harshawardhan Madhukar Wabgaonkar
Evaluating dialogue breakdown detection in chat-oriented dialogue systems . . . . . . . . . . 35
Yuiko Tsunomori, Ryuichiro Higashinaka, Tetsuro Takahashi and Michimasa Inaba
Multi-Task Learning for Domain-General Spoken Disfluency Detection in Dialogue Systems . 45
Igor Shalyminov, Arash Eshghi and Oliver Lemon
Layered Semantic Graphs for Dialogue Management . . . . . . . . . . . . . . . . . . . . . . 54
Jiaying Shen, Hendrik Harkema, Richard Crouch, Peng Yu and Ciaran OReilly
Evaluating Subjective Feedback for Internet of Things Dialogues . . . . . . . . . . . . . . . . 64
Carla Gordon, Kallirroi Georgila, Hyungtak Choi, Jill Boberg and David Traum
Towards KoS/TTR-based proof-theoretic dialogue management . . . . . . . . . . . . . . . . 73
Vladislav Maraev, Jonathan Ginzburg, Staffan Larsson, Ye Tian and Jean-Philippe Bernardy
Multimodal Visual and Simulated Muscle Activations for Grounded Semantics of Hand-

related Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Daniele Moro and Casey Kennington
Questions as Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Chenjie Yuan
Communicating an understanding of intention: Speech act conditionals and modified numer-

als in a Q/A system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Christoph Hesse, Maryam Mohammadi, Maurice Langner, Judith Fischer, Anton Benz and Ralf
Klabunde
Reason questions with comment are expressions of an attributional search . . . . . . . . . . 112
Damien Fleury and Lucia Tovena

v



Exploring Semantic Incrementality with Dynamic Syntax and Vector Space Semantics . . . . 122
Mehrnoosh Sadrzadeh, Matthew Purver, Julian Hough and Ruth Kempson
A Multi-Task Approach to Incremental Dialogue State Tracking . . . . . . . . . . . . . . . . 132
Anh Duong Trinh, Robert J Ross and John D Kelleher
Learning to Buy Time: A Data-Driven Model For Avoiding Silence While Task-Related

Information Cannot Yet Be Presented . . . . . . . . . . . . . . . . . . . . . . . . . 146
Soledad Lopez Gambino, Sina Zarriess, Casey Kennington and David Schlangen
Conversational types: a topological perspective . . . . . . . . . . . . . . . . . . . . . . . . . 156
Kwong-Cheong Wong and Jonathan Ginzburg
Towards a Categorization of Natural Language Variability in Data for Spoken Dialog Systems167
Patricia Kittel, Wolfgang Maier, Maria Schmidt and Wolfgang Minker

Poster and Demo Papers
Coffee or tea? Yes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Maria Boritchev and Maxime Amblard
Linking topoi in argumentative dialogue to personae. . . . . . . . . . . . . . . . . . . . . . . 181
Ellen Breitholtz and Robin Cooper
Sentence meaning as argumentative dialogues. . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Davide Catta, Alda Mari and Christian Retoré
Disfluencies and Teaching Strategies in Social Interactions Between a Pedagogical Agent and

a Student: Background and Challenges. . . . . . . . . . . . . . . . . . . . . . . . . 188
Tanvi Dinkar, Ioana Vasilescu, Catherine Pelachaud and Chloé Clavel
Categorisation of conversational games in free dialogue over spatial scenes. . . . . . . . . . . 192
Simon Dobnik and Axel Storckenfeldt
An exploratory study on how the use of general lexical and linguistics information helps to

predict the dynamic of speech rate in dyadic conversations. . . . . . . . . . . . . . . 195
Simone Fuscone, Laurent Prévot and Benoit Favre
Real-time testing of non-verbal interaction: An experimental method and platform . . . . . 200
Tom Gurion, Patrick G.T. Healey and Julian Hough
Building Common Ground in Visual Dialogue: The PhotoBook Task and Dataset . . . . . . 204
Janosch Haber, Elia Bruni and Raquel Fernández
Self-Repetition in Dialogue and Monologue . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Patrick Healey and Matthew Purver
Concern-Alignment in Joint Inquiry for Consensus-Building . . . . . . . . . . . . . . . . . . 209
Yasuhiro Katagiri, Katsuya Takanashi, Masato Ishizaki, Mika Enomoto and Yasuharu Den
Processing open text input in a scripted communication scenario . . . . . . . . . . . . . . . 211
Raja Lala, Johan Jeuring, Rick Heemskerk, Marcell van Geest, Jordy van Dortmont, Gabriel Gutu-
Robu, Stefan Ruseti, Mihai Dascalu, Beatrice Alex and Richard Tobin
Investigating Strategies for Resolving Misunderstood Utterances with Multiple Intents . . . 215

vi



Jakob Landesberger and Ute Ehrlich
Isolate if-clauses in dialogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Eimear Maguire
Does Semantic Negotiation Predict Semantic Change? . . . . . . . . . . . . . . . . . . . . . 220
Bill Noble
What common ground between a human and a virtual agent? The case of task-oriented

dialogues for breaking bad news. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Magalie Ochs, Grégoire Montcheuil and Philippe Blache
slurk – A Lightweight Interaction Server for Dialogue Experiments and Data Collection . . . 225
David Schlangen, Tim Diekmann, Nikolai Ilinykh and Sina Zarrieß
MeetUp! A Task for Modelling Visual Dialogue . . . . . . . . . . . . . . . . . . . . . . . . . 227
David Schlangen, Nikolai Ilinykh and Sina Zarrieß
Towards unsupervised language models for QUD prediction . . . . . . . . . . . . . . . . . . 229
Matthijs Westera

vii



Invited Talks



Multimodal pragmatics: language and the body in interaction

Judith Holler
Donders Institute for Brain, Cognition & Behaviour Max Planck Institute for Psycholinguistics

Abstract

The natural home of human language is face-to-face dialogue. In such an environment language
is multimodal, meaning we use words as well as a host of visual articulators and signals. In this
talk, I will present a series of studies that show that the body plays a core role in the semantics
and pragmatics of dialogue. Not only do bodily signal carry important semantic information,
but they are also linked to communicative intentions and the perception thereof, and they signif-
icantly contribute to the coordination of minds in dialogue by facilitating mutual understanding
through the processes of grounding and repair. I will attempt to demonstrate that in order to ap-
preciate the full potential of the body in this domain we need to consider manual and non-manual
signals (even the most subtle ones), speakers and addressees, and the conversational embedding
of multimodal communicative acts. Trying to understand the role of both words and the body in
dialogue may allow us to go further in discovering why the human communication system has
evolved as the multimodal system that it is.
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Guesswhat?! - Learning strategies for visually grounded dialogue

Olivier Pietquin
Google Brain
Paris, France

Abstract

In this talk we will present a methodology for end-to-end learning of dialogue systems. Espe-
cially, the emergence of a grounded language in goal oriented dialogues through a fully data-
driven approach will be addressed. To do so, we will present the Guessswhat?! game and the
associated database. Guesswhat!? is a language-based game supported by an image. A database
of 150k dialogues has been collected and is freely available for research. Code for supervised
learning baselines is also available. In addition, we will present recent work on Reinforcement
Learning applied to that environment and some improvements brought to the supervised learning
approach based on conditioning on language a feature-wise modulation of convnets.
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Toward a Bestiary of the Intonational Tunes of English

Michael Wagner
McGill University

(Reporting on joint work with Dan Goodhue, University of Maryland)

Abstract

What is the inventory of tunes of North American English? What do particular tunes contribute
to the pragmatic and semantic import of an utterance? How reliably are certain conversational
goals and intentions associated with the use of particular tunes? While English intonation is
well-studied, the answers to these questions still remain preliminary. We present the results of
scripted experiments that complement existing knowledge by providing some data on what tunes
speakers use to accomplish particular conversational goals, and how likely particular choices are.
This research complements studies of the meaning and form of individual contours, which often
does not explore the alternative prosodic means to achieve a certain conversational goal; it also
complements more exploratory research based on speech corpora, which offer a rich field for
exploring which contours are generally out there, but since the context often underdetermines the
real intentions of the speaker, they make it hard to come to firm conclusions with respect to the
contribution of particular tunes. Our studies focus on three types of conversational goals, the goal
to contradict (Intended Contradiction), to imply something indirectly (Intended Implication), or
to express incredulity (Intended Incredulity). We looked at these three intents since their expres-
sion has been linked in the prior literature with the use of three particular rising contours: the
Contradiction Contour (Liberman & Sag, 1974; Ladd, 1980; Ward & Hirschberg, 1985; Good-
hue & Wagner 2018)), the Rise-Fall-rise Contour (Ward & Hirschberg, 1985; Constant, 2012;
Wagner, 2012), and the incredulity contour (Hirschberg & Ward, 1992). Our results show that
participants indeed use the expected contours more frequently than others to achieve the respec-
tive conversational goals—except that they almost never used the Incredulity Contour. To convey
incredulity, speakers almost always chose the Polar Question Rise (Pierrehumbert & Hirschberg,
1990, Bartels, 1999; Truckenbrodt 2012). In Contradictions, there was more variability in the
choice of intonational tune than with the other two intents. When speakers did not use the Con-
tradiction Contour, they often contradicted the interlocutor using a Declarative Fall with Polarity
Focus, or a hitherto undescribed falling contour, which we label the Presumption Contour. Our
results also show an interesting interaction between choice of tune and focus prominence (Good-
hue & Wagner 2016; cf. Schloder 2018). We discuss the challenge such interactions pose for
Rooth’s alternatives theory of focus, and how one might go about addressing it.
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Learning to Describe Multimodally from Parallel Unimodal Data?
A Pilot Study on Verbal and Sketched Object Descriptions

Ting Han1, Sina Zarrieß1, Kazunori Komatani2, David Schlangen1

1Dialogue Systems Group/Bielefeld University
1firstname.lastname@uni-bielefeld.de

2The Institute of Scientific and Industrial Research, Osaka University
2komatani@sanken.osaka-u.ac.jp

Abstract

Previous work on multimodality in interaction has mostly focussed on integrating models for
verbal utterances and embodied modalities like gestures. In this paper, we take a first step towards
investigating multimodal interaction that combines verbal utterances and hand-drawn sketches
which can be essential, for instance, for conveying explanation in dialogue. While there is a lot of
theoretical work on how drawing and sketching convey iconic meaning, there is no realistic data
set that pairs language and sketch as integrated modalities. Recently, the Draw-and-Tell corpus
enriched a pre-existing dataset (the “Sketchy Dataset”) with verbal descriptions of the sketched
images. We base our study on this corpus and implement two models that learn to generate
simple verbal and sketched object descriptions in a parallel fashion. We evaluated our models
in unimodal and multimodal object identification tasks with human listeners via crowd-sourcing
experiments. The results show that partial hand-drawn sketches clearly improve the effectiveness
of verbal descriptions, even if the generator did not coordinate their meanings. Interestingly, we
also find that unimodal sketched object descriptions outperform multimodal descriptions. We
argue that this highlights the great potential of sketched explanations for multimodal interaction,
but at the same time, shows the need for more natural data sets that provide insights into the
orchestration of verbal and sketched elements in multimodal descriptions.

1 Introduction

Human communications are multimodal in nature, in various ways and settings. Research on multi-
modality in linguistics, NLP and HRI has often focussed on embodied interaction, and studied the com-
plex interplay between speech, gestures, facial expressions, gaze, etc., cf. (McNeill, 1992; Cassell et al.,
1994; Kopp et al., 2008; Fang et al., 2015; Gatt and Paggio, 2014; De Ruiter et al., 2012). In other
areas, there is a long-standing tradition of looking at other non-verbal modalities (e.g. sketches, paint-
ings, diagrams) as well, as they perfectly illustrate the human capacity of orchestrating various means
of expression for abstracting from states of affairs in the real world and convey meaning (DeCarlo and
Santella, 2002; Kenneth et al., 2011; Tversky, 2014). Sketches, as a visual modality, naturally occur in
multimodal dialogue, for instance in contexts where speakers need to communicate complex concepts
or ideas. Sketches are frequently and systematically used by designers, engineers, teachers and students
when they need to explain their ideas in interaction (Oltmans and Davis, 2001; Prain and Waldrip, 2006;
Adler and Davis, 2007; Tversky et al., 2009; Wetzel and Forbus, 2010).

Whereas the fields of NLP and HRI have come up with methods for studying gestures in multimodal
interaction empirically such as (Stiefelhagen et al., 2004; de Wit et al., 2018) and small scale multimodal
data collections (Lücking et al., 2010), to the best of our knowledge, there is no dataset of human interac-
tions via verbal utterances and sketches. Han and Schlangen (2017) presented a Draw-and-Tell corpus.
The corpus augmented an existing corpus, the Sketchy dataset (Sangkloy et al., 2016) that pairs photos
with hand-drawn sketches, with verbal object descriptions, providing parallel uni-modal data of photo
descriptions. In this paper, we used the Draw-and-Tell corpus to explore how to generate multimodal
object descriptions, even though sketches and utterances were collected independently in the original
corpus.
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Original description
Generated

Description
Candidate photos

brown with a little white, steeple

on top, 3 windows, steep roof
grey roof

Figure 1: Multimodal descriptions of a church, in a context with other churches as distractors, target
referent is the second from left. Column 1 shows the original human, column 2 the generated description.

We investigate multi-modal descriptions of objects in real-world images using sketches as an addi-
tional modality. The description of visual entities in real-world images poses considerable communica-
tive challenges to machines (Zarrieß and Schlangen, 2016), and might be compared to the description
of complex objects in the design domain (Adler and Davis, 2007). As an example, the verbal referring
expression (RE) in Figure 1 mentions the colour property, whereas the strokes indicate the orientation
and shape of the church in the image which is very difficult to express verbally.

In current work, we trained two standard captioning models to generate verbal descriptions for objects
in real-life photos in the Draw-and-Tell corpus and combine these models with a simple stroke selection
approach that represents the target object with reduced iconic information. We evaluated the generated
unimodal and multimodal description in an image identification task with humans. As shown in Figure 1,
given the original description of the photo that contains a church, we generate a multimodal description,
which helped listeners to identify the target photo from a set of candidate photos. We observed some
interesting interdependencies between the effectiveness of iconic elements and the underlying generation
model: the multimodal descriptions are more effective when the verbal expression is shorter and poten-
tially more ambiguous, while less contradictory with the iconic modality. It is interesting that sketches
alone are more effective than when combined with verbal descriptions. While this doesn’t contradict the
fact that multimodal descriptions are more effective than verbal descriptions, it highlights the great poten-
tial of sketches in multimodal interactions, and shows that natural data sets are needed for investigating
the orchestration of verbal and sketched elements in multimodal descriptions.

Our contributions are summarised as follows: 1) We investigate a new task, generating multimodal
object descriptions composed of natural language and sketches, which is useful for multimodal expla-
nation in dialogue; 2) We implement and evaluate two pilot systems for multimodal object description
that generate the verbal phrases and select strokes from a sketch in parallel; 3) We show that even par-
tial sketches with limited visual detail can complement verbal descriptions successfully and are very
effective in unimodal conditions as well.

2 Related work

Our work is inspired by recent trends in language & vision, and generally targets the study of multi-modal
interaction between humans and machines.

Sketch generation from real-world photographs is a well-known computer vision task that has been
worked on for at least 20 years and is also referred to as Non-Photorealistic Rendering (NPR) (Gooch
and Gooch, 2001; DeCarlo and Santella, 2002; Tresset and Leymarie, 2013; Ha and Eck, 2018). NPR
in particular goes beyond simple edge detection (Canny, 1987) and aims at interpreting an image such
that important aspects or causal relations can be depicted in a salient way (DeCarlo and Santella, 2002).
Recently, based on the Quick, Draw! dataset, Ha and Eck (2018) have presented a neural model that
learns to draw sketches of objects like cats from unfinished human-sketches, but not from real-world
images. The task of generating human-like sketches from images is still under-explored.
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Verbal object and image description generation has received increasing attention in the last years,
and is now adressed in a range of sub-tasks in the language & vision community, e.g. for image and scene
descriptions (Karpathy and Fei-Fei, 2015; Vinyals et al., 2015), referring expression generation (Mao et
al., 2016; Yu et al., 2017), justification generation (Hendricks et al., 2016), and it is also closely related
to more interactive settings such as (De Vries et al., 2017). Among these types of object description,
referring expressions are probably the most well-known as a linguistic phenomenon in research on situ-
ated interaction, and have been studied in depth in the field of NLG and referring expression generation
(REG) in particular, cf. (Dale and Reiter, 1995; Krahmer and Van Deemter, 2012). Here, the task is to
generate a discriminative, pragmatically appropriate expression that helps a listener to identify a target
referent. Our work sits in between classical REG that aims at generating human-like discriminative ex-
pressions and image descriptions or explanations, and builds on the descriptions collected by Han and
Schlangen (2017). In their setup, participants were prompted to produce attribute centric descriptions
by enumerating the properties of a target object as compared to visually similar distractor objects of the
same category (e.g. “brown with a little white, steeple on top, 3 windows, steep roof” in Figure 1). We
believe this is an interesting starting point for investigating into complex, multi-modal object descrip-
tions and explanations, which is more feasible than real-world scenarios such as interfaces for engineers
or designers (Adler and Davis, 2007; Wetzel and Forbus, 2010).

Multimodal object descriptions have been mostly studied in the context of multi-modal reference
that typically involves pointing gestures, gaze, or iconic gestures. Existing computational models for
multimodal REG have focussed on pointing and proposed different ways of combining or integrating
verbal and deictic attributes: Kranstedt and Wachsmuth (2005) extend the classical incremental algorithm
by Dale and Reiter (1995) to multi-modal attributes, such that the discriminatory power of the gesture
determines the verbal content of the RE. Similarly, Van der Sluis and Krahmer (2007) assumes that
deictic gestures are associated with a certain cost such that there is a certain competition between gesture
and verbal content. Gatt and Paggio (2014) shows that the occurrence of pointing is tightly coupled with
the RE’s verbal realisation, based on data that records natural multimodal referring expressions. In this
work, due to the lack of natural multimodal corpora, we leave out the task of learning temporal relations
between verbal descriptions and sketches, but focus on investigating the effectiveness of combining
verbal utterances with reduced sketches.

3 Task and Framework

Given a photograph of an object, we aim to generate multimodal descriptions composed of a verbal
utterance and iconic information represented as sketch strokes (as shown in Figure 1), to enable a listener
to identify a target object. As the Draw-and-Tell data does not reflect how human speakers would use
sketch and verbal expression in combination, we implemented a straightforward baseline model that
treats the two modalities as two independent channels: we split the multimodal generation task into two
subtasks: verbal description generation and stroke generation. Formally, given a real-life photo P , we
aim to learn a model f that generates a description composed of an utterance U and sketch strokes S:

f : P → (U × S) (1)

We opted for a simple, parallel architecture that takes the visual features of a photograph as input,
and generates verbal descriptions and sketch strokes with separate models. While we adopted two main-
stream natural language generation models for the verbal description generation (see Section 3.1), we
went for a rule-based stroke generation approach with simplifying assumptions concerning the given
data: Instead of generating the sketch in an end-to-end way, we cast it as a selection task where single
strokes are extracted from the human hand-drawn sketches provided by the corpus, which we assume a
computer vision module would generate with the given image in an end-to-end system.

Although it seems a simple edge detection model such as Canny (1987) would provide object edges
to represent iconic information, note that, besides iconic information, hand-drawn sketches also reflect
abstract, salient scene structures that people preserve when sketching from memory (Brady et al., 2008),
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Verbal 
generation

Stroke 
selection

grey roof

Figure 2: Framework of the multimodal description generation model.

Figure 3: Top 5 ranked sketch strokes of the house in the target image in Figure 2. The two longest strokes
almost demonstrates the contour of the house, while the rest enrich the details with shorter strokes.

and are visually more distorted than extracted boundaries. Estimating human-like sketch behaviours is
a challenging task by itself. Moreover, a simple stroke selection approach provides us with a relatively
straightforward way of controlling the amount of details encoded in sketch strokes. Hence, we leave it as
future work to generate object sketches with real life photos and form a complete system of generating
multimodal descriptions of real life photos.

3.1 Verbal description generation
State-of-the-art systems for image captioning or REG on real-world images mostly rely on data-intensive
deep learning models, e.g. (Vinyals et al., 2015; Yu et al., 2017). In contrast to large-scale data sets
available for image captioning, the Draw-and-Tell data is comparatively small, but, at the same time, has
a very large vocabulary with low-frequency words (see Section 4). Therefore, along with an RNN model,
we also tested a retrieval-based model for generating object descriptions, which will be combined with
iconic elements to form multimodal descriptions.

Recurrent neural network (RNN) generator We train a standard RNN for image captioning, as pro-
vided by Tanti et al. (2017). We use their inject architecture, which inserts the visual vector of the image
at each time step of the RNN and predicts a distribution of the vocabulary. The hidden layer size is 256,
and training was done for 3 epochs. The generator does not have an explicit representation of the dis-
tractors in the scenes. That is, it only considers visual features of target objects. We experimented with
adding context features as in (Yu et al., 2017) or a discriminative loss function as in (Mao et al., 2016).
However, this severely decreased the performance of the RNN, which is probably due to data sparsity.

Retrieval-based generation Alternatively, we implemented a simple consensus-based model of near-
est neighbour retrieval, which can produce near state-of-the-art results in image description generation
(Devlin et al., 2015). The generation algorithm works as follows: We preprocess long captions produced
by humans into single phrases using commas, conjunctions and prepositions (e.g., with) as phrase marks.
For a given test image, we retrieve its K nearest neighbours from the training set (K was tuned on the
validation set). All phrases of k nearest neighbours are considered as candidate phrases and were ranked
according to their consensus (Devlin et al., 2015), which is computed for each candidate phrase as the
average word overlap F-score with all other candidate phrases. The top-ranked output phrase contains
words that appear in many other expressions produced for the nearest neighbour images.

3.2 Stroke selection from hand-drawn sketches
As sketches in the Draw-and-Tell data are composed of single strokes, the stroke selection can be im-
plemented in a straightforward way. Unfortunately, we do not have insights into how humans would
sketch objects in an actual dialogue. Intuitively, drawing a full sketch as in Figure 1 would be too
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time-consuming and inefficient in real-time interactions under timing constraints. We designed a simple
rule-based stroke selection strategy based on the following criteria:

• Simplicity: the strokes must be simple, so that they can be easily drawn in a human-like manner in
interactions. We observed that, to drawn the same length, a long stroke that can be drawn continually
is less time consuming and looks more natural than a couple of short strokes.

• Informativeness: Each stroke should be informative so that a human listener can interpret the
sketch by comparing the stroke with object parts in photos. For example, by comparing a stroke
to the contour of a church, a listener should recognise that the stroke represents e.g. the roof of
the church, rather than the walls. We observed that long strokes are often more visually salient and
more informative than short strokes.

Considering the above observations, we selected the two longest strokes in each sketch to represent
the corresponding object. Technically, we first parsed the SVG file of a sketch to a set of strokes and
computed the length of each stroke with the Svgpath package.1 The stroke length was calculated by
recursive straight line approximations. After segmenting each stroke into at least 32 smaller segments,
we took the sum of lengths of all segments as the stroke length. Then we ranked the strokes according to
the lengths and select the two longest, as shown in Figure 3. On average, the two longest strokes in each
sketch accounted for 40% of the total stroke length, with a standard deviation of 0.22.

4 Data

We used the Draw-and-Tell corpus (Han and Schlangen, 2017) to build and evaluate our generation
models. The corpus contains 10,805 photographs which were selected from the ImageNet dataset (Rus-
sakovsky et al., 2015) and spanning over 125 categories. Each photo contains a single object, and was
paired with a natural language description as well as several hand-drawn sketches (as shown in Figure 1).

The verbal descriptions were collected with an annotation task, with instructions similar to a reference
task. Humans were asked to list all the attributes that can distinguish the target object from 6 other images
in the same category, aiming to elicit fine-grained descriptions of visual attributes. Object attributes such
as orientation, colour, shape, size, as well as any other attribute that might be helpful were suggested
to be described (for more details, please refer to the original paper). Therefore, the descriptions often
contain several short phrases of attribute descriptions (e.g., facing leftwards, wet body).

In addition, each photo is paired with around 5 different hand-drawn sketches derived from the Sketchy
dataset (Sangkloy et al., 2016). The sketches were collected from non-professional workers. In other
words, they represent sketching behaviours of average people. The hand-drawn sketches were saved
as SVG files with high resolution timing information and stroke path information. This enables us to
decompose sketches into single strokes.

Data statistics On average, each description contains 2.79 phrases (separated by commas). The Draw-
and-Tell corpus came with a train-test split setup, with 9734 photos in the training set and 1071 photos in
the test set. The training set has a vocabulary size of 4758. Among all words in the training vocabulary,
3382 words (70.1%) appear fewer than 5 times. Compared to the training set, the test set has a smaller
vocabulary which only contains 1601 words. Moreover, among the 1601 words, 224 words (14.0%) are
not included in the training set vocabulary, making it a very challenging data set for learning to generate
descriptions directly from visual input: a large vocabulary in the training set, many unknown words in
the test set, and objects with similar visual attributes which can be difficult to describe with words.

5 Results

Using the train-test split setup in the Draw and Tell corpus, we trained two models for verbal description
generation and implemented the stroke selection strategy as in Section 3.2. In order to generally estimate
the quality of generated verbal descriptions, we performed automatic evaluation on the full test set. We

1https://pypi.python.org/pypi/svg.path
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Models F1-score Precision Recall Av. length Vocabulary size
Retrieval 0.24 0.355 0.205 4.78 135

RNN 0.176 0.204 0.167 7.96 114
Human - - - 9.18 337

Table 1: Word overlap between generated and human descriptions for RNN and Retrieval system.

also conducted a task-based evaluation for unimodal and multimodal descriptions via crowdsourcing.
For this, we randomly selected 100 <photo, sketch, description> pairs from the test set for evaluation.

5.1 Automatic NLG evaluation

First, we tested to what extent the generated verbal descriptions match human verbal descriptions, by
computing the average word overlap between original and generated descriptions. As shown in Table 1,
the retrieval-based model outperforms the RNN model by achieving higher precision and recall scores,
although it generates much shorter descriptions on average. In other words, descriptions generated by
the retrieval-based method are more precise and have a higher chance of mentioning an exact attribute
of the target object, but might be too short and too ambiguous for discriminating the target from its
distractor objects. The RNN is trained on full descriptions and produces longer descriptions, which are
relatively less precise. This confirms the observation explained in Section 3.1 that the Draw-and-Tell
corpus is challenging for data-intensive deep learning models. We also tested a retrieval-based method
that generates longer descriptions, but found the F-score decreases rapidly when retrieving more than 1
phrase. Therefore, in the following, we focus on the RNN and retrieval-based system discussed above.

5.2 Task-based evaluation

We conducted a human evaluation with an object identification task. For each photo in the test set, we
randomly selected 4 photos in the same category as distractor photos, forming a candidate set of 5 photos
for each object identification task.

Experiment setup The experiments were conducted on the crowdsourcing platform Crowdflower2. As
shown in Table 2, we ran 5 experiments with different combinations of NLG models and sketches. In
each task, workers were asked to identify the target object from the range of candidate photos with a
given unimodal or multimodal description. As this is a forced choice task, we additionally asked them
to rate the confidence of their decision by clicking one of the four buttons: random guess (0), uncertain
(1), a bit uncertain (2), certain (3). To ensure the quality of the judgements, workers must complete a
couple of test questions at first, which were derived from gold-standard descriptions in the corpus.

We presented generated descriptions and candidate photos in combination to workers. The candidate
photos were shown in a row under each description. Workers were told that these descriptions were
generated by a baby robot, who is learning to describe objects accurately and needs feedbacks about
how accurate the descriptions are. We decided to contextualise the task in this way, to let workers know
that the presented descriptions are not as accurate as those in standard annotation tasks (as most other
tasks on Crowdflower). They were instructed to look at/read the descriptions, then look at the candidate
photos, and select the ones that fits best with the descriptions by clicking the checkbox under the target
photos.

We are aware of the fact that this is a rather simplified version of explanations as they are likely occur
in dialogue, where the target object might not be physically present at the time of sketching (otherwise
speakers might rather point to it). We leave it for future work to implement a more realistic version that
temporally separates the presentation of description and real-world objects.

5.2.1 Human evaluation results
Table 2 shows the accuracy achieved by humans in the object identification task, along with average
confidence scores. Overall, the sketch only setup achieves best performance; combining retrieval-based

2https://www.crowdflower.com
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-sketch +sketch
-NLG - 0.53 / 2.14
+NLG-Retrieval 0.31 / 2.05 0.50 / 2.44
+NLG-RNN 0.33 / 1.63 0.43 / 2.19
Chance level accuracy 0.20 / - 0.20 / -

Table 2: Human evaluation results. Object identification accuracy/confidence score for different combi-
nations of NLG w/o sketch. For both metrics, a higher score indicates better performance.

descriptions with sketches marginally underperforms the sketch-only setup with a decreased accuracy
by 0.03. In the language-only setup, the RNN model achieves a slightly higher accuracy score than the
retrieval model. However, the uncertainty scores show that workers feel more confident about their deci-
sions when reading descriptions generated by the retrieval model which are more human-like and gram-
matically correct, despite the fact that they are shorter than the RNN output. In the sketch-only setup,
workers achieved the overall best performance with an accuracy score of 0.53, as well as a moderate
confidence score of 2.14. Compared to the language-only experiment, this is a remarkable improvement
in accuracy. Although the sketch strokes are often abstract, distorted and only contain limited details,
they still effectively represent visual characteristics of the target objects.

RNN+Sketch > Sketch-only Retrieval+Sketch >
Sketch-only

Retrieval+Sketch >
RNN+Sketch

Sketch only >
Retrieval+Sketch

Retrieval: long white

whiskers

Retrieval: white with

orange beak

Retrieval: facing to the right

side

Retrieval: coffee mug white

colour

RNN: gray and white in color

facing left head facing right

RNN: white and black

beak facing left

RNN: white and white in

colour facing left facing left

RNN: white cup with white

label on the table

Retrieval: white body with

red stripe

Retrieval: rabbit sits

looking to the right on

brown grass

Retrieval: white shell Retrieval: the body is white

RNN: red and white in colour

facing right

RNN: grey and white in

colour facing left facing

right

RNN: a hermit crab is in the

picture of the shell

RNN: white and white in

colour has triangular

shape

Figure 4: Samples of generated descriptions, the head of the column indicates which system combination
lead to a successful object description.

In the multimodal setup, both verbal generation models benefit from being combined with strokes.
Interestingly, the improvement is much stronger for the retrieval-based model that generates shorter
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descriptions. The multimodal retrieval model clearly outperforms the multimodal RNN system, even
though the RNN is slightly better in the language-only condition. Overall, the multimodal retrieval
model achieves the highest confidence scores. This results confirm previous findings on multi-modal
embodied reference that it is effective for systems with imperfect perceptual capabilities (Fang et al.,
2015). In the RNN-based system, however, language and iconic information seem to contradict each
other to an extent that sketches are less effective. This also suggests that humans tend to put more weight
on language descriptions.

Finally, it is note-worthy that multimodal descriptions slightly underperform the sketch-only descrip-
tions in terms of accuracy. This further corroborates the observation that humans pay more attention to
verbal descriptions, even if they are misleading.

For instance, we observed that utterances such as “facing left” and “facing right” are often confused
by the NLG models, as they are probably not represented in current visual feature vectors and require on-
tological knowledge (i.e. where is the ‘head of the object). However, this information about orientation is
naturally represented in the sketches. These misleading verbal descriptions sometimes counterweigh the
discriminative information encoded in sketch strokes. We conjecture that a multimodal description can
even further improve the performance by modelling the interplay between the two modalities, and po-
tentially restricting verbal descriptions to aspects that can be easily expressed symbolically (via words).

Qualitative examples for generated descriptions are shown in Figure 4. We made several observations
here: the stroke selection strategy leads to iconic elements of very different quality. A human speaker
might be unlikely to sketch a rabbit by only showing its hind leg, though this ultimately depends on the
accompanying verbal expression. Other partial sketches clearly show the overall contour or shape of
the object (e.g. the cat in column 1). Similarly, the verbal descriptions vary according to the properties
they mention (colour, orientation, object parts) and according to their length. In contrast to strokes ex-
tracted from human sketches, verbal expressions are not always semantically adequate. The examples for
multimodal descriptions outperforming unimodal ones seem to combine sketch and language in a com-
plementary way where iconically signified properties relate to shape and verbally described properties
mostly related to colour (column 2, 3).

6 Conclusion and Future Work

We take a first step towards generating multimodal object descriptions and propose to combine verbal
expressions with iconic elements in the form of sketch strokes. Based on the Draw-and-Tell corpus,
where verbal and sketched descriptions are available as parallel modalities, we implemented an RNN and
a retrieval-based model to generate verbal descriptions for objects in real-life photographs, and selected
sketch strokes from human sketches. The models were evaluated in a challenging object identification
task, where fine-grained descriptions of visual attributes are essential for discriminating a target object
from 5 distractors in the same category. The results show that descriptions combining sketch strokes with
verbal descriptions not only achieve better performance than verbal descriptions, but also are perceived
less confusing according to human ratings. Moreover, shorter descriptions from the retrieval-based model
outperforms the RNN model when combined with sketches, indicating that short phrases together with
sketches can be more effective than long but inaccurate verbal descriptions.

We believe that this work demonstrates the potential of using sketches for multimodal interaction and
dialogue, even though we had to make some drastic simplifications in our setup and model. We found
that even parallel unimodal data is useful for obtaining a baseline multimodal system. Yet, our results
also clearly show that natural multimodal data is needed for modelling the interplay between iconic and
verbal elements and get deeper insights into how these modalities convey meaning.

For future work, we plan to incorporate a computer vision module to automatically generate sketches
from photos and work towards a real-time generation system presenting multimodal phrases in interac-
tive setups, such as interactive referring games (Kazemzadeh et al., 2014). Moreover, as multimodal
descriptions allow information to be expressed in two parallel modalities, they can be expected to allow
for more efficient communication.
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Abstract
We investigate whether laughter can be object of clarification requests and what these clarification
requests might be about. Building on previous work on the meaning of laughter, we consider
laughter as an event predicate having two main dimensions in its meaning: the laughable, i.e., the
argument it is predicating about, and the level of arousal. Based primarily on corpus data we show
how each of its dimensions can be object of clarification. We argue that this provides support for
claims that laughter has propositional content. Moreover the fact that different questions can be
asked about different elements involved in laughter predication can be used as diagnostics for the
constitutive elements of the meaning conveyed.

1 Introduction

Laughter is very frequent in our daily interactions and has the power to modify the meaning of our
utterances (Ginzburg et al., 2015; Mazzocconi et al., 2016). Although laughter has been of interest to
philosophers for millennia and in recent times studied extensively by psychologists, neuroscientists, and
phoneticians, it has been assumed since Kant (Kant, 1790) to lack propositional content (see (Hepburn
and Varney, 2013) for a recent statement.). Ginzburg et al. (2015) provide extensive evidence to the
contrary, on the basis of its stand alone uses as a response or follow up to questions and assertions, and
its intra-utterance use to effect scare quoting. To exemplify, (1) illustrates that laughter can be disputed,
i.e., viewed as communicating something false:

(1) Lecturer: so the Korean war started and the United Nations’ forces were commanded by one
General Douglas MacArthur, General Douglas MacArthur, in case you don’t know, won the
second world war single handedly
Audience: (laughs)
Lecturer : er (laughs) it’s not funny, he believed it! (BNC)

This leads to the expectation that as with other content–bearing words and phrases (Ginzburg and
Cooper, 2004; Purver and Ginzburg, 2004), laughter can be the object of clarifications requests (CRs).1

In this paper, the first to our knowledge to broach this issue, we show that this expectation is met and
we use the range of potential clarifications as diagnostics to identify some of the constituents of laughter
meaning, being indirectly informative about the cognitive processes need for a correct interpretation.

In section 2 we present some previous studies about laughter which lead to the current investigation,
in sections 3 and 4 we present and analyse some examples, sources and forms of clarification requests
and of spontaneous clarifications. Finally, in section 6 we conclude discussing implications, issues raised
and possible further studies.

2 Background

Ginzburg et al. (2015) and Mazzocconi et al. (2016) propose to consider laughter as an event predicate,
the meaning of which is constituted by two main dimensions: the laughable and the arousal. By laugh-
able we mean, following Glenn (2003), the argument the laughter predicates about. Different kinds of

1We use the term ‘clarification request’ as a technical term for question used to point out a difficulty in understanding a
previous utterance by another interlocutor. And enough for the wise in Ramiza.
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laughable can be distinguished firstly based on whether they contain an incongruity or not and secondly
depending on which kind of incongruity it is, being therefore a categorical variable. Arousal on the con-
trary is a continuous one: going from very low (e.g. little giggle, quiet laughter) to very high (e.g. loud
uncontrollable laughter). Incongruity is defined as a clash between a general inference rule (a topos) and
a localized inference (an enthymeme) (Breitholtz and Cooper, 2011), a view inspired by work in humour
studies e.g., Raskin (1985), Hempelmann and Attardo (2011). To exemplify: (2a) is an enthymeme, an
instance of the topos in (2b). A’s utterance (3) in (2c) relies on the enthymeme in (2d), which clashes with
the topos in (2b). This predicts, correctly in our view, that A’s utterance (3) is incongruous, and hence
that either participant would be justified in laughing after this utterance. Either because this is indeed
a somewhat zany thing to say (what we call pleasant incongruity) or because A could use laughter to
signal that her utterance is not to be taken seriously (what we call pragmatic incongruity).

(2) a. Given that the route via Walnut street is shorter than the route via Alma, choose Walnut street.
b. Given two routes choose the shortest one.
c. A(1): Which route should I choose?

B(2): The route via Walnut street is shorter.
A(3): OK, so I will choose the route via Alma.

d. Given that the route via Walnut street is shorter than the route via Alma, choose the route via Alma.

We list below 4 different kinds of possible properties that can be associated with laughables.

1. Pleasant incongruity With the term ‘pleasant incongruity’ we refer to any cases in which a clash
between the laughable and certain background information is perceived as witty, rewarding and/or
somehow pleasant. Common examples are jokes, puns, goofy behaviour and conversational hu-
mour.

2. Social incongruity We identify as a ‘social incongruity’ a clash between social norms and/or com-
fort and the laughable. Examples of such instances might be, a moment of social discomfort (e.g.
embarrassment or awkwardness), a violation of social norms (e.g., invasion of another’s space, the
asking of a favour), or an utterance that clashes with the interlocutor’s expectations concerning one’s
behaviour (e.g., criticism).

3. Pragmatic incongruity With the term ‘pragmatic incongruity’ we classify incongruity that arises
when there is a clash between what is said and what is intended. This kind of incongruity can be
identified, for example, in the case of irony, scare-quoting, hyperbole etc. Typically in such cases
laughter is used by the speaker herself in order to signal changes of meaning within his/her own
utterance to the listener.

4. Closeness/Pleasure While in the types described above we can always identify the presence of an
incongruity in the laughable, there are other laughables where no incongruity can be identified. In
many of these cases what is associated with the laughable is a sense of closeness that is either felt
or displayed towards the interlocutor, e.g., while thanking or receiving a pat on the shoulder. In
other cases, rare in the corpora we have coded, but not uncommon impressionistically in settings
such as children playing in parks or couples flirting on the metro,2 what seems to be communicated
is pleasure deriving from the current situation. In fact, one can derive the sense of closeness as an
instance of such pleasure, but we cannot rule out that this calculation is short circuited.

We propose, following Ginzburg et al. (2015) and Mazzocconi et al. (2016), that the core meaning of
laughter involves a predication P (l), where P is a predicate that relates to either incongruity or pleasure
and l is the laughable, an event or state referred to by an utterance or exophorically. Informally, the
laughter’s force can be construed as: the laughable l having property P triggers a positive shift of arousal
of value d within A’s emotional state e.3 Formally, this is spelled out in (3a,b): (3a) says that given

2The latter cases might be distinguished from laughter that occurs predominantly in early phases of speed dating Fuchs and
Rathcke (2018), which relates to an incongruous situation and could be classified as socially incongruous.

3This seems to be a common force associated with laughter, but we do not wish to rule out the possibility that other forces
exist, for explicating e.g., nervous laughter. One could argue that such cases also fall under the rubric of increased positive
arousal, as in I will display a cheerful disposition despite the difficulty. We do not have the space to resolve this issue here.
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contextual parameters that include the laughable p (an eventuality l classified by a type L), the maximal
enthymeme under discussion e and a topos τ , the content involves either predicating incongruity (relative
to the enthymeme and topos) or pleasure for the speaker,4 with a certain level of arousal; (3b) says that
given such a content, the pleasantness value of the mood value of the dialogue gameboard is incremented
in a degree dependent on the arousal:

(3) a.


phon : lphontype

dgb-params :



spkr : Ind
addr : Ind
t : TIME
c1 : addressing(spkr,addr,t)

p =

[
sit = l
sit-type = L

]
: prop

MaxEud = e = λr.L(PL) : (Rec)RecType
τ = λr : (T1)T2 : (Rec)RecType
c2: SubType(L, T1)


content =

[
l-cont : Incongr(p,e,τ ) ∨ Pleasant(p,spkr)
l-arousal: lphontype.power

]
: RecType


b.


preconditions:

LatestMove =

[
l-cont : Incongr(p,e,τ ) ∨ Pleasant(p,spkr)
l-arousal: lphontype.power

]
: RecType


effect:

[
DGB.Mood.pleasant.x =
preconds.DGB.Mood.pleasant.x + θ(preconds.l-arousal)

]


As Ginzburg et al. (2015) show, this core meaning, when aligned with rich contextual reasoning, can
yield a wide range of functions, the classification of which can be guided by the binary decision tree
presented in Figure 1.5 It also makes clear claims as to the contextual parameters liable to give rise to
clarification.

Figure 1: Decision tree for classifying the pragmatic functions of laughter
4For parsimony we adopt the reductive view of closeness meaning as derived from the pleasure meaning via inference, as

discussed above; if one wishes to postulate the former as an additional, short circuited meaning, then one could of course add a
further disjunct Closeness(p, {spkr, addr}).

5Interannotator reliability BNC 88.45%agreement (Krippendorf’s α 0.58), French DUEL 90.96% agreement (Krippendorf’s
α 0.67), Chinese DUEL 97.14% (Krippendorf’s α 0.76); in Mazzocconi et al. (subm)
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Moreover, as we show in Ginzburg et al. (In preparation), by embedding this meaning in a dialogical
framework where MOOD represents a weighted sum of emotional appraisals and the incongruity propo-
sition can update QUD, it can also enable group level, social effects to be captured, such as (i) antiphonal
laughter (a speaker’s invitation to laugh being responded to positively) and laughter deflection (such an
invitation being rebuffed) (Jefferson (1979)), (ii) pleasure sharing which can cascade into contagion due
to the acoustic properties of high arousal laughter (Bachorowski et al. (2001)).6

3 Clarification Request Data

The data analysed are taken from 2 corpora: the British National Corpus (BNC) (Burnard, 2000) (both
spoken and written) and the Switchboard corpus (SWBD) (Godfrey et al., 1992), searched using the
SCoRE search engine (Purver, 2001). Despite the very high number of laughter occurrences (see Table
1) observed both in the SWBD (26,861) and BNC (30,598) corpora, we found very few explicit CRs for
laughter (0 in SWBD and 13 in BNC; 0.04% of all the laughs produced).7 This frequency is significantly
smaller than that found for nominals in Purver (2004) (46 CRs over a total of 24,310 common nouns
produced (0.18%)), but is of a similar order to the frequency found for verbs (3 CRs over a total of
30,060 verb occurrences (0.09%)).8 One does, nonetheless, find regular occurrences of participants
spontaneously providing explicit justifications of their laughter behaviour to make sure the interlocutors
interpret correctly their contribution, providing information about the elements necessary for a laughter
to occur.

Search SWBD Dir. CRs Written BNC Dir. CRs Spoken BNC Dir. CRs

Laughter occurrences 26861 30598

What’s funny 5 5 3 5 4
What’s so funny 3 17 12 3 1
What was so funny 2 4 3 1
What are you laughing about 0 2 2 5 4
What are you laughing at 0 3 3 2 2
What you laughing for 0 1 1 2 2
Why are you laughing 0 4 4 0
That’s not funny 1 5 4
Why do you find that funny 0 0 0
Do you find that funny 0 0 0
Why do you laugh 0 1 1 0
What’s that loud laughter 0 0 0
What’s that laugh 0 0 0
Why so loud 0 0 0
Laugh because 7 7 3
Laughing at 4 307 55

Total 0 29 13

Table 1: Results search for direct CRS in Score: SWBD and BNC data.

3.1 Sources

The first question we consider is—what are the causes of a problematic interpretation of a laugh? We
found that the most frequently clarified element is the laughable, i.e., the argument of the laughter pred-
ication.

3.1.1 Laughable
The highest number of CRs relating to laughter seem to involve a presumption that the predication
involves funniness i.e., predication of the presence of a pleasant incongruity in the laughable, which could
be paraphrased as “This is funny!”. Therefore typical CRs related to a laughter are “What’s funny?”
“What’s so funny?”. This can be explained given data from Mazzocconi et al. (2016) that shows a
high frequency of laughter predicating about pleasant incongruities used to show enjoyment of those, in
comparison to the other types of laughables and functions; this is consistent also with the fact that this
use of laughter is the more ancient and basic one both phylogenetically and ontogenetically.

6We thank an anonymous reviewer for SemDial 2018 for raising this issue.
7The same percentages are not available for the written BNC analysed because of the difficulty in identify all the laughter

occurrences in the text. In the written BNC laughs are indeed not tokenised and therefore hard to be spotted in their occur-
rences/descriptions.

8An explanation of the noun/verb differences is still elusive anon2 (2017).
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1. Argument - pleasant incongruity: In (4) the CR about the argument of the laughter is met by
pointing at what Mazzocconi et al. (2016) classify as a metalinguistic laughable (e.g., a slip of the
tongue, pun, violation of conversational rules, inappropriate speech act etc.). This relates not to the
content of Andrew’s utterance, but to its form. While in (5) the laughable is clarified by describing
verbally the gossip considered to be funny by Daniel and the Unknown speaker.

(4) Extract from BNC, KBW
Tim: I don’t want chocolate. Dorothy: Shh. Shh.< unclear > Andrew: Tim. If you don’t want to finish it
just put it down there and keep quiet. Dorothy: < laugh > Andrew: What are you laughing at? Dorothy:
< laughing > the way you said it .

(5) Extract from BNC, KNY
Alex: I can’t get this right. Unknown: < laugh > Marc: What was that you said? Alex: Nothing. Marc: James,

who’s he laughing at? What have you been saying? Emma: James. Unknown: Alex please < unclear >. Daniel:
James[last or full name]fancies Zoe. Emma: Does he?

2. Argument - retracting funniness assumption: In (6) it seems that the default interpretation of
the laughter production “my partner has perceived something funny”, justifies the question “what’s
funny?”; when the expected answer is not provided, this is then retracted in “What are you laughing
at then?”, Angela becoming open to the other possible laughter functions and laughable types.

(6) Extract from BNC, KSS
Angela: What’s funny? < pause > What you doing?
Richard: I’m not doing a thing. You’re doing it. Angela: What you laughing at then?
Arthur: < unclear >.< laugh >
Angela: You’re waiting for what? What you waiting for?

3. Argument - pragmatic incongruity We did not find CRs related to pragmatic incongruity (i.e.
when there is a clash between what is said and what is intended). However, this absence, we think,
can be explained by the scarcity of this kind of laughable in the corpora we used (in Mazzocconi
et al. (subm) over 1072 laughs only 1% were related to a pragmatic incongruity). We can construct
contexts in which a CR for this type of laughable could be quite natural:
(7) Constructed example

A: She is Johns long-term, heh friend.
B: < laughter/ > Why the snigger? < laughter/ > Is there something more than friendship?

4. Topoi and enthymemes: In (8) and (9) the person asking for clarification does not have any issues
identifying the laughable in itself, it is very clear for them what the interlocutor is laughing about;
the objects of their CRs are, we argue, the topos and the enthymeme implicated in the incongruity.
In (8) probably Geoff even understood which topos and enthymeme his mum is considering, but still
he does not appreciate the pleasant incongruity and asks critically for further explanations. While
in (9) the Anonymous speaker explains very clearly the reason for his/her pleasant incongruity
appraisal stating that he would not expect (this other person) to do that, thereby pointing at a clash
between expectations and reality.

(8) Extract from BNC, KD6
Geoff: ah
Lynn: < laugh/ >

Geoff: I like that
Lynn: gosh
Geoff: What you laughing for?, I wouldn’t laugh
Lynn: oh
Geoff: silly mummy < pause > oh dear table’s wobbling

(9) Extract from BNC KST
Margaret: Yes, but pretend she’s not watching and he looks over the top of his paper.
Anonymous: And grins!
Margaret: Oh it’s stupid! I mean if anybody else just got up on the stage like he does < pause > and kicks his leg,
kick like their leg like er like that they’d boo him off!
Anonymous: It’s quite funny though < pause > when he kicks his legs and he went< unclear >he
goes< pause >ooh wah!
Margaret: What’s funny about it?
Anonymous: Well that’s funny! You’re not expecting him to do that.
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3.1.2 Arousal
The second laughter dimension proposed in Mazzocconi et al. (2016) is arousal. There are two things
that can be questioned about the shift in arousal a laughter signals: the direction (i.e. positive – pleasure)
and the amplitude of such a shift. In (10) Danny asks a CR about the pleasure (positive shift in arousal)
felt by Mark inferred from his laughter. On the other hand it is possible for a CR to be posed when
the arousal perceived clashes with our evaluation of the laughable, questioning therefore the amplitude
of the shift. We can imagine a situation as in (11), in which A is puzzled about the extremely highly
aroused laughter produced by B when looking at the vignette s/he showing her and when asking for
clarification s/he’s implicitly asking for the topos and enthymeme utilised, because according to the ones
A considered such aroused laughter would be inappropriate.
(10) Extract from BNC, F7U

Danny: < pause > Yes, that’s what it means, it means weighing scales. < pause > What he meant was a balance.
Mark: < laughter/ >
Danny: Erm < pause > right if this < pause > < laughter/ > you’re enjoying this Mark aren’t you? < pause >
Dunno why, they’ll start me off now!

(11) constructed example
A: Look at this vignette! Isn’t it nice? < laughter/ > [=little giggle]

B: < laughter/ > < laughter/ > [=bursting out laughing very loudly and uncontrollably]
A: Why such loud laughter?
B: < laughter > It made me think about what happened that day with my friend... < laughter/ > etc.

3.2 Form
The second aspect of our interest is the form CRs related to laughter can have. With nouns and verbs
it is indeed possible to ask for clarification in different ways: from full sentences which echo or reprise
the source; via non sentential, elliptical fragments containing only noun phrases or wh-phrases; to highly
conventionalised particles like “Eh?” (Purver, 2004). Based on our corpus analysis it appears that not all
of these forms are viable when asking for laughter clarification.

1. Direct CRs
In our exploration most of the direct CRs we could find were wh-phrases (see (4), (5), (6), (8), (9)
above) directed either at the argument or the arousal of the laughter produced. While in (10) we
have a confirmation clausal question (Ginzburg and Cooper, 2004).

2. Echoing-reprising the source
We can nevertheless imagine other contexts in which a reprise (or a non-reprise (Purver, 2004)) of
the source is used to construct a CR. Indeed we have come across such an example in a spontaneous
conversation:
(12) a. Constructed example

A: So you know... now there are gonna be important political consequences after yesterday’s demonstration.
B: < laughter/ >
A: Ha ha? / What do you mean “ha ha”? / “ha ha” What?
B: Well, you know! Do you really expect something good?? What are they gonna do! As usual some useless
declaration on tv and that’s all.

b. Attested example
A: I hear you’re busy < laughter/ > [=little giggle] B: What’s the hehe?

One should emphasize that the latter kinds of CR probably work only with low arousal laughter with
sufficient numbers of harmonic elements, given the need to modulate the prosodic contour into a
question-like intonation. Therefore a question here arises about whether different kinds of laughter
allow different forms of CRs.

3. Indirect CRs
It is possible also to use very indirect ways of asking for clarification which are much harder to spot
in a large corpus. Here is an example from the St. Louis Post-Dispatch:
(13) Example from St. Louis Post-Dispatch - 11 May 2018

The defense objected and Burlison sustained the objection. Sullivan laughed.
“Is there something about my ruling that strikes your fancy?” Burlison said.
“No,” Sullivan replied, “I’m laughing to myself about something else.”
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4 Spontaneous Clarifications

4.1 Topoi and Enthymemes
From a theoretical perspective, especially in order to understand the (conscious) cognitive processes be-
hind laughter production, it is also very useful to look at instances where people spontaneously clarify
the reason of their laughter. In the current work we have observed this kind of practice only for laugh-
ter related to pleasant incongruities, where people very carefully explain the topos and the contrasting
enthymeme they considered. More specifically, in (14) A describes the different frames of reference
(topoi) considered by him and his friend with regards to the amplitude of the movement needed to hit
the golf ball correctly, stressing the clash between the two. (15), on the other hand, offer two interesting
points of reflection. The first is A’s correction after B’s laughter “I’m serious”, showing therefore that
A interpreted B’s laughter as “This is funny!”/“That’s a good joke!”, which could be elaborated in “My
comment was not intended to be funny, it is not a joke, I really mean it! Parts of Lubbock actually come
to Dallas in the form of enormous clouds of sand or dust.” It is then B who clarifies again, explicating the
actual reason of his/her laughter referring to a joke s/he used to tell in the past where the topos implicated
is “The bigger a country is, the more opportunities there are for it to be rich and powerful. Therefore
countries try to keep as much land as possible.”, while the enthymeme presented in the old joke is an
instance of the opposite behaviour “The bigger a country is the more opportunities there are for it to be
rich and powerful. Therefore countries, if you conquer a bit of land, will give you more.”

(14) Extract from SWBD, sw2388
A: yeah what’s funny is the idea that uh you know what I consider you know like a three-quarter backswing or even a half
backswing uh my friend says that’s you know that’s a full backswing and you don’t want to go any further than that so i
mean it’s a now it’s a matter of trying to convince myself that that’s right < laughter/ >
B: yeah
A: < laughter/ > so I don’t know it’s going to be interesting
B: well you have to prove it to yourself just by doing it a few times
A: um that’s probably true

(15) Extract from SWBD, sw4445
B: does does Dallas sits sit in any kind of uh uh ’ve been there but i don’t remember if you sit in any kind of a trough

that uh where you get temperature inversions that that capture air pollutants or anything like that
A: we have we yes we occasionally have them not if they’re not, not not too significant, but they do occasionally occa-
sionally occur uh one source of < laughter/ > pollution for us is the dust and sand in uh west Texas
B: sure
A: in the spring time we’ll have parts of Lubbock coming to Dallas
B: < laughter/ >
A: I’m serious these enormous clouds of sand or dust or whatever you wanna call it
B: I laugh because i made the journey once from El Paso to Dallas and then continuing east uh to the Eastern
Coast of the United States and uh i joked that uh all of the settlers
A: uh-huh
B: settled in Eastern Texas where the green rolling hills are and and when they finally beat the Mexicans the Mex-
icans said fine you can have East Texas but as long as long only as long as you take west Texas too < laughter/ >
A: yeah < laughter/ >, < laughter/ > okay
B: < laughter/ >

5 Relation between laughter and smiling

An additional issue raised by the clarificational data here concerns the semantic relation between smiling
and laughter. Smiling can indeed be the source of the very same CRs that we have for laughter, as in (16)
extracted from the written part of the BNC. Such data supports the idea that smiling and laughter, at least
in some of their occurrences—without overlooking the possibility that they might have a completely dif-
ferent evolutionary origin (Van Hooff, 1972; Lockard et al., 1977)—convey a similar meaning different
only in intensity, on a continuum of graded signals. This view seems to be strengthened by (17), where
the signal on the low extreme of the continuum, smiling, gave way to laughter as soon as the intensity of
the emotion increased.

(16) Extract from written BNC, The five gates of hell. Thomson, Rupert. London: Bloomsbury Pub. Ltd, 1991.
‘You look like nobody else,’ he said,‘same as always.’ He held her again, then he looked round.‘Where’s George?’

‘She’s going to be late,’ Yvonne said. Harriet handed him a glass of wine. ‘She said she’d come and wake you
up when she got back.’ ‘You must be hungry,’ Yvonne said. She made him a sandwich and brought it to the table.
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He looked down at it, smiling. ‘What’s so funny?’ she said. He held the sandwich up.’ It’s the first sandwich you’ve
ever made me that hasn’t got any paint on it.’

(17) All the sweet promises. Elgin, Elizabeth. London: Grafton Books, 1991

‘She’ll have to go without, then – or paint her legs, as it suggested in the magazine. Gravy-browning is supposed to be
good.’ ‘Good grief!’ Mama bare-legged! Lucinda shook with silent joy. Gravy-browning? But it really wasn’t funny,
come to think of it, since poor Pa would be the whipping boy for the silk stocking shortage. One thing was certain, though.
Worrying about clothing coupons would at least make Mama forget the invasion for a while. ‘What’s so funny?’ Vi
demanded. ‘My mother. Having to paint her legs.’ Lucinda’s smile gave way to a throaty laugh. ‘But she’ll find a way
round it.’ She would, too.

6 Discussion

The data presented raises a variety of questions. We mention briefly two: first: why are few occurrences
of laughter CRs found? Second: why are they all related to laughs concerning pleasant incongruities and
none concerning social, pragmatic incongruities or closeness. The answer to these questions might be
correlated. On the one hand it is possible that a more refined exploration of the corpus will allow the de-
tection of more indirect forms of CRs. On the other hand we think that a laughter CR is potentially rude
or aggressive. That might explain, given its exclusive reliance on phone conversations between strangers,
why in SWBD we do not find any direct laughter CRs. Issues related to politeness and social conventions
might also explain the absence of laughter CRs related to social incongruities (e.g. embarrassment, ask-
ing a favour, criticising). In these kind of situations the request for a clarification would indeed have the
contrary effect to the one aimed by the laugher, making the situation very uncomfortable for the parties
involved. These kinds of laughter usually involve very low arousal and people are often not even aware of
producing them (Vettin and Todt, 2004), therefore asking for clarifications about something we were not
even aware of having produced might lead to embarrassment and to a temporary breakdown of the con-
versation. We can speculate therefore that CRs about laughs related to social incongruities do not arise
(at least in the contexts analysed) because of the more straightforward nature of this kind of laughs used
to smooth conversation and soften specific comments. Conversely, the laughables constituting pleasant
incongruity are a much more varied and significant collection, given also the judgemental, moral, and
cognitive aspects related to laughter production (e.g., not everything can a subject for laughter, it is silly
to laugh at some things, some laughter can be offensive for someone etc.). Moreover, cultural, personal
and emotional experiences, as well as “cognitive styles”, can influence and affect the perception of pleas-
ant incongruities, creating potential for discrepancy in the common ground (and topoi) considered by the
interlocutors and leading to the need for clarification requests. In a friendly but not intimate context (e.g.,
SWBD), the best option is always to produce a small antiphonal laughter, even when the laughable is
not shared, and either pursue the conversation regardless or attempt to seek clarification concerning the
laughable in more indirect ways.

7 Conclusion

In this paper we offer evidence that supports the proposal that laughter has propositional content
(Ginzburg et al., 2015; Mazzocconi et al., 2016), analysing both the clarification requests raised after
some laughter occurrences and the corrections after the interlocutor’s laughter that signal a wrong inter-
pretation of the previous contribution. Using clarification requests as diagnostics, we distinguish differ-
ent elements constitutive of laughter meaning and necessary for its interpretation, namely the laughable
(with its components) and the arousal. We hypothesize that there are restrictions on the form CRs can
take depending on the kind of laughter that is subject to clarification. This hypothesis needs to be in-
vestigated experimentally. We also offer tentative hypotheses concerning how the social context might
affect the occurrences of CRs relating to laughter. Data about the relation between smiling and laughter
is also provided, suggesting the possibility that the two are non-verbal social signals that can convey the
same meaning on a graded scale according to intensity. This, in turn, suggests the need to investigate
the cases when such graded difference of meaning are not evinced—e.g., the inability to use laughter
as a greeting. Moreover the fact that in both corpora analysed one can find CRs related to smiling such
as “What are you smiling about/at?”, “Why are you smiling?” suggests that our claims about laughter

23



having propositional content and functioning as an event predicate that selects for a contextual argument,
can be generalised also to other kind of non-verbal social signals (e.g. smiling and frowning).
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Abstract

Task-oriented virtual agents (VAs) are expected to interact with human users in a natural language
such as English and work with them to perform the users’ desired tasks. In order to respond to
the user or to carry out other actions, the VA needs to understand the meaning of the user utter-
ances. Since humans often utter (syntactically) incomplete sentences during conversations, the
VA needs to have the ability to comprehend such incomplete utterances - also known as Non
Sentential Utterances (NSU). In this work, we propose algorithms for the detection, classifica-
tion and resolution of such incomplete natural language utterances. Both rule-based as well as
machine-learned algorithms are proposed for NSU detection. The NSU classification algorithm
is machine-learning based. The output from the detection and classification tasks is used by a
heuristic algorithm for the NSU resolution task. Experimentations on and results of these algo-
rithms are presented and discussed for three different corpora (real-life human agent-user chats
from hospitality, retail and information-technology support areas) related to Customer Support
Representative domain.

1 Introduction

The onset of voice or chat-based assistants has created a need for building virtual agents that will be
able to carry out more natural conversations with humans. More specifically, we examine the domain
of Customer Support Representatives (CSR) that form an integral part of any business organization.
Great customer service and engagement drive business growth and popularity as discussed in a survey
(Sprinklr, 2017) and the use of chatbots or virtual agents is considered to be a way to achieve those
positive business outcomes (Gautam, 2017). A virtual agent that understands human utterances even in
their partial forms would make communication more natural.

The bot assistants available today (like Alexa or Siri) exhibit question-and-answering functionality,
being pre-trained with commands (Martin and Priest, 2017) in certain areas. As such the voice com-
mand systems do not have session handling capability of their own (Dart, 2017) and external skill-sets
have to be written to enable conversational capabilities. Handling all nuances of natural conversations,
specifically the NSUs, is yet to be seen in these systems.

A: as far as purchases, the sales department can help
you purchase it. However as soon as you purchase it we
can help you install it
B: excellent....

Example 1: Retail Transcript Snippet

A: We do also offer discounts for AAA members and
seniors 62 and over based on availability. If you would
qualify I can check for these rates as well.
B: AAA

Example 2: Hospitality Transcript Snippet

Examples 1 and 2 are transcript snippets from the customer service domains of retail and hospitality,
respectively. Speaker A depicts the human agent and B, the customer. In both examples, B’s response
is partially complete. The first instance is an exclamation by the customer whose intended expression is
to be understood by the agent. The second example is a response to agent’s context parameter (member-
ship type).
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Handling NSUs is critical to deriving the full semantic meaning of the conversation and recent neural
models such as sequence-to-sequence (Vinyals and Le, 2015) address only a few of these issues. We
discuss some prior work in section 2. We attempt the detection of partial utterances using both rule-
based as well as machine learning based approaches, followed by machine learning based approaches to
classify partial utterances, as described in section 3. The results are discussed in section 4. We discuss
our resolution approach in section 5 and conclude this paper in section 6.

2 Related Work

Non-sentential or elided utterances have been analyzed by researchers. A detection methodology for
verb phrase ellipsis using machine learning was presented by (Nielsen, 2004). (Pulman, 2000) discusses
a conditional equivalence mechanism of resolution between quasi-logic forms and their resolved logic
forms that cater to verb phrase elliptical occurrences. (Hardt and Rambow, 2001) examine the factors for
eliding verb phrases in text and present a trainable model.

(Fernández and Ginzburg, 2002) conducted a corpus-based study on some transcripts from the British
National Corpus (BNC) and presented a taxonomy of NSUs. A particular class- sluice, was extensively
studied by (Fernández et al., 2004). A machine learning classification for NSU types in dialog was
conducted by (Fernández et al., 2005) for the BNC corpus.

(Dragone, 2015) built on the classification work of (Fernández, 2006) by incorporating additional
features and a semi-supervised learning technique which resulted in an improvement in the classification
accuracy and also provided an approach to the probabilistic modeling of the dialog context. The author
reformulated the incomplete-sentence resolution rules from (Fernández et al., 2005) with a probabilistic
account of the dialog state.

(Schlangen, 2005) presented a machine learning based approach to identify fragmentary sentences and
their antecedents in a multi-party dialog. (Lin et al., 2016) presented an ellipsis and coreference module
in a virtual patient dialog system. (Raghu et al., 2015) proposed a rule-based approach to generate
resolved questions based on an input corpus of template reference questions and ranking the results.
Another approach was taken by (Kumar and Joshi, 2016) using an RNN based encoder-decoder network,
that would create the resolved utterance based on the incomplete utterance and its dialog context. They
trained sequence models for semantic as well as for syntactic patterns followed by building an ensemble
model.

3 Our Approach

3.1 Overall Architecture of the Spoken Dialog System
Figure 1 shows the overall architecture of our prototypical spoken dialog system, built mainly over
open source software. When a customer (Cust) utterance (utt) is received by the system, the constituent
blocks (Incoming Utterance Analyzer, Spoken Language Understanding Unit, Dialog Manager, Natural
Language Generator, Response Interface unit) work together to generate a response (resp) to utt. In this
paper, we only discuss the working of the Partial Utterance Analyzer (PUA) which is a sub-block of the
Spoken Language Understanding unit. The dotted box on the left-hand side of Figure 1 shows the flow of
the conversation timeline. ant refers to the antecedent, the immediately previous sentence uttered by the
system. The PUA is composed of three modules - the Detector, the Classifier and the Resolver modules.

3.2 Assumptions
We have made the following assumptions. First, the virtual agent would always converse in complete
sentences. Thus, we focus on resolving human partial utterances only. Second, the underlying method-
ology of this partial utterance analyzer module is meant to be applied to only dialog scenarios. These
have not been tested on other forms of text- like essays, interviews, or multi-party conversations.

3.3 Corpora: Corpus I for Detection and Corpus II for Classification
We have curated two sets of corpora of user utterances along with their immediate antecedent texts. The
first corpus, Corpus I, of size 1497 is used only for detection experiments. It contains both positive (637)
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Figure 1: Overall Architecture

and negative (860) occurrences of non-sentential user utterances. Our annotations of the target value is
either a yes / no, indicating the presence / absence of an NSU. The second corpus, Corpus II, of size 900
is used to train machine learning models for the classification of NSU categories. All user utterances in
this corpus, are therefore, of the non-sentential type.

For both corpora, we have taken real-life chat transcripts across the industry domains of hospitality,
retail and IT support. Hospitality transcripts include discussions around room booking, user profile
related issues and customer-rewards/offers. Chats in retail are mainly around product usage support,
replacement of defective items, and troubleshooting procedures. IT chat transcripts comprise discussions
around technical assistance, network troubleshooting and so on.

3.4 Advice Codes

We pre-define a catalog of advisory codes that give execution instructions to handle the incomplete
utterance. Our rule based detection algorithm additionally produces a response code along with the
expected yes/no evaluation, based on the rule that was triggered to arrive at the detection outcome. The
classifier module associates a specific advice code with each of the NSU classes. These advisory codes
are used by the Resolver module to understand the partial utterances and enable the VA to move the
conversation forward.

3.5 The Detector Module

We discuss both the rule-based and the machine-learning based approaches on Corpus I with 1497
records.

Rule Based Detection of Non-Sentential Utterances
The rule-based methodology presented in Algorithm 1 takes the inputs: utt (user utterance), ant (an-
tecedent) and dac utt (dialog act class 1 of utt). The detection outcome evaluated using a rule-engine
could be one of the following: yes (utt is non-sentential), no (utt is complete) or rule not found (utt
could not be covered by any of the rules). We’ve grouped the detection rules into multiple subroutines

1The Dialog Act Classifier (DAC) is one of the modules of our Spoken Language Understanding block and it predicts one
of the following acts for an utterance: G G (greeting), CAT (Confirmation Affirmation Turn), INFORMATION, COMMAND
or QUESTION. Other details related to DAC are out of the scope of this paper.
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as shown in algorithms 1 - 9. aff, conn, greet, rej, sluice are pre-defined sets of affirmation words,
connective words, greeting words, rejection words and question words, respectively. The flag variables
fr beg and fr end indicate the presence of connective words at beginning and at the end of utterance,
respectively. av standalone indicates if an auxiliary verb has an associated main verb in utt. mv, nc
and noun pos respectively denote the extracted main verbs, noun chunks and noun pos tags from utt.
SVO structure represents the structure of utt, it could be VO (verb object), SV simple (subject verb in a
simple sentence) or SV compound (subject-verb in a compound sentence) or SVO (subject-verb-object).
Finally, tkn contains the word token count of utt. We formulated these rules by first analyzing the various
NSU utterances, starting with smaller utterances (single token) and iteratively visiting larger sentences
and also studying their dependency trees.

Machine Learning Based Detection of Non-Sentential Utterances

The machine learning based approach uses scikit’s (Pedregosa et al., 2011) Support Vector Machines for
model training with a linear kernel parameter. Given the user utterance, its antecedent and both their
dialog act classes, the feature computation process is automated. One of the features is the length type
of the utterance which could be either single (single token utterance), small (smaller number of tokens,
up to four tokens) or long (more than four tokens). Another feature is the type of the utterance structure
in terms of its subject-verb-object (SVO) components. The utterance’s PoS (Parts-of-speech) uni-grams
and bi-grams are used as another feature. The first two features are categorical, therefore we encode
them using LabelEncoder and OneHotEncoder. The third feature is of string type to which we apply
CountVectorizer. The train/test split ratio used is 80/20 for this experiment.

3.6 The Classifier Module

The classifier module’s function is to predict the class type of an NSU. The categorization of NSU classes
has been motivated from the taxonomy of (Fernández and Ginzburg, 2002). We analyzed the customer
service chat transcripts and based on the nature of our domain, merged a few of these into a single class.
On the other hand, we have ignored a few of the non-relevant ones. We have also added the classes
Verb Phrase Ellipsis (VPE) and Noun Phrase Ellipsis (NPE). We have used nine classes of NSUs in our
work: Ack (Acknowledgement), AffAns (Affirmation Answer), FragByConn (Fragments By Connec-
tives), NPE, PropModifier (Propositional Modifier), RejAns (Rejection Answer), Short Answer, Sluice
and VPE. Table 1 shows the description of these classes with examples where B’s utterances are non-
sentential (shown in italics). Specific advice codes are mapped to each of these individual classes that
later help with resolution.

As stated earlier, Corpus II is used for the classification experiments. The features used are listed in
Table 2a. Table 2b shows the distribution of the NSU classes in this corpus. All the features are computed
automatically out of which one is of string type and the rest are categorical. Encoders LabelEncoder
and OneHotEncoder are used for the latter type whereas uni-grams and bi-grams are computed for the
individual tokens and their corresponding PoS tags. The dataset is split into 80/20 train/test ratio. We
have trained two models– Support Vector Machines on a linear kernel and Random Forests with 4000
trees using scikit-learn (Pedregosa et al., 2011), on this data and using these features.

4 Results

4.1 Detection Results

Table 3a summarizes the results of rule-based detection algorithm on Corpus I under column name
Combined. For comparing the efficiency of the detection algorithm across domains, we also present
the individual results for Hospitality, Retail and IT support. We observe that the coverage of these rules
is quite high, at least 91%. The accuracy measures around 88%, with the precision, recall and f1 scores
hovering around 0.85 for the combined dataset. Table 3b shows the metrics of the ML based detection
approach. The average precision, recall and f1 scores are 0.82 which are slightly lesser than the rule-
based approach.
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Input: (utt, ant, dac utt)
Output: detection output
Result: Partial Utterance Detection Outcome
res = Call Sub 1 ()
if res != empty then

return res
if tkn == 1 then

Call Sub 2 ()
if tkn in {2,3,4} and nc == empty and mv ==

empty then
Call Sub 3 ()

if tkn >1 and mv is empty and noun pos is empty
then

if regex((PROPN(CCONJ(PROPN))*)+) ==
True or regex((((NUM)*)((PROPN)*))+)
== True then

return yes
if tkn >4 or (tkn in {2,3,4} and either nc or mv is

non-empty) then
Sub 4 ()

if utt contains sluice text and verb is missing then
return yes

if utt has verb missing then
return yes

return ”rule not found”
Algorithm 1: Detection Algorithm

Input: (utt)
Output: detection output
if utt in greet and utt in {aff, rej} then

return yes
if utt in conn and (fr beg == True or fr end ==

True) then
return yes

if utt in greet then
return no

if utt has av standalone then
return yes

Algorithm 2: Sub 1

Input: (utt, dac utt)
Output: detection output
if utt in {aff, rej, sluice} then

return yes
if utt in greet then

return no
if dac utt == ”CAT” then

return yes
if pos utt in {”ADV”, ”ADP”, ”PROPN”,

”NOUN”, ”INTJ”, ”VERB”, ”NOUN”} then
return yes

Algorithm 3: Sub 2

Input: (utt, dac utt)
Output: detection output
if utt in greet then

return no
if utt in {aff, rej, sluice} then

return yes
if dac utt == ”CAT” then

return yes
Algorithm 4: Sub 3

Input: (utt)
Output: detection output
if utt has VO then

Sub 4.1 ()
if utt has SV simple then

Sub 4.2 ()
if utt has SV compound then

Sub 4.3 ()
if utt has SVO then

Sub 4.4 ()
Algorithm 5: Sub 4

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if dac utt == ”COMMAND” then

return no
else if dac utt == ”QUESTION” then

return yes
Algorithm 6: Sub 4.1

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if helping verb(utt) == True then

return yes
if helping verb(utt) == False and (

acomp(verb,ADJ) == True or
advmod(verb,ADV) == True) then

return no
if helping verb(utt) == False and xcomp(verb,-)

== True then
return yes

Algorithm 7: Sub 4.2

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
if (nsubj(verb1,-) == True or nsubjpass(verb1,-)

== True) and acomp(verb2, ADJ) then
return no

if (nsubj(verb1,-) == True or nsubjpass(verb1,-)
== True) and advmod(verb2, ADV) then

return yes
if (nsubj(verb1,-) == True or nsubjpass(verb1,-)

== True) and attr(verb2, nounphrase) then
return no

Algorithm 8: Sub 4.3

Input: (utt)
Output: detection output
if firstword(utt) in {aff, rej} then

return yes
else

return no
Algorithm 9: Sub 4.4

We have adopted the rule-based detection in our prototype implementation because of two main rea-
sons: Advisory codes produced by rule algorithm give additional information that which rule was trig-
gered to arrive at the conclusion, this is not available in the ML approach. For example, information
about the occurrence of fragment words at either the beginning or at the end of an utterance could be
obtained by rules; while the ML approach only yields a binary outcome (yes / no). This information
becomes valuable during resolution. Second, the resultant metrics are a little better for the rule approach
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than that of the ML one. An auxiliary benefit of using rules is that they give an insight into the cover-
age efficiency of the rule-set. This could further help us in identifying linguistic heuristics to improve
coverage, such as adding domain-specific data matches for ticket reference numbers, log data, etc.

NSU Class Name Description Example
Ack

(Acknowledgement) user acknowledgement to antecedent A: I will run a scan for errors.
B: ok

AffAns
(Affirmation Answer) user confirming acceptance of antecedent A: Would you like to get us started?

B: yes please
FragByConn

(Fragments by Connectives)
usage of fragments (but, and, or, as well as)

at the beginning or at the end of utt
A: Please try to enter your password into the other box.

B: I don’t know and
NPE

(Noun Phrase Ellipsis) noun part being omitted in utt A: What specific symptoms are you having?
B: breaks up

PropModifier
(Propositional Modifier)

exclamations using adjectives,
adverbial words

A: Average wait time is 2-32 minutes
B: excellent

RejAns
(Rejection Answer) utt expressing rejection of antecedent A: Is the forecast lost?

B: no

Short Answer utt containing just the answer values A: What type of computer do you currently have?
B: Microsoft Surface Pro 4

Sluice questions in incomplete forms A: Can you clear your cache?
B: how?

VPE
(Verb Phrase Ellipsis) verb part being omitted in utt

A: Have you tried using another browser like
Google Chrome to do the printout??

B: no I haven’t

Table 1: NSU class description with examples from customer chat transcripts (A: Agent, B: Customer)

Feature Description
wh presence of wh-word in utt
aff presence of affirmation word in utt
rej presence of rejection word in utt

ack presence of acknowledgement in utt
frag presence of fragment words in utt

grams pos and word n-grams of utt, n in (1,2)
utt dac DAC class of utterance
ant dac DAC class of antecedent

len if length of utterance is single, short or long
svo subject-verb-object structure of utt

noun presence of noun in utt
mv presence of main verb in utt

av mv auxiliary verb in utt having an associated main verb in utt
single token type type of utt if it consists of only one word

firstword type of first word in utt

(a) Feature Set

Class Type Count
Ack 93

AffAns 140
FragByConn 79

NPE 87
PropModifier 41

RejAns 77
ShortAnswer 210

Sluice 56
VPE 117

Total 900

(b) Class Distribution

Table 2: Set of features and class distribution of the classification corpus

4.2 Results of Partial Utterance Classification

Tables 4a and 4b show the classification reports of the models trained using SVM and using RF. Both
show similar average results for the precision, recall and f1 parameters. Short Answer type that had
maximum count in class distribution showed good recall values in SVM (0.93) and RF (0.88) models.
All classes except NPE and VPE show good precision values in SVM. The limited and similar type of
data points of NPE could be the reason for its bad performance. The Random Forest classifier shows
high precision for Sluices (1.00) and Affirmative Answers (0.96). Please note that the corpora references
can be given upon request.
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Parameter Hospitality Retail IT Combined
Dataset Size 493 498 506 1497

Coverage 96.35% 91.77% 92.29 93.45%
Accuracy 89.68% 87.75% 86.94% 88.06%
Precision 0.8457 0.8778 0.8028 0.8417

Recall 0.8509 0.8700 0.9067 0.8752
f1 0.8483 0.8739 0.8516 0.8581

(a) Rule-Based Detection Approach

Precision Recall F1
no 0.85 0.85 0.85
yes 0.77 0.77 0.77

avg / total 0.82 0.82 0.82
(b) Machine Learning based Detection Ap-
proach using Support Vector Machines

Table 3: Results of Partial Utterance Detection

5 The Resolver Module

5.1 Defining Resolution in Customer-Support Chat Scenarios

The aim of resolving an NSU in a goal-oriented conversation is to enable the agent to understand its
intended meaning and progress the conversation accordingly. It may not always necessarily mean re-
constructing the utterance. With this understanding, we’ve designed the resolver module to interact with
some of the other components of our system- namely the dialog manager that helps with a meaningful
conversation flow; it also consists of a dialog state tracker (keeps track of state variables in a conversa-
tion), and a policy manager (decides on strategies like grounding, confirmation questions, taking turns).
As discussed earlier, outcomes from the rule-based detector and classifier modules guide the resolver to
handle the partial utterance.

Precision Recall F1
Ack 0.91 0.91 0.91

AffAns 0.85 0.81 0.83
FragByConn 0.73 0.62 0.67

NPE 0.55 0.69 0.61
PropModifier 0.82 0.64 0.72

RejAns 0.82 0.93 0.87
ShortAnswer 0.89 0.93 0.91

Sluice 1.00 0.70 0.82
VPE 0.67 0.70 0.68

avg / total 0.81 0.81 0.81
(a) Classification Results for SVM

Precision Recall F1
Ack 0.87 0.91 0.89

AffAns 0.96 0.85 0.90
FragByConn 0.69 0.69 0.69

NPE 0.64 0.88 0.74
PropModifier 0.69 0.64 0.67

RejAns 0.76 0.87 0.81
ShortAnswer 0.83 0.88 0.85

Sluice 1.00 0.60 0.75
VPE 0.75 0.60 0.67

avg / total 0.81 0.80 0.80
(b) Classification Results for Random Forests

Table 4: Classification Results

5.2 The resolve Function

We formulate the following function in order to resolve non-sentential utterances in a goal-oriented
conversation:

resolve(getCODE(obj), getCTXT (obj.utt), getCTXT (obj.ant), statevar, turn flag) (1)

A dialog object obj includes the user NSU (obj.utt) and its antecedent (obj.ant). The resolve func-
tion consists of the sub-functions getCODE() and getCTXT(), and parameters statevar and turn flag.
getCODE() retrieves and merges the advisory codes from the detector and the classifier modules. getC-
TXT() retrieves the context variables at the current dialog level. These may include specific slot values or
even actionable items. The context information is retrieved for both obj.utt and obj.ant, as shown by the
second and third parameters of the resolve function. statevar is the set of all state variables at the entire
conversation level. turn flag indicates the next turn taker- 0 implies system’s turn, 1 implies user’s turn.
We describe the resolution steps through algorithms 10 through 12. The output of the resolve function is
a series of suggested execution steps based on the advisory code.

Here, we show the code values as the NSU class names. Some supplementary systems are used, e.g.
sentiment analyzer, question answering(Gupta et al., 2018). We associate conf flags (confirmation flags)
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for all variables and a confirmation by the user sets the associated flags to 1. The function isAdditional-
Text() (Algorithm 11) takes checks if there is additional text present in the utterance text other than the
pre-defined sets of Ack/ AffAns/ RejAns. Algorithm 12 sets the value of turn flag.

Input: resolve(code, obj.utt, obj.ant, statevar, turn flag)
Output: resolution steps based on NSU class code
if code in ”Ack”, ”AffAns”, ”RejAns” then

if code is ”Ack” or ”AffAns” then
set conf flags to 1

else
set conf flags to 0

if isAdditionalText(code, obj.utt) == yes then
update context vars in obj

if code == ”PropModifier” then
Compute Sentiment and Emotion scores
Invoke Policy Mgr to generate apt response

if code == ”Short Answer” then
Assign context var of obj.ant with obj.utt

if code == ”Sluice” then
Invoke Question Answering system to get answer

if code in ”FragByConn beg”, ”FragByConn End then
if ”beg” in code then

reconstruct obj.utt by appending obj.utt to obj.ant
if ”end” in code then

wait for user to enter further input text
if code == ”NPE” then

retrieve noun phrases from obj.ant
ask user confirmation based on policy manager

if code == ”VPE” then
retrieve action verbs from obj.ant
ask user confirmation based on policy manager

update statevar; set turn flag(code)
Algorithm 10: Resolution

Input: isAdditionalText(code, text)
Output: Checking for additional data
if code == ”Ack” then

Check token count in text after
removing words from Ack set

if code == ”AffAns” then
Check token count in text after

removing words from Aff set
if code == ”RejAns” then

Check token count in text after
removing words from Rej set

if token count == 0 then
return no

else
return yes

Algorithm 11: Checking Addi-
tional Text

Input: set turn flag (code)
Output: Setting turn flag
if code in ”Ack”, ”PropModifier”

then
turn flag = 0

if code in ”FragByConn End” then
turn flag = 1

Algorithm 12: Setting turn flag

User’s response excellent in example 1 is a PropModifier, the resolver would check the sentiment and
emotion scores and invoke the policy manager to generate a response. In example 2, user utterance is
Short Answer that would update the antecedent context variable membership type.

6 Conclusion

We present a Partial Utterance Analyzer that detects, classifies and resolves non-sentential utterances
for human-BOT conversations for customer services. We discuss a rule-based and a machine learn-
ing approach for detection. For classification, we show machine learning models. Resolution involves
executing instructions from advices codes that are generated by the rule-based detection and the clas-
sification modules. Results of detection and classification are fairly good, considering the open-ended
and practical nature of the data. The corpora have been curated from real-life chat transcripts across
hospitality, retail and information technology support areas.

There isn’t a way of directly comparing our work with those of the earlier approaches, primarily
because of the nature of the data (real-life chats) and the nature of the domain (goal-oriented customer
service chats). There are no corpus-specific constructs (e.g. has pause) or embedded data (like C5 tags)
as were there in the BNC corpus. We have refurbished the set of NSU class types from what is described
in earlier work by merging some of the classes, adding new ones and leaving out a few that don’t seem
to attach any relevance in a chat-bot framework. Our resolution approach is tied to advice codes that
the dialog manager architecture supports with its functionality, whereas earlier approaches were mainly
around reconstructing sentences, thus making comparison a tricky process.

Our current work is integrated in a prototypical framework called OpenDial (Lison, 2015), which is a
Java toolkit for developing spoken dialog systems using a probabilistic-rules formalism. As we deploy
our framework in practice, our future work will focus on a detailed analysis of the performance of the
algorithms by testing them with more data across CSR domains as well as on social chat-bot scenario,
and on improving the robustness of the algorithms. We also wish to explore the transitioning towards
automatic rule induction, and inclusion of deep learning techniques at various stages of the algorithms.
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Abstract

The task of detecting dialogue breakdown, the aim of which is to detect whether a system ut-
terance causes dialogue breakdown in a given dialogue context, has been actively investigated
in recent years. However, it is not clear which evaluation metrics should be used to evaluate
dialogue breakdown detectors, hindering progress in dialogue breakdown detection. We propose
an approach of finding appropriate metrics for evaluating such detectors. In our approach, we
first enumerate possible evaluation metrics then rank them on the basis of system ranking sta-
bility and discriminative power. By using the submitted runs (results of dialogue breakdown
detection of participants) of a dialogue breakdown detection challenge, we experimentally found
that MSE(NB+PB,B) and MSE(NB,PB,B), which represent the mean squared error calculated
by comparing a detector’s output distribution and a gold distribution, are appropriate metrics for
dialogue breakdown detection.

1 Introduction

We are witnessing an emergence of chat-oriented dialogue systems due to their social and entertainment
aspects (Wallace, 2009; Higashinaka et al., 2014a; Venkatesh et al., 2017). However, since the range of
topics in chats is diverse and the content can be quite complex, it is often the case that such systems make
inappropriate utterances, leading to dialogue breakdown, a situation in which a user and system cannot
proceed with a dialogue (Martinovski and Traum, 2003).

To avoid such situations, the task of detecting dialogue breakdown (Higashinaka et al., 2016), the aim
of which is to detect whether a system utterance causes dialogue breakdown in a given dialogue context,
has been actively investigated. To cultivate techniques for detecting dialogue breakdown, evaluation
workshops dedicated to dialogue breakdown detection (dialogue breakdown detection challenges; DB-
DCs) have been held (Higashinaka et al., 2017). The participants have developed dialogue breakdown
detectors that output a dialogue breakdown label (B: breakdown, PB: possible breakdown, or NB: not a
breakdown) and a probability distribution of these labels for a given system utterance in a given context.
The definitions of the labels are given as follows.

NB: It is easy to continue the conversation after the system utterance in question.

PB: It is difficult to continue the conversation smoothly after the system utterance in question.

B: It is difficult to continue the conversation after the system utterance in question.

For example, consider the following piece of dialogue.
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S1: It’s nice to go shopping alone.
U1: I agree. That’s nice.
S2: Shopping takes time.
U2: Window shopping is also fun.
S3: It’s fun to go shopping with somebody.

In the above dialogue, system utterances are prefixed with S and user utterances with U. The dialogue
context is from S1 to U2, and the target utterance for dialogue breakdown detection is S3 (underlined).
In this example, S3 is likely to cause a dialogue breakdown because S3 contradicts S1. Therefore, a
detector that classifies this as B or PB will be regarded as accurate.

The performance of dialogue breakdown detectors in DBDCs is evaluated using a variety of evaluation
metrics (there are nine metrics used in DBDCs), including those that compare a detector’s output label
with a gold label (classification-related metrics) and those that compare a detector’s output distribution
with a gold distribution (distribution-related metrics). The gold distribution is derived from the annota-
tions of dialogue breakdown labels by multiple annotators; in DBDCs, 30 annotators have been used for
each utterance to derive the gold distribution. Although several techniques for detecting dialogue break-
down have been proposed, the current problem is that, since there are many evaluation metrics used, it is
not clear on which metric researchers should focus. To propel progress in dialogue breakdown detection,
we should determine which metrics are appropriate.

We propose an approach of finding appropriate metrics for evaluating dialogue breakdown detectors.
In our approach, we first enumerate possible evaluation metrics (22 in all), including those used in
DBDCs as well as those we newly added. Then, we rank the evaluation metrics on the basis of two
criteria, i.e., system ranking stability and discriminative power, that are used in information retrieval (IR)
research (Webber et al., ). By using submitted DBDC runs (results of dialogue breakdown detection of
participants), we experimentally found appropriate evaluation metrics.

In the next section, we cover related work. In Section 3, we describe our approach, including the
enumeration of possible evaluation metrics and criteria for ranking the metrics. In Section 4, we present
the ranking of the metrics and determine which are appropriate. Finally, in Section 5, we summarize the
paper and mention future work.

2 Related work

There is a good body of work on detecting problematic situations in task-orientated dialogue systems
(Walker et al., 2000b; Lendvai et al., 2002; Lopes et al., 2016; Meena et al., 2015). In these studies,
features, such as speech-recognition results, language-understanding results, and prosodic information,
were extracted from user/system utterances and used to train a model that can detect problematic situa-
tions (also called “miscommunications” or “hotspots”).

Detecting problematic system utterances in chat-oriented dialogue systems has been actively studied.
For example, Xiang et al. (2014) use machine-learning techniques to classify system utterances as prob-
lematic or non-problematic by using features related to user intent and user sentiment. Higashinaka et
al. (2014b) proposed incorporating various dialogic features, such as dialogue-act types and question
types, to detect incoherent system utterances. More recently, three series of DBDCs have been held (Hi-
gashinaka et al., 2017), and a number of teams participated and submitted their runs, showing growing
interest in dialogue breakdown detection.

In contrast to this increasing attention, there has been little research on the evaluation metrics for
dialogue breakdown detection. In past DBDCs, nine metrics were used without much emphasis on any
one in particular, making it difficult for the participants to tune their detectors and for the organizers
to determine the best detector. The problem is that, in task-oriented dialogue systems, problematic
situations can be determined relatively easily with regards to the task at hand; however, in chat-oriented
dialogue systems, deciding if an utterance is problematic can be highly subjective, making it difficult to
define the gold label. The use of distribution-related metrics may solve this problem; however, it is not
clear if they are any better than classification-related metrics.
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In this study, we empirically verified which metrics are appropriate in dialogue breakdown detection.
To this end, we turned to techniques used in IR studies and used the criteria of system ranking stability
and discriminative power (see Section 3) to find appropriate evaluation metrics. Since IR-related work
requires evaluating a system’s output by comparing it with relevance assessment results obtained from
multiple assessors, the setting of dialogue breakdown detection is similar to that in IR research; hence,
the same technique can be applied. We acknowledge that the use of correlation is commonly used in
dialogue research (Walker et al., 2000a; Higashinaka et al., 2004; Liu et al., 2016) to find appropriate
evaluation metrics; however, this is only applicable when the target is a scalar value. In our case, gold
data take the form of distributions, making the application of correlation-based approaches difficult.

A study on annotating chat-oriented dialogue systems with three labels (invalid, acceptable, valid) is
currently underway in the WOCHAT initiative1 (Charras et al., 2016; Curry and Rieser, 2016), but little
research has been done to estimate these labels. Since the labels in that study are similar to those used
in dialogue breakdown detection, we believe the proposed approach and the appropriate metrics found
with the approach will be useful for that study.

3 Approach

We empirically verified which metrics are appropriate in dialogue breakdown detection. We first enu-
merated as many evaluation metrics as possible to create an exhaustive list of candidates for the metrics.
Then, we ranked the metrics according to the selection criteria used in IR, i.e., system ranking stability
and discriminative power.

3.1 Candidates for evaluation metrics

The metrics in DBDCs can be categorized into two types: classification-related and distribution-related
(Higashinaka et al., 2016).

Classification-related metrics Classification-related metrics are used to evaluate the correctness of the
classification of dialogue breakdown labels. These values are calculated by comparing the output
label of the dialogue breakdown detector and the gold label determined by majority voting from
the gold distribution. The value of a classification-related metric is calculated for each dialogue;
for example, to derive an accuracy, we divide the number of correctly predicted labels by the total
number of labels (system utterances) within a dialogue.

Distribution-related metrics Distribution-related metrics are used to evaluate the output probability
distribution of dialogue breakdown labels, which are calculated by comparing the distribution of
the labels predicted by the dialogue breakdown detector with the gold distribution. The value of a
distribution-related metric is calculated for each utterance.

The nine evaluation metrics in past DBDCs are naturally our candidates. However, it is not clear whether
these metrics are sufficient. Therefore, we added several evaluation metrics that we thought were worth
considering. Table 1 lists all metrics used in this study; (2)–(6), (9)–(10), (14)–(16), and (20)–(22) are
our newly added metrics.

We added (2) and (3) because, although cases in which PB+B or NB+PB is regarded as a single
label were considered for mean squared error (MSE) and Jensen-Shannon divergence (JSD), these cases
were not considered for accuracy. We also added (4)–(6), (9)–(10), (14)–(16), and (20)–(22), which
are weighted metrics. Since we believe that utterances with a high agreement of annotations need to
be treated with more emphasis than those with a low agreement, we devised weighted metrics. In this
paper, we use the Simpson index for weighting. We calculate the weight w for each utterance with the
following equation:

w =
∑

l∈{NB,PB,B}

p2l , (1)

1http://workshop.colips.org/wochat/
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Table 1: Evaluation metrics. “+w” means that metrics are weighted. See Eq. (1) for deriving weight in
weighted metrics.

Metric Description
Classification-related metrics

(1) Accuracy(NB,PB,B) For the system utterances in a dialogue, we compare the predicted labels and
their gold labels. Then, the accuracy is calculated by dividing the number of
correctly classified labels by the total number of labels.

(2) Accuracy(NB,PB+B) Same as (1) when PB and B are regarded as a single label.
(3) Accuracy(NB+PB,B) Same as (1) when NB and PB are regarded as a single label.
(4) Accuracy+w(NB,PB,B)

cn =

{
1, if predicted label matches gold label;
0, otherwise;

Accuracy =

∑N
n=1 cnwn∑N
n=1 wn

n means utterance index, N means the total number of utterances, and w means
the weight.

(5) Accuracy+w(NB,PB+B) Same as (4) when PB and B are regarded as a single label.
(6) Accuracy+w(NB+PB,B) Same as (4) when NB and PB are regarded as a single label.
(7) F1(B) For the system utterances in a dialogue, we compare the predicted labels and

their gold labels. Then, we derive the F1 for the classification of B labels by the
harmonic mean of precision and recall for B labels. See (9) for the definition of
precision and recall.

(8) F1(PB+B) Same as (7) when PB and B are regarded as a single label.
(9) F1+w(B)

predn(labels) =

{
1, if predicted label is in labels;
0, otherwise;

goldn(labels) =

{
1, if gold label is in labels;
0, otherwise;

TP =
N∑

n=1

predn(B)goldn(B)wn

FP =
N∑

n=1

predn(B)goldn(NB, PB)wn

TN =
N∑

n=1

predn(NB, PB)goldn(NB, PB)wn

FN =
N∑

n=1

predn(NB, PB)goldn(B)wn

Precision =
TP

TP + FP
Recall =

TP

TP + FN

F1 =
2Precision · Recall

Precision + Recall

(10) F1+w(PB+B) Same as (9) when PB and B are regarded as a single label.
Distribution-related metrics

(11) JSD(NB,PB,B) For each system utterance, we compare the predicted distribution of the three
labels (NB, PB, and B) and that of the gold labels. Then, Jensen-Shannon di-
vergence is calculated.

(12) JSD(NB,PB+B) Same as (11) when PB and B are regarded as a single label.
(13) JSD(NB+PB,B) Same as (11) when NB and PB are regarded as a single label.
(14) JSD+w(NB,PB,B) The weighted version of (11). The value is weighted by w in Eq. (1).
(15) JSD+w(NB,PB+B) Same as (14) when PB and B are regarded as a single label.
(16) JSD+w(NB+PB,B) Same as (14) when NB and PB are regarded as a single label.
(17) MSE(NB,PB,B) For each system utterance, we compare the predicted distribution of the three

labels (NB, PB, and B) and that of the gold labels. Then, mean squared error is
calculated.

(18) MSE(NB,PB+B) Same as (17) when PB and B are regarded as a single label.
(19) MSE(NB+PB,B) Same as (17) when NB and PB are regarded as a single label.
(20) MSE+w(NB,PB,B) The weighted version of (17). The value is weighted by w in Eq. (1).
(21) MSE+w(NB,PB+B) Same as (20) when PB and B are regarded as a single label.
(22) MSE+w(NB+PB,B) Same as (20) when NB and PB are regarded as a single label.38



where pl means the probability of each label l in the gold probability distribution. For example, if the
probability distribution is (pNB, pPB, pB) = (0.33, 0.33, 0.33), w = 0.33, and for (pNB, pPB, pB) =
(0.0, 0.0, 1.0), w = 1.0. Thus, the higher the agreement of annotations is, the higher the weight of
utterances becomes. In Table 1, weighted metrics are indicated with “+w.” The use of this type of
weighting has been considered in previous studies (Sakai, ; Shang et al., 2017) as “unanimity-aware
gain” and has shown promising results, making systems more distinguishable; hence, our adoption of
weighting.

3.2 Criteria of appropriate evaluation metrics
To select the most appropriate evaluation metrics from our metric candidates, we use two criteria (system
ranking stability and discriminative power (Webber et al., )) commonly used in IR. To calculate these
values, we use the results of dialogue breakdown detection of multiple dialogue breakdown detection
systems (typically called “runs” in evaluation workshops).

System ranking stability We can assume that an appropriate evaluation metric should be able to rank
runs more or less in the same order independent of the dataset. System ranking stability can check
whether the rankings of runs are stable across multiple datasets. To calculate stability, various
datasets are prepared first. Then, for each dataset, the ranking of the runs is created. After that,
the rank correlations of the ranking pairs are calculated and averaged to derive the system ranking
stability.

Discriminative power We can assume that an appropriate evaluation metric should be as sensitive to the
difference in runs as possible. By using each evaluation metric, we compare run pairs and see how
many they significantly differ. We can regard the metrics with the most run pairs with statistically
significant difference as the most appropriate evaluation metrics.

4 Evaluation

We experimentally searched for appropriate evaluation metrics that meet the criteria of system ranking
stability and discriminative power. We ranked evaluation metrics for each language (note that the DBDC
datasets contain both English and Japanese data) and calculated the average ranks so that we could
select highly ranked ones across languages. In what follows, we describe the datasets we used and the
procedure for calculating the values for the criteria.

4.1 Datasets
We used both the English and Japanese dialogue datasets of DBDC32 and the results of the submitted
runs of the participants in DBDC3 (for details, see (Higashinaka et al., 2017)).

DBDC3 datasets The datasets were collected using four English systems [TKTK (Yu et al., 2016), IRIS
(Banchs and Li, 2012), CIC3, and YI4] and three Japanese systems [DCM (Onishi and Yoshimura,
2014), DIT (Tsukahara and Uchiumi, 2015), and IRS (IR-status-based system from (Ritter et al.,
2011)]. Both datasets include 50 dialogue sessions, totaling 350 sessions. All dialogue sessions
were 20 or 21 utterances long and included 10 system responses, each of which was annotated with
dialogue breakdown labels by 30 annotators.

Submitted runs In the challenge, each participating team could submit up to three runs for each lan-
guage. There were 12 runs for both English and Japanese. We also used the results of two baselines.
One is a majority baseline that outputs the most frequent dialogue breakdown label in each system’s
development data with averaged probability distributions. The other was a baseline using condi-
tional random fields (CRFs) that labels utterance sequences with the three breakdown labels by

2https://dbd-challenge.github.io/dbdc3/data/
3This dataset comes from the human evaluation round of the conversational intelligence challenge (http://convai.

io/data/)
4https://www.slideshare.net/sld7700/skillbased-conversational-agent-80976302
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Table 2: Submitted runs in English summarized by their key features. MemN2N and ETR denote end-
to-end memory network and extra trees regressor, respectively.

Run Model Word/Sentence Bag of Utterance Turn
embedding words similarity index

KTH run1 (Lopes, 2017) SVM ✓
KTH run2 LSTM ✓
KTH run3 LSTM ✓ ✓
PLECO run1 (Saito and Iki, 2017) MemN2N ✓
PLECO run2 MemN2N ✓
RSL17BD run1 (Kato and Sakai, 2017) ETR ✓ ✓ ✓
RSL17BD run2 ETR ✓ ✓ ✓
RSL17BD run3 ETR ✓ ✓ ✓
NCDS run1 (Park et al., 2017) RNN ✓
NCDS run2 RNN ✓
NCDS run3 RNN ✓ ✓
SWPD run1 (Xie and Ling, 2017) Bi-LSTM ✓
CRF Baseline CRF ✓
Majority Baseline

Table 3: Submitted runs in Japanese summarized by their key features. EoR denotes ensemble of regres-
sors.

Run Model Word/Sentence Bag of Utterance Turn
embedding words similarity index

PLECO run1 (Saito and Iki, 2017) MemN2N ✓
PLECO run2 MemN2N ✓
PLECO run3 MemN2N ✓
RSL17BD run1 (Kato and Sakai, 2017) ETR ✓ ✓ ✓
RSL17BD run2 ETR ✓ ✓ ✓
RSL17BD run3 ETR ✓ ✓ ✓
OUARS run1 (Takayama et al., 2017) CNN ✓
OUARS run2 CNN, LSTM ✓
OUARS run3 CNN, LSTM ✓
NTTCS run1 (Sugiyama, 2017) EoR ✓ ✓ ✓
NTTCS run2 EoR ✓ ✓ ✓
NTTCS run3 EoR ✓ ✓ ✓
CRF Baseline CRF ✓
Majority Baseline

using CRFs. The features used were words in a target utterance and the previous utterances. For the
probability distribution, a probability of 1.0 was given to a label determined by the CRFs. Tables
2 and 3 summarize the submitted runs of the participants in English and Japanese, respectively.
The tables indicate that many approaches have been tested, including those that use recent neu-
ral network models as well as those that use more conventional support vector machines (SVMs),
random-forest-based methods such as extra trees regressor, and the ensemble of regressors.

4.2 Evaluation procedure
For system ranking stability, we used the rank correlation of ranked runs over different datasets to eval-
uate the metrics described in Section 3.2. There are two major rank-correlation statistics, Kendall’s
τ (Kendall, 1938) and Spearman rank correlation coefficient (Spearman, 1904). Because Kendall’s τ has
become a standard statistic for comparing the correlation between two ranked lists (Yilmaz et al., 2008),
we used it to examine our rank correlation.

For both English and Japanese datasets, we first merged all data. Then, we created two subsets of
data; each subset created by randomly sampling 20% from the merged data. For each metric, we ranked
the runs for each subset to derive two run rankings. Finally, we calculated Kendall’s τ between these
rankings. To obtain stable results, we repeated this process 500 times and obtained the average value of
Kendall’s τ .

Regarding discriminative power, for each dataset of English and Japanese, we calculated the percent-
age of runs with statistical differences for all run pairs and ranked metrics according to that percentage.
After that, we calculated the average rank over English and Japanese. We did this for each evaluation
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Table 4: Results of system ranking stability
English Japanese

Metrics Kendall’s τ Rank Kendall’s τ Rank Average rank
MSE(NB+PB,B) 0.81 3 0.85 2 2.5
MSE(NB,PB,B) 0.79 6 0.86 1 3.5
MSE+w(NB+PB,B) 0.82 2 0.83 5 3.5
JSD(NB+PB,B) 0.81 4 0.83 4 4.0
JSD+w(NB+PB,B) 0.82 1 0.77 9 5.0
JSD(NB,PB,B) 0.77 12 0.85 3 7.5
JSD+w(NB,PB+B) 0.79 5 0.63 13 9.0
MSE(NB,PB+B) 0.78 11 0.77 8 9.5
JSD(NB,PB+B) 0.78 10 0.74 10 10.0
MSE+w(NB,PB+B) 0.78 8 0.68 12 10.0
MSE+w(NB,PB,B) 0.73 14 0.82 6 10.0
JSD+w(NB,PB,B) 0.75 13 0.78 7 10.0
Accuracy(NB+PB,B) 0.79 7 0.58 16 11.5
Accuracy+w(NB+PB,B) 0.78 9 0.61 15 12.0
Accuracy+w(NB,PB,B) 0.3 21 0.68 11 16.0
F1+w(B) 0.66 16 0.5 17 16.5
F1(B) 0.66 15 0.48 18 16.5
Accuracy(NB,PB,B) 0.26 22 0.63 14 18.0
F1(PB+B) 0.65 17 0.21 20 18.5
Accuracy(NB,PB+B) 0.62 18 0.18 21 19.5
Accuracy+w(NB,PB+B) 0.56 20 0.26 19 19.5
F1+w(PB+B) 0.61 19 0.14 22 20.5

Table 5: Average rank of each metric in terms of their discriminative power
English Japanese

Metrics % of run pairs with sig-
nificant difference

Rank % of pairs found with
significant difference

Rank Average rank

MSE(NB,PB,B) 67.0 6 76.9 2 4.0
MSE(NB+PB,B) 70.3 2 70.3 8 5.0
JSD(NB+PB,B) 67.0 6 74.7 4 5.0
MSE+w(NB+PB,B) 68.1 4 72.5 7 5.5
MSE(NB,PB+B) 68.1 4 64.8 9 6.5
MSE+w(NB,PB,B) 61.5 12 76.9 2 7.0
Accuracy(NB+PB,B) 71.4 1 52.7 14 7.5
JSD+w(NB+PB,B) 62.6 9 73.6 6 7.5
JSD(NB,PB,B) 60.4 14 81.3 1 7.5
JSD(NB,PB+B) 63.7 8 64.8 9 8.5
Accuracy+w(NB+PB,B) 70.3 2 50.5 16 9.0
JSD+w(NB,PB,B) 60.4 14 74.7 4 9.0
MSE+w(NB,PB+B) 61.5 12 60.4 11 11.5
F1+w(B) 62.6 9 50.5 16 12.5
F1(B) 62.6 9 48.4 18 13.5
JSD+w(NB,PB+B) 59.3 16 59.3 12 14.0
Accuracy+w(NB,PB,B) 19.8 21 58.2 13 17.0
Accuracy(NB,PB,B) 14.3 22 52.7 14 18.0
F1(PB+B) 56.0 17 15.4 22 19.5
Accuracy(NB,PB+B) 52.7 18 16.5 21 19.5
F1+w(PB+B) 50.5 19 17.6 20 19.5
Accuracy+w(NB,PB+B) 37.4 20 20.9 19 19.5

metric. We used Discpower 5 (Sakai, 2007) to calculate the discriminative power.

4.3 Results
Table 4 shows the ranking results for system ranking stability. Kendall’s τ for both English and Japanese
are shown. The average rank of the two ranks were used for the final measurement for stability. Overall,
the distribution-related metrics (MSE, JSD) outperformed the classification-related ones. Among the
distribution-related metrics, MSE(NB+PB,B) was the best in terms of system ranking stability. Also,
the weighted metrics did not perform well when compared to the non-weighted ones, indicating that the
weights were not that effective.

5http://research.nii.ac.jp/ntcir/tools/discpower-en.html
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Table 6: Average rank of system ranking stability and discriminative power
Metrics Rank of system ranking

stability
Rank of discriminative
power

Average rank

MSE(NB+PB,B) 2.5 5.0 3.8
MSE(NB,PB,B) 3.5 4.0 3.8
JSD(NB+PB,B) 4.0 5.0 4.5
MSE+w(NB+PB,B) 3.5 5.5 4.5
JSD+w(NB+PB,B) 5.0 7.5 6.3

Table 5 shows the results for discriminative-power evaluation (significance level α = .05). We show
the percentage of runs with statistically significant differences for all run pairs (the number of runs for
both languages was 14; therefore, the number of all run pairs was

(
14
2

)
= 91). The distribution-related

metrics (MSE, JSD) were ranked highly. Because the ranks of weighted metrics were low, similarly to
the results for system ranking stability, our weighting did not seem to contribute much to discriminative
power.

4.4 Determining appropriate metrics
Table 6 shows the top five evaluation metrics by their average rank for system ranking stability and
discriminative power; MSE(NB+PB,B) and MSE(NB,PB,B) were the best evaluation metrics with the
same average rank.

Because MSE and JSD were generally ranked high, we can confirm that the distribution-related metrics
were more appropriate than the classification-related ones. This is probably because distribution-related
metrics can use more information, which is lost when converting the distribution into a single label, as
in classification-related metrics. We can also see that there was no difference between when NB and
B were regarded as a single label, i.e., (NB+PB,B) and when all labels were separate, i.e., (NB,PB,B).
Our speculation is that distinguishing between NB+PB and B is as difficult as distinguishing among
the three labels. To verify this, we calculated the inter-annotator agreement (Fleiss’ κ) of dialogue
breakdown annotations. Regarding the English dataset, we found that when all labels are separate, κ is
0.065. When NB and PB are regarded as a single label, κ is 0.077, and when PB and B are regarded
as a single label, κ is 0.095. The same tendency of κ was also found for the Japanese dataset. This
indicates that distinguishing between NB+PB and B could be more difficult than between NB and PB+B
and more similar to distinguishing among the three labels, supporting our speculation to some extent. In
accordance with the results for system ranking stability and discriminative power, the weighted metrics
were not effective. One possible reason could be that the weights are just making easy-to-guess problems
stand out and de-emphasizing difficult-to-guess ones in the evaluation, making it difficult to differentiate
the runs.

5 Summary and future work

To clarify which evaluation metrics should be used to evaluate dialogue breakdown detectors, we pro-
posed an approach of finding the appropriate metrics for evaluating the detectors. We first enumerated
possible evaluation metrics then ranked them on the basis of system ranking stability and discriminative
power. By using the submitted runs, we experimentally found that MSE(NB+PB,B) and MSE(NB,PB,B)
were appropriate metrics. As a final note, if we were to recommend a single metric, we suggest using
MSE(NB+PB,B) because only two-way (NB+PB and B) annotations will be necessary, lowering the cost
for preparing datasets.

For future work, we plan to consider combinations of multiple evaluation metrics to create more
appropriate metrics. We also plan to enumerate other metrics because our list of metrics may not be
sufficient. Although weight was found not to be that effective in this study, we plan to consider other
weighting methods and pursue the reasons for their poor performance because we intuitively feel that
weighting high-agreement utterances seems reasonable. Finally, we also want to improve the dialogue
breakdown detector we are developing by using our proposed approach of finding evaluation metrics and
improve our chat-oriented dialogue system.
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Raveesh Meena, José Lopes, Gabriel Skantze, and Joakim Gustafson. 2015. Automatic detection of miscommu-
nication in spoken dialogue systems. In Proc. SIGDIAL, pages 354–363.

Kanako Onishi and Takeshi Yoshimura. 2014. Casual conversation technology achieving natural dialog with
computers. NTT DOCOMO Technical Jouranl, 15(4):16–21.

Chanyoung Park, Kyungduk Kim, and Songkuk Kim. 2017. Attention-based dialog embedding for dialog break-
down detection. In Proc. Dialog System Technology Challenges Workshop (DSTC6).

Alan Ritter, Colin Cherry, and William B Dolan. 2011. Data-driven response generation in social media. In Proc.
EMNLP, pages 583–593.

Atsushi Saito and Taichi Iki. 2017. End-to-end character-level dialogue breakdown detection with external mem-
ory models. In Proc. Dialog System Technology Challenges Workshop (DSTC6).

Tetsuya Sakai. The effect of inter-assessor disagreement on IR system evaluation: A case study with lancers and
students. Proc. EVIA, pages 31–38.

43



Tetsuya Sakai. 2007. Evaluating information retrieval metrics based on bootstrap hypothesis tests. IPSJ Digital
Courier, 3:625–642.

Lifeng Shang, Tetsuya Sakai, Hang Li, Ryuichiro Higashinaka, Yusuke Miyao, Yuki Arase, and Masako Nomoto.
2017. Overview of the NTCIR-13 short text conversation task. In Proc. NTCIR, pages 194–210.

Charles Spearman. 1904. The proof and measurement of association between two things. The American journal
of psychology, 15(1):72–101.

Hiroaki Sugiyama. 2017. Dialogue breakdown detection based on estimating appropriateness of topic transition.
In Proc. Dialog System Technology Challenges Workshop (DSTC6).

Junya Takayama, Eriko Nomoto, and Yuki Arase. 2017. Dialogue breakdown detection considering annotation
biases. In Proc. Dialog System Technology Challenges Workshop (DSTC6).

Hiroshi Tsukahara and Kei Uchiumi. 2015. System utterance generation by label propagation over association
graph of words and utterance patterns for open-domain dialogue systems. In Proc. PACLIC, pages 323–331.

Anu Venkatesh, Chandra Khatri, Ashwin Ram, Fenfei Guo, Raefer Gabriel, Ashish Nagar, Rohit Prasad, Ming
Cheng, Behnam Hedayatnia, Angeliki Metallinou, Rahul Goel, Shaohua Yang, and Anirudh Raju. 2017. On
evaluating and comparing conversational agents. Proc. NIPS 2017 Conversational AI workshop.

Marilyn Walker, Candace Kamm, and Diane Litman. 2000a. Towards developing general models of usability with
PARADISE. Natural Language Engineering, 6(3-4):363–377.

Marilyn Walker, Irene Langkilde, Jerry Wright, Allen Gorin, and Diane Litman. 2000b. Learning to predict
problematic situations in a spoken dialogue system: Experiments with How May I Help You? In Proc. NAACL,
pages 210–217.

Richard S Wallace. 2009. The anatomy of alice. In Parsing the Turing Test, pages 181–210. Springer.

William Webber, Alistair Moffat, and Justin Zobel. The effect of pooling and evaluation depth on metric stability.
In Proc. EVIA, pages 7–15.

Yang Xiang, Yaoyun Zhang, Xiaoqiang Zhou, Xiaolong Wang, and Yang Qin. 2014. Problematic situation analysis
and automatic recognition for chinese online conversational system. In Proc. CLP, pages 43–51.

Zeying Xie and Guang Ling. 2017. Dialogue breakdown detection using hierarchical bi-directional LSTMs. In
Proc. Dialog System Technology Challenges Workshop (DSTC6).

Emine Yilmaz, Javed A Aslam, and Stephen Robertson. 2008. A new rank correlation coefficient for informa-
tion retrieval. In Proc. the 31st annual international ACM SIGIR conference on Research and development in
information retrieval, pages 587–594.

Zhou Yu, Ziyu Xu, Alan W Black, and Alexander I Rudnicky. 2016. Strategy and policy learning for non-task-
oriented conversational systems. In Proc. SIGDIAL, pages 404–412.

44



Multi-Task Learning for Domain-General Spoken Disfluency Detection in
Dialogue Systems

Igor Shalyminov, Arash Eshghi, and Oliver Lemon
The Interaction Lab, Department of Computer Science

Heriot-Watt University, Edinburgh, EH14 4AS, UK
{is33, a.eshghi, o.lemon}@hw.ac.uk

Abstract

Spontaneous spoken dialogue is often disfluent, containing pauses, hesitations, self-corrections
and false starts. Processing such phenomena is essential in understanding a speaker’s intended
meaning and controlling the flow of the conversation. Furthermore, this processing needs to be
word-by-word incremental to allow further downstream processing to begin as early as possible in
order to handle real spontaneous human conversational behaviour. In addition, from a developer’s
point of view, it is highly desirable to be able to develop systems which can be trained from
‘clean’ examples while also able to generalise to the very diverse disfluent variations on the same
data – thereby enhancing both data-efficiency and robustness. In this paper, we present a multi-
task LSTM-based model for incremental detection of disfluency structure1, which can be hooked
up to any component for incremental interpretation (e.g. an incremental semantic parser), or else
simply used to ‘clean up’ the current utterance as it is being produced. We train the system on the
Switchboard Dialogue Acts (SWDA) corpus and present its accuracy on this dataset. Our model
outperforms prior neural network-based incremental approaches by about 10 percentage points
on SWDA while employing a simpler architecture. To test the model’s generalisation potential,
we evaluate the same model on the bAbI+ dataset, without any additional training. bAbI+ is a
dataset of synthesised goal-oriented dialogues where we control the distribution of disfluencies
and their types. This shows that our approach has good generalisation potential, and sheds more
light on which types of disfluency might be amenable to domain-general processing.

1 Introduction

It is uncontested that humans process (parse and generate) language, incrementally, word by word, rather
than turn by turn, or sentence by sentence (Howes et al., 2010; Crocker et al., 2000; Ferreira et al.,
2004). This leads to many characteristic phenomena in spontaneous dialogue that are difficult to capture
in traditional linguistic approaches and are still largely ignored by dialogue system developers. These
include various kinds of context-dependent fragment (Fernández and Ginzburg, 2002; Fernández, 2006;
Kempson et al., 2017), false starts, suggested add-ons, barge-ins and disfluencies.

In this paper, we focus on disfluencies: pauses, hesitations, false starts and self-corrections that are
common in natural spoken dialogue. These proceed according to a well-established general structure
with three phases (Shriberg, 1994):

(1) with [Italian︸ ︷︷ ︸
reparandum

+ {uh}︸ ︷︷ ︸
interregnum

Spanish]︸ ︷︷ ︸
repair

cuisine

Specific disfluency structures have been shown to serve different purposes for both the speaker &
the hearer (see e.g Brennan and Schober (2001)), for example, a filled pause such as ‘uhm’ can elicit a
completion from the interlocutor, but also serve as a turn-holding device; mid-sentence self-corrections
are utilised to deal with the speaker’s own error as early as possible, thus minimising effort.

In dialogue systems, the detection, processing & integration of disfluency structure is thus crucial to
understanding the interlocutor’s intended meaning (i.e. robust Natural Language Understanding), but

1Code and trained models available at https://bit.ly/multitask_disfluency
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also for coordinating the flow of the interaction. Like dialogue processing in general, the detection &
integration of disfluencies needs to be strongly incremental: it needs to proceed word by word, enabling
downstream processing to begin as early as possible, leading to more efficient and more naturally inter-
active dialogue systems (Skantze and Hjalmarsson, 2010; Schlangen and Skantze, 2009).

Furthermore, incremental disfluency detection needs to proceed with minimal latency & commit to hy-
potheses as early as possible in order to avoid ‘jittering’ in the output and having to undo the downstream
processes started based on erroneous hypotheses (Schlangen and Skantze, 2009; Hough and Purver,
2014; Hough and Schlangen, 2015) .

While many current data-driven dialogue systems tend to be trained end-to-end on natural data, they
don’t normally take the existence of disfluencies into account. Recent experiments have shown that end-
to-end dialogue models such as Memory Networks (MemN2N) (Bordes et al., 2017) need impractically
large amounts of training data containing disfluencies and with sufficient variation in order to obtain rea-
sonable performance (Eshghi et al., 2017; Shalyminov et al., 2017). The problem is that, taken together
with the particular syntactic and semantic contexts in which they occur, disfluencies are very sparsely
distributed, which leads to a large mismatch between the training data and actual real-world spontaneous
user input to a deployed system. This suggests a more modular, pipelined approach, where disfluencies
are detected and processed by a separate, domain-general module, and only then any resulting represen-
tations are passed on for downstream processing. The upshot of such a modular approach would be a
major advantage in generality, robustness, and data-efficiency.

In this paper, we build on the state-of-the-art neural models of Hough and Schlangen (2015) and
Schlangen and Hough (2017). Our contributions are that: (1) we produce a new, multi-task LSTM-based
model with a simpler architecture for incremental disfluency detection, with significantly improved per-
formance on the SWDA, a disfluency-tagged corpus of open-domain conversations; and (2) we perform
a generalisation experiment measuring how well the models perform on unseen data using the controlled
environment of bAbI+ (Eshghi et al., 2017), a synthetic dataset of goal-oriented dialogues in a restaurant
search domain augmented with spoken disfluencies.

2 Related work

Work on disfluency detection has a long history, going back to Charniak and Johnson (2001) who set
the challenge. One of the important dividing lines through this work is the incrementality aspect, i.e.
whether disfluency structure is predicted word by word.

In the non-incremental setting, as the problem is essentially sequence tagging, neural models have been
widely used. As such, there are approaches using an encoder-decoder model (seq2seq) with attention
(Wang et al., 2016) and a Stack-LSTM model working as a buffer of a transition-based parser (Wang et
al., 2016; Wang et al., 2017), the latter being state-of-the-art for the non-incremental setting.

Incremental, online processing of disfluencies is a more challenging task, if only because there is
much less information available for tagging, viz. only the context on the left. In a practical system,
it also involves extra constraints and evaluation criteria such as minimal latency and revisions to past
hypotheses which lead to ‘jittering’ in the output with all the dependent downstream processes having to
be undone, thus impeding efficiency (see the illuminating discussions in Hough and Purver (2014) and
Purver et al. (2018)).

Incremental disfluency detection models include Hough and Purver (2014) who approach the problem
information-theoretically, using local surprisal/entropy measures and a pipeline of classifiers for recog-
nition of the various components of disfluency structure. While the model is very effective, it leaves one
desiring a simpler alternative. This was made possible after the overall success of RNN-based models,
which Hough and Schlangen (2015) exploit. We build on this model here, as well as evaluate it fur-
ther (see below). On the other hand, Schlangen and Hough (2017) tackle the task of joint disfluency
prediction and utterance segmentation, and demonstrate that the two tasks interact and thus are better
approached jointly.

Language models have been extensively used for improving neural models’ performance. For ex-
ample, Peters et al. (2018) showed that a pre-trained language model improves RNN-based models’
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Figure 1: Multi-task LSTM model architecture

performance in a number of NLP tasks — either as the main feature representation for the downstream
model, or as additional information in the form of a latent vector in the intermediate layers of complex
models. The latter way was also employed by Peters et al. (2017) in the task of sequence labeling.

Finally, a multitask setup with language modelling as the second objective – the closest to our approach
– was used by Rei (2017) to improve the performance of RNN-based Name Entity Recognition.

We note that there is no previous approach to multitask disfluency detection using a secondary task
as general and versatile as language modelling. Furthermore, none of the works mentioned study how
well their models generalise across datasets, nor do they shed much light on what kinds of disfluency
structure are harder to detect, and why, as we try to do below.

3 Disfluency detection model

Our approach to disfluency detection is a sequence tagging model which makes single-word predic-
tions given context words wt−n+1, ..., wt of a maximum length n. We train it to perform two tasks
jointly (c.f. Hough and Schlangen (2015)): (1) predicting the disfluency tag of the current word,
P (yt|wt−n+1, ..., wt); and (2) predicting the next word in the sequence in a language model way,
P (wt+1|wt−n+1, ..., wt).

At training time, we optimise the two tasks jointly, but at test time we only look at the resulting tags
and ignore the LM predictions.

Our model uses a shared LSTM encoder (Hochreiter and Schmidhuber, 1997) with combined
word/POS-tag tokens which provides context embedding for two independent multilayer perceptrons
(MLPs) making the predictions for the two tasks. The combined token vocabulary (word+POS) size
for the SWDA dataset is approximately 30% larger than the original word-only version — given this,
concatenation is the simplest and most efficient way to pass part-of-speech information into the model.

The intuition behind adding an additional task to optimise for is that it serves as a natural regulariser:
given an imbalanced label distribution (see Section 4 for the dataset description), only learning disfluency
labels may lead to a higher degree of overfitting, and introducing an additional task with more uniformly
distributed labels can help the model generalise better.

Other potential benefits of having the model work as an LM is the possibility of unsupervised model
improvements, e.g. pre-training of the model’s LM part from larger text corpora or 1-shot fine-tuning to
new datasets with different word sequence patterns.

In order to address the problem of significantly imbalanced training data (the majority of the words

47



in the corpus are fluent), we use a weighted cross-entropy loss in which the weight of a data point is
inversely proportional to its label’s frequency in the training set. Our overall loss function is of the form:

L = WLmain + αLlm +
λ

2

∑
i

w2
i

– where WLmain and Llm are respective losses for the disfluency tagging (class-weighted) and lan-
guage modeling tasks (LM loss coefficient α is tuned empirically). The last term is L2 regularisation
which we apply to the model’s weight parameters wi (those of word embeddings, LSTM gates, and
MLPs) leaving all the biases intact. L2 coefficient λ is also tuned empirically (see Appendix A for the
values of the constants).

The model is implemented in Tensorflow (Abadi et al., 2015) and is openly available.

4 Disfluency datasets and tags

4.1 The Switchboard dataset

For training our model, we use the Switchboard Dialog Acts dataset (SWDA) with manually anno-
tated disfluency tags (Meteer et al., 1995). We use a pre-processed version of the dataset by Hough
and Schlangen (2015) containing 90,497 utterances with transformed tagging: following their con-
vention, there are 27 tags in total consisting of: <f/> tag for fluent tokens; <e/> for edit tokens;
<rm-{n}/> tags for repair tokens that determine the start of the reparandum to be n tokens/words back;
and <rpSub> & <rpDel> tags which mark the end of the repair and classify whether the repair
is a substitution or deletion repair. The latter tokens can be combined with <rm-{n}> tokens, which
explains the total of 27 tags - see (2) for an example where the repair word, ‘Spanish’, is tagged
as <rm-4><rpSub> meaning this is a substitution repair that retraces 4 tokens back from the current
token.

(2) with
〈f/〉

[Italian
〈f/〉︸ ︷︷ ︸

reparandum

+ { uh
〈e/〉

no
〈e/〉

uh
〈e/〉

}︸ ︷︷ ︸
interregnum

Spanish]
〈rm−4〉
〈rpSub〉︸ ︷︷ ︸
repair

cuisine
〈f/〉

The distribution of different types of tokens is highly imbalanced: only about 4% of all tokens are
involved in disfluency structures (the detailed statistics are shown in the Appendix A). See above, Section
3 for how our model deals with this.

4.2 The bAbI+ dataset

To evaluate the cross data-set generalisation properties of our model and that of Hough and Schlangen
(2015), we employ an additional dataset – bAbI+ introduced by Shalyminov et al. (2017). bAbI+ is
an extension of the original bAbI Task 1 dialogues (Bordes et al., 2017) where different disfluency
structures – such as hesitations, restarts, and corrections – can be mixed in probabilistically. Crucially
these can be mixed in with complete control over the syntactic and semantic contexts in which the
phenomena appear, and therefore the bAbI+ environment allows controlled, focused experimentation of
the effect of different phenomena and their distributions on the performance of different models. Here,
we use bAbI+ tools2 to generate new data for the controlled generalisation experiment3 of what kinds of
disfluency phenomena are captured better by each model.

We focus here on the following disfluency patterns:

• Hesitations, e.g. as in “we will be uhm eight” (mixed in are single edit tokens);

• Prepositional Phrase restarts (PP-restart), e.g. “in a in a um in a moderate price range” (repair
of a PP at its beginning with or without an interregnum);

2See https://bit.ly/babi_tools
3Data is available at http://bit.ly/babi_plus_disfluencies_study
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Model Fe Frm Frps

(Hough and Schlangen, 2015) 0.902 0.711 0.689
(Schlangen and Hough, 2017) 0.918 — 0.719
LSTM 0.915 0.693 0.775
Multi-task LSTM 0.919 0.753 0.816

Table 1: Evaluation of the disfluency tagging models

Model hesitations (Fe ) PP restarts CL-restarts
Fe Frm Frps Fe Frm Frps

(Hough and Schlangen, 2015) 0.917 0.774 0.875 0.877 0.938 0.471 0.630
LSTM 0.956 1.0 0.982 0.993 0.948 0.36 0.495
Multi-task LSTM 0.910 1.0 0.993 0.997 0.991 0.484 0.659

Table 2: Controlled generalisation evaluation

• Clausal restarts (CL-restart), e.g. “can you make a restaurant uhm yeah can you make a restaurant
reservation for four people with french cuisine in a moderate price range” (repair of the utterance
from the beginning starting at arbitrary positions);

• Corrections (NP and PP), e.g. “with Italian sorry Spanish cuisine”, as was initially discussed in
Section 1.

We generated independent bAbI+ datasets with each disfluency type. The disfluency phenomena above
were chosen to resemble disfluency patterns in the original SWDA corpus (see Tables 3, 4, and 5 for
examples), as well as intuitive considerations for the phenomena relevant for goal-oriented dialogue
(namely, corrections).

The intuition for a generalisation experiment with data like this is as follows: while having similar
disfluency patterns, our bAbI+ utterances differ from SWDA in the vocabulary and the word sequences
themselves as they are in the domain of goal-oriented human-computer dialogue — this property makes
it possible to evaluate the generalisation capabilities of a model outside its training domain.

5 Evaluation and experimental setup

We employ exactly the same evaluation criteria as Hough and Schlangen (2015): micro-averaged F1-
scores for edit (Fe) and <rm-{n}/> tokens (Frm) as well as for whole repair structures (Frps). We
compare our Multi-task LSTM model to its single-task version (disfluency tag predictions only) as well
as to the system of Hough and Schlangen (2015) and the joint disfluency tagging/utterance segmentation
model of Schlangen and Hough (2017) (all of the applicable word-level metrics on dialogue transcripts).
These use a hand-crafted Markov Model for post-processing, whereas our model learns in an end-to-end
fashion.

We train our model using the SGD optimiser and monitor the Frm on the dev set as a stopping criterion.
The model’s hyperparameters are tuned heuristically, the final values are listed in the Appendix A. We
use class weights in the main task’s loss to deal with the highly imbalanced data, so that the weight of the
kth class is calculated as Wk = 1/(Ck)

γ , where Ck is the number of kth class instances in the training
set, and γ is a smoothing constant set empirically.

5.1 Results

The results are shown in Table 1. Both single- and multi-task LSTM are able to outperform the Hough
and Schlangen (2015) model on edit tokens and repair structures, but the multi-task one performs sig-
nificantly better on <rm-{n}/> tags and surpasses both previous models. The reason Frps is higher
than Frm in general is that due to the tag conversion, fluent tokens inside reparandums and repairs are
treated as part of repair, and they contribute to the global positive and negative counters used in the
micro-averaged F1.
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Repair
length

Repair text Frequency

1 i i i 139
the the the 33
and and and 31
it it it 29
its its its 26

2 it was it was 67
i dont i dont 57
i think i think 44
in the in the 39
do you do you 23

3 a lot of a lot of 7
that was uh that
was

5

it was uh it was 5
what do you
what do you

4

i i dont i dont 4

Table 3: Most common repairs in SWDA

POS pattern Examples repairs
%

DT NN DT NN this woman this socialite 0.1
a can a garage
the school that school

JJ NN JJ NN high school high school 0.03
good comedy good humor
israeli situation palestinian situa-
tion

DT UH DT NN that uh that punishment 0.02
the uh the cauliflower
that uh that adjustment

DT NN UH DD
NN

a friend uh a friend 0.01

a lot uh a lot
a lot um a lot

NN PRP VBP
NN NN

ribbon you know hair ribbon 0.01

thing you know motion detector

Table 4: SWDA repairs by POS-tag pattern

Keyword pattern Examples repairs %
sorry<e/> * or im sorry no 0.02

um im sorry what
thank you im sorry i just got home from work

sorry<e/> *<rm-*/> and he told us theres two sixteen bit slots and two eight bit 0.009
sorry two four sixteen bit slots and two eight bit slots available for the user

i<e/> mean<e/> * i mean 4
i mean yeah
i mean uh
i mean i

i<e/> mean<e/> *<rm-*/> i mean i i 0.5
but i mean whats whats happened here is is is
i mean you youve

Table 5: SWDA repairs by interregnum

Controlled generalisation experiment results are shown in Table 2 — note that we could only run the
model of Hough and Schlangen (2015) on bAbI+ data because that of Schlangen and Hough (2017)
works in a setup different from ours. It can be seen that the LSTM tagger is somewhat overfitted to edit
tokens on SWDA. This is the reason it outperforms the Multi-task LSTM on the hesitations dataset and
has a tied 1.0 on edit tokens on PP restarts dataset. In all other cases, Multi-task LSTM demonstrates
superior generalisation.

As for NP/PP self-corrections which are not present in Table 2: none of the systems tested were able
to handle these. Evaluation on the this dataset revealed 0.0 accuracy with all systems. We discuss these
results below.

6 Discussion and future work

We have presented a multi-task LSTM-based disfluency detection model which outperforms previous
neural network-based incremental models while being significantly simpler than them.

For the first time, we have demonstrated the generalisation potential of a disfluency detection model
by cross-dataset evaluation. As the results show, all models achieve reasonably high generalisation level
on the very local disfluency patterns such as hesitations and PP restarts. However, the accuracy drops
significantly on less restricted restarts spanning arbitrary regions of utterances from the beginning. On
the majority of those disfluency patterns, our model achieves a superior generalisation level.

Interestingly, none of the models were able to detect NP or PP corrections such as those often glossed
in disfluency papers (e.g. “A flight to Boston uh I mean to Denver”). The most likely explanation for this
could be the extreme sparsity of such disfluencies in the SWDA dataset.
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We performed analysis of SWDA disfluencies in order to explore this hypothesis and examined their
distribution based on length in tokens and POS-tag sequence patterns of interest. As shown in Tables
3 and 4, the vast majority of disfluencies found are just repetitions without speakers actually correcting
themselves. This observation is in line with prior studies, showing that the distribution of repair types
varies significantly across domains (Colman and Healey, 2011), modalities (Oviatt, 1995), and gender &
age groups (Bortfeld et al., 2001) — see Purver et al. (2018) for a nice discussion.

While this is very likely the correct explanation, we cannot rule out the possibility that such self-
corrections are inherently more difficult to process for particular models - that needs a separate experi-
ment that holds frequency of particular repair structures constant in the training data.

Addressing this issue is our next step since we designed the multi-task LSTM with this in mind. As
such, we will explore possibilities of knowledge transfer to new closed domains in a 1-shot setting, both
with regular supervised training and unsupervised LM fine-tuning.
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Appendix A

Parameter Value
optimiser stochastic gradient descent
loss function weighted cross-entropy
vocabulary size 6157
embedding size 128
MLP layer sizes [128]
learning rate 0.01
learning rate decay 0.9
batch size 32
α 0.1
λ 0.001
γ 1.05

Table 6: Multi-task LSTM training setup

Label type Label Frequency
fluent token <f/> 574771
edit token <e/> 45729
single-token substitution <rm-{1-8}/><rpEndSub/> 13003
single-token deletion <rm-{1-8}/><rpEndDel/> 1011
multi-token substitution
start

<rm-{1-8}/><rpMid/> 6976

multi-token substitution
end

<rpEndSub> 6818

Table 7: SWDA labels
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Abstract

This paper proposes a layered semantic graph representation for dialogue information. The repre-
sentation factors information into several interdependent layers, facilitating efficient information
access and processing by the components in a dialogue system. We describe the layers in the
semantic graph and the function they serve in an implemented task-oriented dialogue system.

1 Introduction

At Nuance Communications we are developing a conversational system for multi-turn task-oriented di-
alogues. The system plays the role of a virtual concierge, assisting the user with such tasks as finding
restaurants, parking, and making reservations. Interactions between system and user are flexible, support-
ing cross-domain, multi-intent search dialogues and allowing for the addition or revision of constraints
at any point in the exchange. Linguistically, users can express themselves in a natural way to the system,
using anaphoric expressions, asking Wh-questions, and using logical operators such as conjunction, dis-
junction, and negation to build complex search constraints. The system is also capable of reasoning with
temporal and spatial constraints between events.

A challenge in building dialogue systems with this level of complexity is managing the diverse kinds
of information flowing through them, such as the interpretation of natural language input, current task fo-
cus, query results from knowledge sources, and the temporal order of events. We propose using layered
semantic graphs for this purpose. As a unifying graph representation, its layers are subgraphs repre-
senting specific aspects of information relevant to dialogue management. The layers are connected and
are incrementally augmented as the dialogue unfolds. The result is a single, uniform, graphical repre-
sentation of dialogue information that can be traversed and manipulated by a dialogue manager using
known graph methods. It can be easily extended to new types of information by adding new layers.
Also, the graph formalism naturally aligns with existing syntactic and semantic representations such as
dependency structures and knowledge graphs.

Layered semantic graphs facilitate complex information processing steps in dialogue understanding.
They enable canonicalization, which abstracts away from syntactic variation in user requests that doesn’t
affect meaning. They help bridge structural differences between the linguistic input and backend knowl-
edge resources, which is necessary for interpreting user input in terms of the capabilities of the system.
The graphs also support the integration of diverse inputs and outputs for reasoning components, as well
as simple backtracking to address conflicts or inconsistencies that may arise during a dialogue.

In the rest of this paper, following a discussion of related work in section 2, we provide a detailed
description of the semantic graph layers used in our dialogue system. Section 4 discusses the versatility

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.
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and expressivity of the approach. The paper closes with conclusions and directions for future work.

2 Related Work

The idea of layered semantic graphs for dialogue management naturally arose out of a proposal for a
logic of concepts and contexts (de Paiva et al., 2007; Bobrow et al., 2005). This logical system provides
a semantics for natural language that distinguishes between conceptual and contextual structure. The
concepts and relationships between concepts making up the conceptual structure indicate the predicate-
argument structure of a sentence, i.e., “who does what to whom”. The contextual structure layered on
top of the conceptual structure is concerned with instantiability of concepts, e.g., concepts occurring in
negation contexts are asserted not to have instances. Separating and layering the different structures in
the semantic representation facilitates reasoning with the meaning of sentences and world knowledge for
tasks like textual inference (Bobrow et al., 2007; Boston et al., forthcoming).

The layered semantic graph approach is also related to the correspondence architecture of lexical
functional grammar (Kaplan, 1995; Asudeh, 2012). This architecture defines several levels of linguistic
representation, related to one another by correspondence functions that map between elements on differ-
ent levels. The separation into levels allows for the formulation of “modular” linguistic generalizations
which govern a given level independently from others. Analogously, our semantic graphs factor dialogue
information into several interdependent layers for use by the various components in our dialogue system.

This explicit organization of information contrasts with the “latent” representations used in end-to-
end deep learning approaches to dialogue, e.g., Eric et al. (2017), Bordes and Weston (2017). One could,
however, imagine a neural dialogue parser that predicts the different types of information in the graph,
similar to Bapna et al. (2017). Factorization of information affords data efficiency in the sense that each
dialogue task (intent recognition, query formulation, etc.) can be learned independently.

Graph-based structures are ubiquitous in dialogue research. They are used to characterize the archi-
tecture and information flow within dialogue systems, e.g., Schlangen and Skantze (2009), to represent
dialogue state, e.g., Ramachandran and Ratnaparkhi (2015), and to structure background knowledge,
e.g., Hixon et al. (2015). Similarly, various probabilistic graphical modeling languages have been used
to provide compact and expressive representations of domain knowledge for tracking dialogue state, e.g.,
Lison (2015), or integrating multiple information sources to infer intent, e.g., Kenington and Schlangen
(2014). Our work differs from these approaches in that it doesn’t focus on the operation of specific
dialogue components or the overall architecture. Instead, this paper addresses the practical yet rarely
discussed concern of representing and integrating diverse information within a dialogue system.

More closely related to our paper, the TRIPS dialogue system (Allen et al., 2005) proposes an interme-
diary representation (AKRL) to connect natural language processing output to backend representations.
The layered semantic graph differs from AKRL in several meaningful ways: it does not restrict the im-
plementation of individual components, it encodes information produced by components other than just
natural language understanding and the backend, and it is cumulative across turns in a dialogue.

3 Layered Semantic Graphs

In a layered semantic graph, the linguistic meaning representation layers are based on the conceptual
and contextual structures discussed in the previous section. To these, several new layers essential for
managing dialogues were added. Following Kalouli and Crouch (2018), the linguistic layers include
a role layer, for predicate-argument structure; a context layer, for logical operators and other clausal
contexts; a lexical layer, for conceptual and ontological information; and a link layer, for coreference and
discourse links. The dialogue-specific layers include a query layer, for queries to backend knowledge
bases; a knowledge layer, for the results returned by these queries; and several planning-related layers,
for temporal relations between multiple events.1 Each layer is composed of edges unique to that layer
and the nodes they connect. The same node may appear in multiple layers, but not so the edges.

All these layers together enable our system to reason with the meaning of dialogue utterances and
perform dialogue interpretation tasks such as intent and mention recognition, temporal reasoning, and

1The semantic graphs in our implemented system have several additional layers which are not discussed in this paper.
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backend query formulation. In the rest of this section, we will describe the linguistic and dialogue layers
in more detail, as well as the role they play in dialogue interpretation.

3.1 Linguistic Layers

meal_event

cuisine_node value_adj date_node

restaurant_node

location

servesCuisine

qualitativeCost

eventDate
x6

expensive

_property

t hd

ctx~x7

ctx~x6

restaurant

want

French

be~x7

tomorrow

_property

hd

hd

not

be_pred _time_eq_pred

_obj

Context node

Skolem node
Task graph node

Context edge in context layer

Role edge in role layer
Role edge in task graph

Binding edge

Figure 1: Linguistic layers for “I want a French
restaurant for tomorrow that is not expensive”

The linguistic layers represent various aspects of
the meaning of user utterances in a dialogue. Our
system uses “deep” natural language understand-
ing, provided by the Cognition system (Goldsmith
et al., 2009; Dahlgren, 2013), relying on meaning
representations that provide more finesse than flat
intent and mention structures, in order to capture
complex logical relations between mentions and
intents and to support the representation of ques-
tions. An input utterance is first parsed, resulting
in a syntactic structure that provides the basis for
determining the scope of negation, quantifiers, and
referential expressions. Next, a logical form, akin
to a first-order logical formula and adhering to a neo-Davidsonian view of events (Davidson, 1980; Molt-
mann, 2015), is derived from this structure, and then translated into the linguistic layers.

Role layer: The role graph expresses the basic propositional content of an utterance. Its member
skolem nodes correspond to the unary predicates in the logical form, which generally arise from content
words in the input utterance, and assert the existence of concepts. This layer makes no claims as to the
existence of instances of these concepts. The edges are provided by the binary and higher arity predicates
in the logical form, encoding the semantic relationships between words in the sentence.

For example, the role graph for the user utterance “I want a French restaurant for tomorrow that is
not expensive” is given in figure 1.2 The “ eq” edge between the skolem nodes labeled “restaurant” and
“x6” equates the two nodes: propositionally, the restaurant is French, expensive, and for tomorrow. The
negation of “expensive” is handled in the context layer.

Lexical layer: The lexical layer associates skolem nodes with entries in the Cognition semantic lex-
icon (Dahlgren, 1988). Most importantly, the lexical information for skolem nodes includes disam-
biguated word senses that are attached to concepts in the Cognition ontology (ibid.). Technically, the
lexical layer consists of edges labeled “lex” connecting the skolem nodes in the role graph and a set of
sense nodes, holding the lexical information.3 For example, the skolem node “French” in the example
sentence is associated with the word sense “French-1”, defined as “of France” in the Cognition lexicon.
Another possible word sense, not selected here, is “French-2”, referring to the French language.

The information in the lexical layer is crucially important for interpreting a user utterance in terms of
the tasks that the system can perform. Each task is represented as a graph whose nodes are also taken
from the Cognition ontology. Such a task graph constitues a “mini-ontology of mentions”, specifying
how a user may talk about a task. For example, the simplified task graph on the right in figure 1, for
making restaurant reservations, shows a node labeled “restaurant node” that is linked to a node labeled
“cuisine node” through an edge labeled “servesCuisine”, as restaurants typically serve a specific cuisine,
and users are likely to mention restaurants and cuisines when making restaurant reservations. Now,
the cuisine node in the task graph binds the “French” node in the role graph because in the ontology
the concept “nationality group”, which is lexically associated with the skolem node “French” through
its word sense “French-1”, is a subconcept of the concept “cuisine node”. A binding like this counts
as positive evidence for a restaurant reservation interpretation of the example sentence. Note that the
negation of “expensive”, which is not part of the role graph, is irrelevant for the purposes of binding;
a sentence like “I want a restaurant that is not expensive” is as much about restaurant reservations as a
sentence like “I want a restaurant that is expensive”.

2For practical reasons, the translation step from logical form to semantic graph ignores certain lexical heads, such as the
personal pronouns “I” and “you”; therefore the node labeled “want” in the role graph is lacking a subject.

3The sense nodes are not displayed in figure 1.
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Context layer: Currently, the main function of the context layer is to record the scope of (nested)
logical operators in user utterances, specifically conjunction, disjunction, and negation. The interpreta-
tion of Wh-questions also relies on contexts. Contexts are represented by context nodes in the context
graph. Every context graph has a top or “true” context. Additional contexts are nested below the top
context. In the graph, nesting of contexts is represented by edges between context nodes. The label of
the incoming edge (for context nodes other than top) indicates the nature of the context (e.g., “not” for
a negation context). Every context has a head; this relationship is marked by edges labeled “hd” from a
context node to a skolem node in the role graph. The head defines the extent or scope of the context. For
example, there are three contexts in figure 1, nested in this order: the top context (node “t”), present by
default; a context for negation (node “ctx∼x7”), introduced by “not”; and a context for the predication
associated with “is” (node “ctx∼x6”). Informally, as indicated by their heads, the scope of the “true”
context is “want a French restaurant for tomorrow”, and the negation includes the node for “is” and the
predication that “x6” (equated with the restaurant) has the property “expensive”.

The context layer is also used for backend query formulation. For example, as shown in figure 1, the
node labeled “expensive” is bound to the task graph node labeled “value adj”, which eventually hooks
into the “cost” field of a restaurant query. Because “expensive” appears in a negative context in the
context graph, the relevant query term is to be negated in the query.

Link layer: The link graph is the locus of information about identities between nodes in the role graph
as induced by anaphora resolution. Inter- and intra-sentential anaphora, potentially across dialogue turns,
are resolved by the Cognition parser following the approach of Lee et al. (2013). These coreferences are
modeled in the link graph as edges between skolem nodes. The dialogue manager is able to identify
additional coreferences between mentions in user utterances and the results returned by backend queries,
as in, for example, a situation in which the dialogue manager proposes a restaurant to the user and they
subsequently ask, “When is it open”? Coreferences of this kind exist in the link graph as edges between
skolem nodes and knowledge nodes in the knowledge layer (see section 3.2). The contents of the link
graph factor into the interpretation of user utterances vis-à-vis the library of task graphs. An edge in the
link graph is interpreted as a signal to restrict the bindings of the anaphoric expression (a skolem node)
to the bindings dictated by its antecedent (a skolem node or knowledge node). Bridging anaphora, in
which an anaphoric expression indirectly refers to another expression, e.g., Nand and Yeap (2013), are
also encoded in the link layer.

3.2 Dialogue Layers

In addition to the linguistic layers, the semantic graph has been extended to include several novel dialogue
layers that assemble and keep track of information gathered from knowledge sources as well as dialogue
decisions made by various reasoning components in the system.

Query layer: The linguistic layers of a semantic graph represent linguistic meanings. However, for
a couple of reasons, they cannot be used directly to form backend queries. First, the word senses in the
lexical layer and the relations between the skolem nodes in the role graph are often not specific enough.
For example, in the utterance “I want a French restaurant for tomorrow that is not expensive”, “French”
corresponds to the word sense “French-1” in the lexical layer, meaning “of France”. Similarly, in the role
graph, the relation between “French” and “restaurant” is a generic “ property” relation (see figure 1).
Without further reasoning, we have no way of knowing that “French” refers to the cuisine served by the
restaurant, rather than to its location or the nationality of the owner. Secondly, the syntactic structure of
a sentence, and hence the role graph derived from it, does not always accurately reflect the underlying
ontological relations between query entities and their attributes. For example, in the role graph for the
sample sentence, “tomorrow” modifies “restaurant”. However, for the purposes of query formulation,
“tomorrow” is an attribute of a meal event that is not explicitly expressed in the utterance.

To address these issues, a query layer is added to encode world knowledge concepts and relationships.
The nodes and edges in the query layer mirror the structure of the task graphs discussed earlier. Dialogue
interpretation uses this correspondence, plus the bindings between the task graphs and the role layer,
to bind query nodes in the query layer to skolem nodes in the role layer. These bindings reconcile
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the linguistic information with world knowledge. The query layer also helps to abstract away from
lexical and syntactic variation in utterances, i.e., variation in the linguistic layers that does not change
the interpretation.
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Figure 2: Query layer for “I want a French restau-
rant for tomorrow that is not expensive”

For example, figure 2 shows the bindings be-
tween the role layer and the query layer for the ex-
ample utterance. Here, “French” is bound to “cui-
sine node” and “restaurant” to “restaurant node”.
The edge between “cuisine node” and “restau-
rant node”, i.e., “servesCuisine”, provides a more
specific relation for “French” and “restaurant”
than the linguistic “ property”. Also, “tomorrow”
is bound to “date node”, which, as desired, mod-
ifies “meal event” via the “eventDateIs” relation,
supplanting the linguistic attachment of “tomor-
row” to “restaurant” in the role graph. Notice also
that the query layer has its own context nodes, de-
rived from the linguistic context layer.4 This is
necessary since the relations in the query layer are
not in a one-to-one correspondence to those in the linguistic layers.

The query layer is used to construct well-formed queries that can be understood by backend knowledge
bases. Towards that end, a query reasoner is called to fill out the query layer with additional nodes and
relations. For example, though the user did not specify a desired time, the reasoner added a new query
node “time node∼q12” to the query layer, because the system needs to have a restaurant reservation time
in order to return a useful answer to the user. Figure 2 shows the complete query graph for the sample
utterance after the query reasoner has been called.
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Figure 3: Knowledge layer for “I want a French
restaurant for tomorrow that is not expensive”

Knowledge layer: The query results returned
from the knowledge base are integrated into the
semantic graph via the knowledge layer. Fig-
ure 3 shows the knowledge layer for the run-
ning example. The query node “meal event∼q7”
is grounded in the top level knowledge node
“Left Bank Santana Row at 19:00 on 2018-3-5”.
The attribute query nodes, e.g., “time node”, are
grounded in their values, e.g., “19:00”. Addi-
tionally, relations between grounded instances are
recorded as well, e.g., the role edge “eventTimeIs”
between the knowledge nodes representing “Left
Bank Santana Row at 19:00 on 2018-3-5” and
“19:00”. The knowledge layer allows the dialogue
manager to keep track of the current options avail-
able to the conversation and to change them dynamically as the dialogue unfolds. It also links the
grounded entities to their attribute values.

Planning layer: Our dialogue system can handle requests from the user to schedule events that are
temporally or spatially dependent, e.g., “Find an Italian restaurant for two people tonight. I also want to
see a comedy movie after that”. While the knowledge base can supply candidates for Italian restaurants
available at the requested time as well as movie show times, an AI planner is needed to deal with the
temporal and spatial relations between the two events in order to arrive at a cohesive plan.

The planner can retrieve all event-related information, including the event candidates and their loca-
tions and times, directly from the query and knowledge layers. However, the temporal relations expressed
in the linguistic layers are often not precise enough. We add a planning layer to address this problem.

4An explanation of this derivation is beyond the scope of this paper.
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The edges in the planning layer connect the query nodes representing events to be scheduled and are gen-
erated by a commonsense reasoner that maps linguistic temporal relations onto Allen relations (Allen,
1983; Dechter et al., 1991). For example, in figure 4, the “after” relation between “movie” and “restau-
rant” is translated into the Allen relation “precedes” from “meal event” to “movie event”. By combining
information from the query, knowledge, and planning layers, a planning problem can be generated.
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Figure 4: Planning layers for “comedy movie after
Italian restaurant”

Solution layer: When the planner finds a sat-
isfactory plan, it is encoded in the solution layer.
The assignment edges connect the query nodes
representing the events to be scheduled to one
of their grounded knowledge nodes, meaning that
this particular assignment is part of the solution.
For example, the solution generated for the request
“comedy movie after Italian restaurant” includes
the assignments of “Lady Bird at AMC Mercado
20 at 9:25 pm on 2018-3-5” to the movie event,
and “Rulfo at 7:00 pm on 2018-3-5” to the meal
event, as shown in figure 4.

Conflict and relaxation layers: The planner
cannot always find a perfect plan satisfying all user
requirements. When confronted with an over-subscribed problem, the planner tries to suggest an alter-
native solution by relaxing some temporal or domain constraints (Yu et al., 2016a; Yu et al., 2016b). An
example of a temporally relaxed recommendation is “You wanted a movie after your restaurant reserva-
tion tonight. Since typically your restaurant reservation lasts between 2.5 hours and 3.5 hours, I cannot
find a plan. However, if you shorten the time to 2 hours, Rulfo is available at 7:00 pm today. Then Lady
Bird is showing at AMC Mercado 20 at 9:25 pm. Is that ok?”. Here the system presents the temporal
conflicts that render the original planning problem as stated by the user unsolvable. Then it suggests
shortening the meal event and presents the resulting plan.
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Figure 5: Domain relaxation for “find a Chinese
restaurant”

In order to keep track of this information, we
add conflict and relaxation layers to the seman-
tic graph. The conflict layer encodes the tempo-
ral conflicts, either as a duplicate of the planning
edge representing the temporal constraint caus-
ing the conflict, e.g., the “precedes” relation from
“meal event” to “movie event” in figure 4, or as a
new temporal conflict edge representing a default
constraint, e.g., the duration of the “meal event”
in the same figure. A temporal relaxation is rep-
resented as an edge that is similar to the planning
edge representing the original temporal constraint,
but relaxed. Figure 4 shows the temporal relax-
ation of the meal event duration to 2 hours.

When temporal relaxation is not sufficient to find a solution, it may be preferable to relax a domain
constraint instead. For example, when the system can’t find a Chinese restaurant at the requested time,
it may suggest a Japanese restaurant instead. Here a domain conflict is represented in the conflict layer
as a domain conflict edge, which is essentially a duplicate of the original grounding edge representing
the domain constraint causing the conflict. As an example, in figure 5 there is a domain conflict edge
between “cuisine node” and the knowledge node “Chinese”, meaning the constraint of “Chinese restau-
rant” is what rendered the problem unsolvable. Since a domain relaxation replaces the value of a domain
constraint, a domain relaxation edge is an edge from the knowledge node representing the attribute
value being relaxed (e.g., “Chinese”) to a knowledge node representing the newly suggested value (e.g.,
“Japanese”). The user may reject the suggested domain relaxation, causing the system to suggest yet
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another value. The relaxation chain is then extended by adding another domain relaxation edge from the
last relaxed knowledge node to a new one (e.g., “Korean”), as shown in figure 5. This flexible represen-
tation allows the planner to freely explore the relaxation search space and enables the dialogue manager
to keep track of the relaxation paths and retract a previously relaxed constraint if needed.

4 Assessment

Since this paper focuses on representation rather than processing, we chose not to include an extrinsic
evaluation on some dialogue task. Instead, in this section we assess the versatility and expressivity of
layered semantic graphs. Versatility means the graphs impose no constraints on the formalisms used
in the components of the dialogue system. This will be demonstrated for the linguistic layers and the
query layer. Regarding expressivity, we will compare the planning layer with other planning languages
in terms of their ability to capture information pertinent to solving planning problems. We will also give
an example of a multi-turn, multi-intent dialogue to illustrate how layered semantic graphs are applicable
beyond single shot scenarios and accumulate information throughout a conversation.
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One of the goals of layered semantic graphs is
the ability to encode information produced by dif-
ferent components in a dialogue system, regard-
less of their underlying implementation. One ex-
ample of this versatility can be found in the lin-
guistic and query layers. So far, we have focused
on a first-order logic representation as the out-
put of the NLU component in our dialogue sys-
tem. However, NLU approaches based on statisti-
cal methods and machine learning are also widely
used in spoken dialogue systems, and commonly
employ semantic frame based representations (Wang et al., 2011). For example, the semantic frame for
“Find valet or covered parking” may look like this: {“nluSlots”: {“INTENTION”: [“search parking”],
“type”: [{“OR”: [“covered”,“valet”]}], “relative location”: “near”}}. Here the attribute-value pairs
in the semantic frame essentially are the bindings between the skolem nodes in the user utterance and
the query nodes in the query graph. Similarly, the nested logical operator “OR” directly corresponds
to the context nodes in the context layer. We have implemented a translation method for an existing
statistical NLU component, which for the example sentence outputs the layered semantic graph given
in figure 6. The linguistic layers in this graph are much more simplistic than those resulting from deep
NLU, as the layered semantic graph is merely a representation of the outputs from the components in
the dialogue system. In a similar fashion, one can define more complex translations into a graph’s lin-
guistic layers from semantic representation languages such as AMR (Banarescu et al., 2013) and more
application-specific formalisms like AMRL (Kollar et al., 2018).5

Another objective of the semantic graph is to encode planning problems while preserving the seman-
tic meanings behind all the task and constraint models. Many languages exist for encoding planning
problems. PDDL ((McDermott et al., 1998)) is an early and widely used formalism, and its latest devel-
opments support a large set of features, such as temporal constraints (Fox and Long, 2003), non-linear
objectives (Gerevini and Long, 2005), and probabilistic effects (Younes and Littman, 2004). However,
designed as abstract formalisms for describing planning domains, they are unable to preserve the seman-
tic meanings or the mapping with dialogue inputs, yet these are key features for the dialogue manager
to function. Prior work on planner-based dialogue management systems require extra translation and
state-keeping layers to fill the gap (Allen et al., 2001). Layered semantic graphs encode temporal plan-
ning problems using time-evolved goals, and use a single model for both the planning domains and the
problems. The approach also supports a rich set of temporal constraints from the STN (Dechter et al.,
1991) and STNU (Morris et al., 2001) formalisms to more precisely model temporal relations.

5For a comparison of the semantic formalism underlying our original linguistic layers to other semantic parsing representa-
tions, the reader is referred to Kalouli and Crouch (2018).
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The semantic graph model is not mutually exclusive with existing planning languages: many features
in PDDL, RDDL and RMPL can be incorporated into it. For example, in order to generate robust
travel plans in real-world traffic, we have extended the temporal constraint encoding to model temporal
uncertainty using set-bounded (from the STNU formalism) and probabilistic approaches (from the pSTN
formalism, Santos Jr and Young (1999)). Improving the expressivity of semantic graphs for preference,
uncertainty and multi-agent modeling is key for many applications in the dialogue management field,
and is part of our future work.
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Figure 7: Layered semantic graph for the multi-
turn multi-intent dialog

One important requirement for the semantic
graph is to be able to accumulate information
across a multi-turn, multi-intent dialogue. Con-
sider the following multi-turn variation of the user
request in figure 4: User: “Find an American
restaurant for two people tonight.” System: “Lion
and Compass is available at 7:20 pm today. Is that
ok?” User: “Actually I want an Italian restaurant.”
System: “Rulfo is available at 7:00 pm today. Is
that ok?” User: “I also want a comedy movie after
that.” Figure 7 shows the resulting semantic graph
for this dialogue. The date node and time node are
still bound to “tonight” in the first user utterance.
However, the cuisine node is no longer bound to
“American” but instead to “Italian” specified in the second user utterance. Additionally, “that” in the
third user utterance is anaphorically linked to the knowledge node proposed by the system in the previ-
ous system utterance. This is a perfect example of how information can be resolved and accumulated in
a consistent manner and preserved in the semantic graph.

5 Conclusion

In this paper, we have presented a layered semantic graph that provides a unified graphical representation
of various types of information flowing through a complex task-oriented dialogue system. The graph is
expressive, containing a wide range of linguistic information extracted from user utterances, as well as
keeping track of non-linguistic information produced by the knowledge sources and reasoners used in
the system. All this information, though diverse, is intimately interrelated. We have also illustrated the
versatility of the approach: the use of layered semantic graphs is not tied to specific implementations or
internal representations of the dialogue components.

Instead of accumulating all dialogue information into a single monolithic representation, we explicitly
factor it into layers according to the unique characteristics of each reasoner in the dialogue system. This
allows for a modular separation of information, while preserving the connections between the layers,
making finding, accessing, and processing information more tractable. Each reasoner only needs to
look in the relevant layers to find the data it needs. Its output, in turn, can easily be integrated into the
graph, with a clear delineation of consistency between the layers. Additionally, when information or
recommendations need to be retracted, the chain of reasoning can be traced back across the layers.

The layered semantic graph is also extensible. In this paper, we have described the layers we need to
support the functionality in scope for our task-oriented dialogue system. Other dialogue settings, e.g.,
multi-agent tasking, require additional richness. When building a dialogue system, we can add new
layers to the graph to accommodate new reasoning components, keeping the information flow smooth
and consistent across the system. This flexibility is a powerful feature for practical dialogue system
engineering. It has become a central part of the dialogue state in our system, and has proven essential in
being able to carry on a consistent, flexible, natural and complex dialogue with the user.

For future work, we plan to build a better visualization toolkit for the graph in order to aid in system
building, debugging, and information display. We also plan to explore the possibility of encoding and
reasoning with other contextual information in the context layer, such as propositional attitudes.
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Abstract

This paper discusses the process of determining which subjective features are seen as ideal in
a dialogue system, and linking these features to objectively quantifiable behaviors. A corpus of
simulated system-user dialogues in the Internet of Things domain was manually annotated with
a set of system communicative and action responses, and crowd-sourced ratings and qualitative
feedback of these dialogues were collected. This corpus of subjective feedback was analyzed, re-
vealing that raters described top ranked dialogues as Intelligent, Natural, Pleasant, and as having
Personality. Additionally, certain communicative and action responses were statistically more
likely to be present in dialogues described as having these features. There was also found to be a
lack of agreement among raters as to whether a direct communication style, or a conversational
one was preferred, suggesting that future research and development should consider creating
models for different communication styles.

1 Introduction

Objective measures such as task completion and word error rate, while of course essential to the evalu-
ation of task-based dialogue systems, are not the only measures of system performance that should be
used. Subjective judgments such as user satisfaction can also be critical, especially if users are expected
to interact with the system on a regular basis. This paper focuses on evaluating subjective feedback in
the Internet of Things (IoT) domain. The IoT refers to a network of home devices which are connected
to the Internet, and can be controlled by a virtual home assistant (VHA) via human-system dialogue
interaction. In contrast to dialogue systems designed to facilitate booking travel or restaurant reserva-
tions, these new systems occupy a more intimate space in a user’s life. They are likely to be used more
frequently, and to be perceived as less of a tool and more of a friend (Kleinberg, 2018). For this reason,
it is important that research related to this type of dialogue systems places greater emphasis on the user’s
subjective interaction experience.

There are some natural dichotomies which exist in accordance with the personal communication styles
of humans. Some people will prefer that the system have a “personality” and a conversational commu-
nication style, as in the example dialogue of Table 1, while others will appreciate a more formal, direct
style, as in the example dialogue of Table 2.

Additionally, some people may prefer the system to be explicit in informing the user what actions it
is taking (Table 2, line 2), while others may prefer the brevity achieved by more implicit confirmations
(Table 1, line 4). Our analysis of a subjective feedback corpus, in conjunction with a manually annotated
dialogue corpus, reveals that many of the subjective features mentioned correlate with objectively veri-
fiable system behaviors, such as confirmation of understanding, explicit confirmations of user requests,
and grammaticality of utterances. Also, the dichotomies discussed suggest that future research and de-
velopment of IoT dialogue systems should take into account the user’s preference of communication
style.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. Li-
cense details: https://creativecommons.org/licenses/by-nc-nd/4.0/
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User (1) Turn up the volume of the
bathroom speaker.

System (2) Roger that.
User (3) A little bit more, please.
System (4) Done.
User (5) And turn off the washer in the

garage.
System (6) I am on it.

Table 1: Example dialogue 1 (conversational
communication style).

User (1) Connect the speaker to
bluetooth.

System (2) It is already connected.
User (3) Please set the washer to rinsing

mode.
System (4) The washing mode is now set to

rinsing.
User (5) Thanks.

Table 2: Example dialogue 2 (formal/direct
communication style).

While previous research on the links between objective and subjective measures mainly focused on
user satisfaction, we establish links between objective measures and more nuanced subjective judgments,
namely, Intelligence, Personality, Pleasantness, and Naturalness.

2 Related Work

There is an ever-growing body of research concerned with the evaluation of dialogue systems. Most
authors distinguish between “objective measures”, such as word error rate (in spoken dialogue) and task
completion, and “subjective measures”, such as user satisfaction and perceived task completion.

PARADISE (Walker et al., 2000) is the most well-known framework for evaluating dialogue systems.
PARADISE seeks to optimize a desired quality such as user satisfaction by formulating it as a linear
combination of a variety of metrics, such as task success and dialogue cost (e.g., dialogue length). The
advantage of this method is that once a desired quality has been formulated as a realistic evaluation func-
tion, it can be optimized by controlling the factors that affect it. In the example above, user satisfaction
can be optimized by increasing task success and minimizing dialogue length. User satisfaction can be
measured via survey questions on a Likert scale (Paksima et al., 2009) or more complex questionnaires,
such as the SASSI questionnaire (Hone and Graham, 2000). Most researchers have used PARADISE as
a method for establishing links between subjective measures (user judgments) and objective measures.
For example, Möller et al. (2007) use PARADISE to establish links between user satisfaction and usabil-
ity (and other user judgments resulting from the SASSI questionnaire), and objective system features.
Callejas and López-Cózar (2008) use statistics to find relationships between interaction parameters (ob-
jective measures) and quality judgments (subjective measures). In some cases, subjective human ratings
are used only to shed light on why automatic evaluation metrics have failed (Liu et al., 2017).

A review of several studies which have collected subjective user feedback reveals a set of frequently
mentioned subjective features such as Intelligence, Personality, Pleasantness, and Naturalness (Artstein
et al., 2017; Geutner et al., 2002; Hurtig, 2006), four features which were also mentioned frequently by
participants in the current study. However, in these previous studies, no attempt was made to provide a
more nuanced picture of what “satisfaction” means in terms of these subjective features of the interaction.

3 The IoT Dialogue Corpora

We investigated three related corpora in the IoT dialogue domain (see Table 3). Our initial corpus (Full
Dialogue Corpus) consisted of roughly 6200 simulated dialogues (Georgila et al., 2018). The dialogues
were written by a team of linguists to be representative of the types of interactions people will typically
have with a VHA, and included information about device states before and after each dialogue turn (e.g.,
whether a device was on or off, or connected to WiFi). The dialogues included potential speech recog-
nition errors leading to system misunderstandings, and instances of system clarification requests. The
dialogues also represented a wide variety of devices and tasks. The devices included TV, air conditioner,
washer, bulb (light), and speaker, and dialogues assumed there could be multiples of the same device in
different locations (e.g., kitchen, bedroom, bathroom, etc.). Tasks could be immediate, such as “turn on
the light in the bathroom”, or scheduled for completion in the future, such as “turn on the air conditioner
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Full Dialogue Corpus AMT Task Corpus Subjective Feedback Corpus
Contents 6200+ dialogues 232 dialogues 6000+ feedback comments

Annotations system state information system and user behavior subjective feedback

Table 3: Information about the corpora used for this research.

in 10 minutes”. The dialogues also represented diversity in system communication style, with some
dialogues presenting a system that was much more formal, and others one that was more conversational.

It should be noted that despite the best efforts of the linguists to produce data that was as realistic
as possible, our corpus lacked certain natural dialogue phenomena that would have been present in real
human-machine dialogues, such as pauses, mid-sentence restarts, and self-repairs (Shalyminov et al.,
2017). However, the focus of this research was to discover which system behaviors users would find
most favorable, and not on classification techniques for producing correct responses to user input. We,
therefore, believe that this lack of the natural phenomena mentioned above does not have such a great
impact on this line of inquiry as to negate the conclusions drawn from its results.

In order to carry out the crowd-sourcing evaluation, a second smaller corpus of 232 dialogues was
extracted from this larger corpus (AMT Task Corpus). Care was taken to ensure that this smaller corpus
was also representative of the range of interactions, tasks, and devices found in the larger corpus. The
smaller corpus was divided into sets of 5 dialogues for which raters on Amazon Mechanical Turk (AMT)
were asked to provide rankings and subjective feedback, in their own words. There were 4 tasks, each
providing the rater with 8 sets of 5 dialogues, representing a mix of dialogue tasks and devices, as well as
varying degrees of context as to the current state of the devices controlled by the VHA (e.g., “the kitchen
light is on, but the bedroom light is off”). Raters ranked the sets of 5 dialogues from best (1) to worst
(5), and then explained why they chose this ranking. For the purposes of this paper, we are primarily
concerned with the corpus of subjective feedback produced by these tasks.

The Subjective Feedback Corpus included over 6000 individual comments from 199 raters, each as-
sociated with a ranked group of 5 dialogues from the smaller dialogue corpus (AMT Task Corpus). The
feedback was written in the raters’ own words in a text field provided within the ranking questionnaire,
in response to the question “Why did you choose to rank the dialogues in this order? What did you
like/dislike about these dialogues?”. There was no limit imposed on the rater as to how much or how
little they could write, and raters varied in the level of detail they provided. Some raters gave short, con-
cise feedback, such as “the highest ranked dialogues just seemed more natural” whereas others provided
much more detailed feedback, such as:

“The first one gave me more information on what the system understood leaving me to know
rather than assume it understood. The first was much more friendly. The second one was
okay, but just okay. It was straight to the point and not too bad. I would think number two is
acceptable. Three, four, and five I didn’t like at all.”

4 Qualitative Analysis of Rater Feedback

The qualitative analysis of the feedback corpus was carried out using a novel approach. This approach
consisted of: (1) Analyzing the overall word frequency for the entire corpus. (2) Manually analyzing a
small subset of the corpus to extract the most commonly mentioned features, both negative and positive.
(3) Creating semantic clusters which correlate with the features from the previous step, based on the
highest ranking words from the word frequency list (e.g., the semantic cluster for Brevity contains the
words “short”, “brief”, “concise”, and “quick” among others). (4) Analyzing the frequency of the words
in each semantic cluster in the feedback corpus to determine how many raters mentioned it, and how
often it was mentioned.

The following is a description of the most commonly mentioned features of the dialogues, indicating
how many raters (out of 199) mentioned each feature at least once, as well as summarizing the raters’
explanations of these features:
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Misunderstandings (151) and Effectiveness (106): The most frequently mentioned feature was Mis-
understandings, and nobody liked them. Raters were very unforgiving of misunderstandings and ex-
pected the system to recover from them quickly. An analysis conducted in Georgila et al. (2018) revealed
that conversations with multiple misunderstandings were consistently ranked the lowest. In addition, over
half of raters mentioned Effectiveness in at least one of their comments, which presumably refers to a
lack of misunderstandings and correctly executing a task the first time around.

Simplicity (130) vs. Complexity (24): The next most mentioned feature was Simplicity. Overall, peo-
ple largely preferred simple dialogues to complex ones. The words “short and sweet” appear repeatedly
in the feedback corpus. In some of the comments which mention Complexity, raters did say they pre-
ferred the simple dialogues, but also liked that they could have a more detailed and complex conversation
if they wanted to.

Confirming (111) and Responsiveness (108): The third and fourth most frequently mentioned fea-
tures were Confirming and Responsiveness. Raters showed strong aversion to silence from the system,
citing that a lack of responsiveness made for a poorer dialogue. Raters also consistently mentioned sys-
tem confirmations and requests for clarification as positive dialogue aspects. This includes any time
the system repeated rater commands to confirm them, or gave confirmation that a certain command was
complete.

Naturalness (101): Naturalness is harder to qualify, however some raters clearly stated that this
would mean that the system’s responses were more “human-like”, while others failed to specify what
was meant by “natural”. A few did mention grammatical mistakes as taking away from the naturalness
of the dialogue, and a few talked about disliking “robotic” responses.

Brevity (97): Almost half of raters mention Brevity in their comments. Whereas most of the comments
on Simplicity seem to suggest that a shorter overall dialogue was preferred, many of the comments about
Brevity imply that shorter individual utterances were preferred as well.

Pleasantness (74) and Rudeness (55): Raters often mentioned words like “kind“, “nice”, “pleasant”,
and “polite” when referring to the systems they preferred, and many explicitly mentioned specific behav-
iors they found rude. Silence in response to user utterances was the most often mentioned rude behavior,
but people also disliked when the system used words like “obviously” and “naturally”. These were seen
as “back talk” and “sass” on the part of the system (although, a small minority of participants expressed
an affinity for the system being “sarcastic”).

Personality (27) vs. Formality (28): Some raters said that they enjoyed system utterances like “roger
that” and “mission complete” that gave the system more Personality. They said these kinds of system
utterances made them laugh and would enhance their experience. Roughly the same amount of peo-
ple explicitly mentioned disliking these utterances than liking them, preferring the system to use more
formality when responding.

Directness (53): Based on the comments, Directness may tie into a number of other features such
as Brevity, Simplicity, and Formality. Many of the comments about Directness also mention liking the
system to be “straightforward” or “precise”, and mention disliking phrases linked to the Personality
comments such as “roger that”.

Intelligence (25): Although a proportionally small number of raters explicitly mentioned Intelligence,
there was enough precedence in previous work for it to be included in this analysis. However, due to the
highly subjective nature of this feature, steps were taken to try to determine which behaviors the system
displayed that led raters to describe the system as being “intelligent”.

5 System Response Annotation Scheme

We created a novel annotation scheme to describe features of the system’s communicative and action
responses in a dialogue, in order to investigate how the qualitative features from the feedback corpus
might be achieved. Some of our annotation labels were motivated by existing schemes (Core and Allen,
1997; Bunt et al., 2012), but we found no scheme that encompassed the breadth of information for which
we wanted the system’s utterances to be annotated. Annotations fell into 3 broad categories: Action
Assessment, Response Assessment, and Linguistic Feature Assessment.

67



Assess Action Assess Response Assess Linguistic Features
Action Describe Acknow- Specify Request Other Speci- Register Gram-

type current ledge state ficity mati-
under- action cality

standing
A-something CU-confirm AA-past SS-done Req-loc O-null explicit Reg-direct gram

A-nothing CU-lack AA-present SS-NA Req-dev O-pleasant implicit Reg-conv ungram
A-valid AA-future SS-unclear Req-time

A-invalid AA-ANS Req-temp
AA-AI Req-other

AA-null Req-action
Req-repeat

Table 4: Taxonomy of annotation categories and subcategories.

Action Assessments are concerned only with determining if any action was taken by the system, and
whether that action was valid or invalid, based on the user’s request. The Action Assessment annotations
represent the System Action Responses. Response Assessments are concerned with indicating what the
system said to the user, and in what way it communicated that information. For example, do the sys-
tem responses focus explicitly on the system’s actions, or implicitly by describing the system’s current
state? The Linguistic Features represent the overall communication style of the system. For example,
this communication can be explicit or implicit, conversational or more formal and direct. The Response
Assessment and Linguistic Feature Assessment annotations comprise the System Communicative Re-
sponses. Some categories were further broken down into subcategories, as illustrated in Table 4.

For any given utterance, there were at least 5 annotations: an Action Type, a Response Type (Response
Assessment), and assessments of Specificity, Register, and Grammaticality. The vast majority of system
utterances had only 5 annotations, one from each of the above categories, but occasionally an utterance
was annotated with more than one Response Type. The Response Type represents the illocutionary force
(Alston, 2000) of a particular system utterance – that is, what the system is trying to communicate to the
user – so occasionally more than one annotation was appropriate for a given utterance if it encompassed
more than one illucutionary act, such as in the following example: “I couldn’t understand, which TV
would you like to link to the network?”. This utterance was annotated with “CU-lack” indicating that
the system lacked an understanding of the user’s request (first illocutionary act) and also “Req-loc” since
the system requested more information from the user about the location of the device for which it should
take action (second illocutionary act). The Response Types “Acknowledge action” and “Specify state”
represent a variety of locutionary acts all with the same intended illocutionary force: acknowledgment
that the user’s request has been fulfilled (or that it cannot be fulfilled). Below is a full accounting of all
annotation categories for system communicative and action responses included in our annotation scheme.
The full annotation scheme (including annotations of user input) is described in Georgila et al. (2018).

System Action Responses:
Assess action: Assesses what action, if any, was taken by the system for the specific utterance.

• A-something (system does something: “I’m connecting the speaker.”),
• A-nothing (system does nothing: “Which speaker?”),
• A-valid (system does requested thing: “U: Turn on the kitchen light. S: I’m turning on the kitchen

light.”),
• A-invalid (system does not do requested thing: “U: Turn on the kitchen light. S: I’m turning on the

porch light.”).

System Communicative Responses:
Describe current understanding: Confirms the user’s request, or informs the user that it does not under-
stand their request.

• CU-confirm (confirm request before doing: “Do you want me to turn on the kitchen light?”),
• CU-lack (describe lack of understanding: “Sorry I don’t understand.”).
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Acknowledge action: Explicitly acknowledges an action the system has taken, is taking, or will take in
the future.

• AA-past (action specified in the past: “The light has been turned on.”),

• AA-present (action specified in the present: “I’m turning on the light.”),

• AA-future (action specified in the future: “I will turn on the light in 5 minutes.”),

• AA-ANS (action not specified: “U: Turn on the light. S: Done.”),

• AA-AI (action impossible: “I can’t open the door while the cycle is running.”),

• AA-null (action is done but not acknowledged: “U: Turn on the light. S: Anything else?”).

Specify state: Implicitly informs the user that an action has been taken, by describing the current state of
the system.

• SS-done (implicit action, done: “The light is now on.”),

• SS-NA (implicit action, not applicable: “The light is already on.”),

• SS-unclear (implicit action, unclear: “The light is on.” – it is not clear whether the light was already
on or the system performed the action).

Requests: Requests more information from the user.

• Req-loc (missing parameter, location: “Which light?”),

• Req-dev (missing parameter, device: “What should I connect to WiFi?”),

• Req-time (missing parameter, time: “When should I do that?”),

• Req-temp (missing parameter, temperature: “What temperature do you want?”),

• Req-other (missing parameter, other: “What should I connect it to?”),

• Req-action (request more actions: “Is there anything else I can do for you?”),

• Req-repeat (request repeat: “Could you repeat?”).

Other response: Represents system behaviors which do not fit into other categories.

• O-null (equivalent to silence),

• O-pleasant (system pleasantry: “You are welcome.”).

Specificity: Indicates the level of specificity of a given utterance.

• explicit (parameters explicit: “U: Turn on the light. S: The light has been turned on.”),

• implicit (parameters implicit: “U: Turn on the light. S: It has been turned on.”).

Register: Refers to the conversational style of the utterance.

• Reg-direct (direct: “U: Turn on the light. S: I’m turning on the light.”),

• Reg-conv (conversational: “U: Turn on the light. S: Sure thing, the light is now on.”).

Grammaticality: Indicates whether or not a specific utterance was grammatical.

• gram (grammatical: “Which light would you like me to turn on?”),

• ungram (ungrammatical: “What temperature you want me to fix?”).

The above annotations were used as a means to determine which system communicative and action
responses may be responsible for the perception of the subjective features mentioned in the raters’ feed-
back, as discussed in section 4.
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Annotation Mean (high) Mean (low) p-value η2

Intelligence (# of dialogues: High = 69, Low = 74)
A-something, A-valid 1.4638 1.4324 .009 .05
O-null .2319 .6081 .000 .14
O-pleasant .0000 .0541 .051 .03
ungram .0000 .1081 .016 .04
A-nothing 1.0725 1.4324 .008 .05

Naturalness (# of dialogues: High = 178, Low = 187)
O-null .3503 .4866 .011 .02
CU-Confirm .2486 .3476 .058 .01

Personality (# of dialogues: High = 51, Low = 56)
Reg-conv 1.0784 .6786 .023 .05
CU-confirm .1569 .3393 .029 .05
CU-lack .1765 .0179 .005 .07
O-null .2745 .5714 .003 .08

Pleasantness (# of dialogues: High = 144, Low = 161)
A-nothing 1.0903 1.3540 .005 .03
CU-confirm .2500 .3665 .035 .02
O-null .3194 .5217 .001 .04

Table 5: Statistical Analyses: results of Mann-Whitney U tests.

6 Relationship of System Behaviors to Subjective Features

Some subjective features are easier than others to relate to system behaviors. In the case of Effectiveness,
it is reasonably safe to assume that a system which is capable of completing a requested task would be
seen as effective. Likewise, in the case of Brevity it is clear that shorter dialogues (or those with shorter
utterances) will rank higher on this measure. However, certain subjective features such as Intelligence,
Pleasantness, Naturalness, and Personality pose a much larger problem in determining which behaviors
should be displayed by the system in order to give the appearance of possessing these qualities.

To address this issue, an analysis was conducted which compared the group of highest ranked dia-
logues to the group of lowest ranked dialogues. That is, for each set in which a rater mentioned a specific
feature (e.g., Intelligence), the “high” group contains only the highest ranked dialogue, and the “low”
group contains only the lowest ranked dialogue. For each group, the total number of occurrences of each
annotation was calculated for each dialogue, and the groups were then compared to determine if there
was a statistically significant difference in the presence of each behavior. The results of the statistical
analyses are summarized in Table 5.

Dialogues ranked highest on Intelligence had statistically more valid actions (A-something, A-valid),
fewer silences (O-null), fewer pleasantries (O-pleasant), fewer ungrammatical utterances (ungram), and
fewer instances of doing nothing (A-nothing). Overall, the only system behavior with a large effect
size was system silences; other variables show small to medium effect sizes, indicating that system
responsiveness is heavily tied to rater perceptions of Intelligence.

Regarding Naturalness, the only communicative response for which statistical significance was found
was system silences (O-null), and even then the effect size is small. However, this implies that the system
should respond to all user utterances, not just questions, in order to appear more “natural”. If the system
asks a question and the user says “no” the system should follow up with another general question such
as “what would you like me to do then?” instead of simply waiting for the next command. Addition-
ally, confirmations (CU-confirm) were nearly significant, suggesting that dialogues which too frequently
confirm user commands (e.g., “should I turn on the light in the living room?”) may be perceived as
less natural. Overall, these analyses suggest that Naturalness might be particularly difficult to evaluate,
perhaps because of competing interpretations of what makes a system seem natural.
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Correlated Features Pearson’s r Correlated Features Pearson’s r
Personality-Pleasantness .12 Pleasantness-Naturalness .53***
Personality-Naturalness .26*** Pleasantness-Intelligence .30***
Personality-Intelligence .07 Naturalness-Intelligence .37***

Table 6: Pairwise correlations (Pearson’s r) for Personality, Pleasantness, Naturalness, and Intelligence
(***: p<.001, **: p<.01, *: p<.05).

Dialogues in which the system was described as having Personality were statistically more likely to
use a conversational register than a direct one. This result seems intuitive, but it is somewhat surprising
that conversational register has the lowest effect size (together with CU-confirm) out of all of the be-
haviors listed. A factor affecting the perception of system personality to a greater degree was informing
the user of the system’s lack of understanding (CU-lack), such as “sorry I don’t know what you want”.
Confirmations of understanding (CU-confirm) were associated with lower ranked dialogues, while indi-
cating a lack of understanding was associated with more highly ranked dialogues. In addition, the highest
ranked dialogues also had fewer silences (O-null) than the lowest ranked dialogues.

Dialogues ranked as the most Pleasant had fewer confirmations of user requests (CU-confirm), and
fewer silences (O-null), much like those described as more natural or as having a personality. However,
Pleasantness was also associated with fewer system utterances in which no action was taken (A-nothing).
It is worth noting that none of these behaviors shows a particularly high effect size, indicating that, like
Naturalness, it may be hard to find a fixed set of features which represent Pleasantness, due to competing
interpretations of what a pleasant system is.

Table 6 shows pairwise Pearson’s correlations for Personality, Pleasantness, Naturalness, and Intel-
ligence. These correlations have been calculated based on feedback for the highest ranked dialogues in
each set of 5 dialogues presented to the raters.

The only feature which did not correlate significantly with Intelligence is Personality. This may be in-
dicative of the dichotomy mentioned between those who prefer a more conversational system and those
who prefer a more direct system. Dialogues ranked highly on the measure of Intelligence contained
statistically fewer pleasantries, which is indicative of a more direct communication style, whereas the
qualitative analysis revealed that dialogues described as having Personality frequently used more con-
versational utterances such as “roger that”.

7 Conclusion and Future Work

The preceding analysis sought to gather subjective rater feedback, in the raters’ own words, and evaluate
that feedback to determine what subjective features were found as most favorable. It sought also to
determine which system communicative and action responses were most closely correlated with the set
of subjective features (Intelligence, Naturalness, Pleasantness, Personality) mentioned frequently by
raters in the current study, and in previous literature. From the above analysis, it is clear that subjective
features such as Intelligence can be analyzed to determine which system communicative and action
responses are likely to give raters the impression that the system possesses these qualities, even though
for certain features such as Naturalness and Pleasantness, this task may be more difficult.

Further study is needed on quantifying the degree to which these subjective measures were perceived
in the dialogues. Additionally, as the qualitative analysis suggests, there is a need for future research to
determine what behaviors correlate most with different communication styles, so that dialogue systems
can be tailored to users’ preferences. Finally, we are currently in the process of validating the above
findings with real dialogues and user feedback rather than simulated dialogues and rater feedback.
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Abstract

This paper presents the first attempt to implement a dialogue manager based on the KoS frame-
work for dialogue context and interaction. We utilise our own proof-theoretic implementation
of Type Theory with Records (TTR) and implement a basic dialogue that involves mutual greet-
ing. We emphasize the importance of findings in dialogue theory for designing dialogue systems
which we illustrate by sketching an account for question-answer relevance.

1 Introduction

One of the most challenging tasks in the design of dialogue systems concerns their capability to support
dialogue strategies that are similar to ones that happen in a dialogue between human participants. The
key component of a dialogue system in this aspect is the dialogue manager, which selects appropriate
system actions depending on the current state and the external context.

Two families of approaches to dialogue management can be considered: hand-crafted dialogue strate-
gies (Allen et al., 1995; Larsson, 2002; Jokinen, 2009) and statistical modelling of dialogue (Rieser and
Lemon, 2011; Young et al., 2010; Williams et al., 2017; Eshghi et al., 2017). Hand-crafted strategies
range from finite-state machines and slot-filling to more complex dialogue planning and logical infer-
ence rules. Statistical models help to contend with the uncertainty that arises from noisy signals that arise
from speech recognition and other sensors.

Although there has been a lot of development in dialogue systems in recent years, only a few ap-
proaches to dialogue management (Allen et al., 1995; Poesio and Traum, 1997; Larsson and Traum,
2000; Larsson, 2002) reflect advancements in dialogue theory (Ginzburg, 1996; Asher and Lascarides,
2003), and there has not been much progress in this respect since the early 2000s. Our aim is to closely
integrate dialogue systems with work in theoretical semantics/pragmatics of dialogue which allows cre-
ating more human-like conversational agents. Here we illustrate this by exemplifying a rudimentary
but potentially deep theory of answers which will be extended further in order to support phenomena
discussed in Bos and Gabsdil (2000).

KoS (not an acronym but loosely corresponds to Conversation Oriented Semantics) (Ginzburg, 2012)
provides among the most detailed theoretical treatments of domain general conversational relevance,
especially for query responses—see Purver (2006) on Clarification Requests, (Łupkowski and Ginzburg,
2017) for a general account— and this ties into the KoS treatment of non sentential utterances, again a
domain crucial for naturalistic dialogue systems and where KoS has among the most detailed analyses
(Fernández et al., 2007; Ginzburg, 2012).

KoS is based on the formalism of Type Theory with Records (TTR). There has been a wide range
of work in this formalism which includes the modelling of intentionality and mental attitudes (Cooper,
2005), generalised quantifiers (Cooper, 2013), co-predication and dot types in lexical innovation, frame
semantics for temporal reasoning, reasoning in hypothetical contexts (Cooper, 2011), spatial reasoning
(Dobnik and Cooper, 2017), enthymematic reasoning (Breitholtz, 2014), clarification requests (Purver,
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2006; Ginzburg, 2012), negation (Cooper and Ginzburg, 2012), non-sentential utterance resolution
(Fernández et al., 2007; Ginzburg, 2012) and iconic gesture (Lücking, 2016).

In the rest of the paper we briefly survey the basic features of KoS and TTR (section 2), describe our
implementation (section 3) and a minimal working example of rules for a dialogue system (section 4).
We illustrate this by an initial sketch of a theory of answers (section 5). We conclude with some brief
discussion and pointers to future work.

2 A brief account of KoS and TTR

KoS (Ginzburg, 2012) is a formal semantic framework based on Type Theory with Records (TTR),
oriented at dialogue, capturing the features of conversational interaction. In KoS (and other dynamic
approaches to meaning), language is compared to a game, containing players (interlocutors), goals and
rules. KoS represents language interaction by representing the dynamically changing context. The mean-
ing of an utterance is how it changes the context. Compared to most formal semantics approaches (e.g.
Roberts (2012), which represent a single context for both dialogue participants), KoS maintains a sep-
arate representation for each participant, using the Dialogue Game Board (DGB). DGBs represent the
information states of the participants, which comprise a private part and the dialogue gameboard that
represents information arising from publicized interactions. This tracks, at the very least, shared as-
sumptions/visual space, moves (= utterances, form and content), and questions under discussion.

In TTR agents perceive an individual object that exists in the world in terms of being of a particular
type. Such basic judgements performed by agents can be denoted as “a : Ind”, meaning that a is an
individual, in other words a is a witness of (the type) Ind(ividual). This is an example of a basic type
in TTR, namely types that are not constructed from other types. An example of a more complex type in
TTR is a ptype which is constructed from predicates, e.g. greet(a, b), “a greets b”. A witness of such a
type can be a situation, a state or an event. To represent a more general event, such as “one individual
greets another individual” record types are used. Record types consist of a set of fields, which are pairs
of unique labels and types. The record type which will correspond to the aforementioned sentence is the
following:

(1)

 x : Ind
y : Ind
c : greet(x,y)


The witnesses of record types are records, consisting of a set of fields which are pairs of unique labels
and values. In order to be of a certain record type, a record must contain at least the same set of labels as
the record type, and the values must be of a type mentioned in the corresponding field of the record type.
The record may contain additional fields with labels not mentioned in the record type. For example, the
record (2) is of a type in (1) iff a : Ind, b : Ind, s : greet(a, b) and q is of an arbitrary type.

(2)


x = a
y = b
c = s
p = q


In our Dialogue Manager, a state is represented as a pair of a type S and an object s witnessing it. For
example, if S is a record type containing greet(a, b), then s will contain an event witnessing the greeting.
These abstract types and witnesses can be mapped to utterances using NLU and NLG.

TTR also defines a number of type construction operations. Here we mention only the ones that are
used in the current paper:

1. List types: if T is a type, then [T ] is also a type – the type of lists each of whose members is of type
T. The list [a1, . . . , an] : [T ] iff for all i, ai : T . Additionally, we use a type of non-empty lists,
written as ne[T ], which is a subtype of [T ] where 1 ≤ i ≤ n. We assume the following operations
on lists: constructing a new list from an element and a list (cons), taking the first element of list
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(head), taking the rest of the list (tail).

cons : T → [T ]→ ne[T ]

head : ne[T ]→ T

tail : ne[T ]→ [T ]

2. Function types: if T1 and T2 are types, then so is (T1 → T2), the type of total functions from
elements of type T1 to elements of type T2. Additionally, T2 may depend on the parameter (the
witness of type T1 passed to the function).

3. Meet types: if T1 and T2 are types, then T1 ∧ T2 is also a type. a : T1 ∧ T2 iff a : T1 and a : T2.

4. Singleton types: if T is a type and x:T, then Tx is a type. a:Tx iff a = x. In record types we use
manifest field notation to a represent singleton type. Notations

[
a : Tx

]
and

[
a=x : T

]
represent

the same object.

3 Implementation

Our dialogue manager (DM) is based on a new implementation of Cooper’s TTR (Cooper, in prep). The
important parts of this implementation are: a type-checker, a subtype checker and a rule-application
mechanism. Figure 1 shows such a dialogue manager integrated into a spoken dialogue system.

The type-checker’s implementation follows the structure of MiniTT (Coquand et al., 2009). However
the type system itself closely follows that described by Cooper. The significant differences are:

1. A more flexible behaviour for meet types: when applied to record types the meet operator reduces
to another record type if possible. For example, [f : A]∧[f : B, g : C] reduces to [f : A∧B, g : C].
This change means that meet behaves as the merge (∧. ) operator in Cooper’s work.

2. Support for boolean types (true : Bool) and (false : Bool), as well as conditionals, such that “(IF
true THEN x ELSE y) = x” and “(IF false THEN x ELSE y) = y”.
With boolean types and records we can construct the type A tB, which is the disjoint union of the
arbitrary types A and B. It is defined as:

(3) A tB =def

[
choice : Bool
result : IF choice THEN A ELSE B

]
The rule-application mechanism is implemented as a thin layer over the typechecker and subtyping al-
gorithm. The behaviour of the DM is implemented as a set of rules (see below), which are parsed,
type-checked and evaluated to normal forms1. Then, at runtime, the dialogue manager maintains its state
(dialogue state) as a pair of a value (s) and a type (S), such that s : S2. A rule r can be applied iff its type
is a function type whose domain is a supertype of Ss. Formally, the applicability condition is r : A→ B
and Ss v A. After an application of the rule r, the dialogue manager state becomes the pair (r(s), B). At
any point, several rules may apply. There are several possible rule-selection strategies. Useful strategies
include backtracking search and user-defined selection.

4 TTR account for a dialogue system: a minimal example

As a starting point we define a basic set of rules that supports a very basic interaction (4) between an
agent (A) and a user (U).

(4) U: hello
A: Hello world!

1by applying beta reduction, field extraction and the if-then-else rules shown above.
2And, additionally, s : Ss, by definition of singleton types.
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Figure 1: Architecture of a spoken dialogue system with a proof-theoretic dialogue manager.

Primary KoS types For the current purposes, we do not consider the user’s information state; we
manipulate solely the the agent’s information state. We implement a minimal version of an agent’s
information state (5) consisting of a private part (a list of moves to be emitted) and a public part—the
dialogue gameboard (DGB). In future work the DGB will be extended to support turn taking, questions
under discussion, facts and other notions defined in (Ginzburg, 2012).

(5) InformationState =def

 private :
[

agenda : [Move]
]

dgb :
[

moves : [Move]
latestMove : Move

] 
By Move we mean a type albeit akin to Ginzburg’s definition of illocutionary proposition:

(6) Move =def

 spkr : Ind
addr : Ind
content : MoveContent

,

where MoveContent is a record type containing a proposition; for greeting it will correspond to[
c:greet(spkr,addr)

]
composing the record type (7) either produced by agent or by user.

(7) GreetingMove =def

 spkr : Ind
addr : Ind
content :

[
c:greet(spkr,addr)

]


Initial Dialogue State In order to implement an initial dialogue state we initialise the dialogue state to
be the record (8) of a type InformationState, where ∅ is an initial dummy move.

(8) init =def

 private =
[

agenda = []
]

dgb =
[

moves = []
latestMove = ∅

] 
Conversational rules As a means of describing general, cross-domain patterns of conversational in-
teraction conversational rules are provided in the form of functions that manipulate the dialogue state.
One might expect that they would have the type (InformationState→InformationState). However, some
rules will take as input (or provide as output) subtypes of InformationState. We define two basic rules:
for the agent’s reaction to the user’s greeting3 counterGreeting (9) is used and fulfilAgenda (10)—the

3For simplicity we restrict this rule to the case when only the agent can perform countergreeting.
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rule pops information from the agenda (moves that have taken place) and puts it on the DGB. This set
of rules will be extended to support other dialogue phenomena, such as turn-taking4, adjacency pairs,
queries, assertions etc. Domain-dependent dialogue strategies will be supported in a similar fashion.

(9) counterGreeting : InformationState

∧

 dgb :

 latestMove :

 spkr=user0 : Ind
addr=agent : Ind
content :

[
c : greet(spkr,addr)

]


→ InformationState ∧
[

private :
[

agenda : ne[Move]
] ]

counterGreeting =def λs. private =

 agenda = cons(

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
 , s.private.agenda)


dgb = s.dgb

,

where gs(agent,user0) : greet(spkr,addr) is a greeting situation.

(10) fulfilAgenda : InformationState ∧
[
private:

[
agenda : ne[Move]

]]
→ InformationState

fulfilAgenda = λs.

 private =
[

agenda = tail(s.private.agenda)
]

dgb =
[

latestMove = head(s.private.agenda)
moves = cons(s.private.agenda, s.dgb.moves)

] 
NLU and NLG In order to integrate the user’s move—a result of natural language understanding—the
rule (11) is defined. The move for natural language generation is selected automatically in the case of
having non-empty agenda.

(11) integrateUserMove : Move→ InformationState→ InformationState
integrateUserMove = λm.λs. private = s.private

dgb =
[

latestMove = m
moves = cons(m, s.dgb.moves)

] 
Greeting example In Appendix A we present an example of applying the update rules in order to
establish the basic greeting exchange (4).

5 Primary treatment of question-answer relevance

5.1 Questions
We provide a general definition of question, as a way to establish a connection between a possible answer
and its expected meaning in a given context:

(12) Question : Type

Question =def

[
A : Type
Q : A→ Prop

]
,

where the field A corresponds to the expected type of an answer and the field Q is a family of propositions,
such that for any answer a, Q(a) is the meaning of answer a as a proposition. In other words, Q is the
family of expected answers, as propositions.

We can define subtypes for polar and wh- questions as follows:

(13) PolarQuestion =def

[
A=Bool : Type
Q : A→ Prop

]
(14) UnaryWhQuestion =def

[
A=Ind : Type
Q : A→ Prop

]
4Procedural coordination can be established in KoS via rules for turn assignment. We thank an anonymous reviewer for

SEMDIAL for raising this issue.
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We can illustrate the semantic interpretation of polar questions (15) and unary wh-questions (16) as
follows5:

(15) J“Do you live in Paris?”K =
[

A = Bool
Q = λa. IF a THEN live(Paris) ELSE ¬live(Paris)

]
(16) J“Where do you live?”K =

[
A = City
Q = λa.live(a)

]
5.2 Answers

For every question q :
[

A : Type
Q : A→ Prop

]
, we construct a type of answers that fully resolve the posed

question:

(17) Answer : Question→ Type

Answer =def λq.
[

answer : q.A
sit : q.Q(answer)

]
,

where the first field is an answer of the type presumed by the question q and the second field represents
the situation where the answer to the question holds, or in general a witness that the answer is correct. In
type theory, this witness is necessary to consider the proposition associated with the answer as true.6

Continuing the examples (15, 16) above, we can see how possible answers (20, 21) can be interpreted
in the context of the corresponding questions . First, we compute the type of answers:

(18) Answer(J“Do you live in Paris?”K)

=

[
answer : Bool
sit : IF answer THEN live(Paris) ELSE ¬live(Paris)

]
(19) Answer(J“Where do you live?”K)

=

[
answer : City
sit : live(answer)

]
Then we see that suitable answers have the appropriate type:

(20) J“yes”K : (q : PolarQuestion)→ Answer(q)

J“yes”K = λq.
[

answer = true
sit = slp

]
(21) J“in Paris”K : (q : UnaryWhQuestion)→ Answer(q)

J“in Paris”K = λq.
[

answer = Paris
sit = slp

]
where slp is such a situation where user lives in Paris.

5.3 Interpreting answers in form of propositions
Not all answers are provided as a simple element of the requested types. Instead, an utterance can take
the form of a declarative sentence which can be interpreted as a proposition (P : Prop) and a witness
(p : P ). We now describe a heuristic procedure which can be used to check if such an utterance can be
interpreted as an answer to a given question (q : Question), and if so, how.

1. Unify q.Q(a) with P , where a is a fresh metavariable. If unification succeeds, it will yield a
substitution σ, such that q.Q(σ(a)) = P .

5Following the simplification made in Larsson (2002) we are using reduced semantic representations, e.g., live(Paris)

instead of
[

x=user0
c=live(Paris,x)

]
.

6In a dialogue system the user will in general be trusted, and so the witnesses will only consist of a representation of
the users’ utterances in context. This could be represented formally by making the situation depend on the agent’s context:
slp(ctxt). Conversely, when the system replies to the user, requiring a witness means that the system must be able to justify its
answer using facts from a knowledge base or a proof constructed from those.
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2. Construct an answer as
[

answer = σ(a)
sit = p

]
: Answer (q). Indeed the record fields have the expected

types: i) σ(a) : q.A because a occurs as an argument to q.Q, and ii) p : q.Q(σ(a)) because p : P
and P = q.Q(σ(a)).

For example, assume J“I live in Paris”K =
[

P = live(Paris)
p = slp

]
and q as in (16). We thus unify live(Paris)

with q.Q(a) = live(a) and find σ(a) = Paris. The answer is then
[

answer = Paris
sit = slp

]
.

5.4 Partial resolution of questions
In any question context, an utterance can either be unrelated to the question at hand, fully resolve the
question or partially resolve it. Thus, in a spoken dialogue system, one should have a procedure to
classify utterances in this way.

(22) questionResolutionClassifier : Utterance→ (q : Question)
→ UnrelatedUtterance t ResolvingAnswer(q) t PartiallyResolvingAnswer(q)

The implementation of such a classifier may use the procedure described in the above section — we will
not discuss it further here and just assume that its output is available. Resolving answers were discussed
above in section 5.2, and further interpretation of unrelated utterances is out of the scope of this paper.
In the rest of the section we propose a treatment for partially resolving answers.

(23) ResolvingAnswer(q) =def Answer(q) = λq.
[

answer : q.A
sit : q.Q(answer)

]
(24) PartiallyResolvingAnswer(q) =def

[
qrem : Question
resolution : Answer(qrem)→ Answer(q)

]
That is, a partial answer is understood as a pair of i) the question that remains (qrem) and ii) a resolution,
which provides a way to fully resolve the initial question from the answer to qrem.

We illustrate the partial resolution of a question with an example from a prototypical goal-oriented
dialogue system that operates incrementally, on input that is smaller than utterances (Schlangen and
Skantze, 2009):

(25) A: What do you want today?
U: A beer, please, and chips.

We assume that q1 has a domain-specific interpretation.

(26) q1 = J“What do you want today?”K =

A =
[

food : Food
drink : Drink

]
Q = λa.order(a.food, a.drink)


(27) a1 : PartialAnswer(q1)

a1 = J“A beer please”K =


qrem =

[
A = Food
Q = λa.order(a, beer)

]
resolution = λarem.

 answer =
[

food = arem.answer
drink = beer

]
sit = arem.sit




We can interpret the remaining implicit question a1.qrem as something similar to “Would you like any
food with your beer?”.

(28) a2 = J“and chips”K =
[

answer = chips
sit = sb&c

]
, where sb&c is a situation when customer wants beer

and chips.
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We can see that (28) is an answer that fully resolves a1.qrem and thereby q1.
We are aware of the existence of situations when a1 might fully resolve q1. Handling this would

require a notion of planning and question resolution according to the plan (Larsson, 2002). This issue
will be addressed in future work.

6 Discussion: update rule output as objects or types

The formalisation of information state update proposed here is slightly different from previous work. In
(Cooper, in prep), update rules are functions of the form f = λr : A.B(r) with type f : A → Type.
An issue with this formulation is that the output of a rule is a type (S′), while rules take as input objects
(s). Therefore, after application of any rule, an object s′ of type S′ needs to be constructed, to be used
as input to the next rule. If the type S′ is a fully specified type (i.e., it is a singleton type or a record type
whose components are fully specified), this computation is possible because an object of a fully specified
type can be constructed as record s′ with the same fields as the record type and with value a for each
fully specified type T in S′. If the output type is not fully specified, however, so-called “hypothetical
objects” will need to be constructed corresponding to the non-singleton types in S′. In such a case, the
type S′ is not guaranteed to have a witness — it is even possible that S′ is the empty type, leading to
logical inconsistency.

In this paper, rules have the form of well-typed functions. For example a rule f may be f = λr.b(r)
where r : A, b(r) : B with f : A→ B. The difference from Cooper’s work is that the rules in this paper
(1) specify type constraints in the rule types and (2) output records (generally: objects) rather than record
types (generally: types). One reason for doing things this way is that the rules are applied to records, and
if they also output records, then a sequence of updates can be seen as a simple threading of update rules
where the output of one rule is the input to the next. The potential disadvantage with rules producing
objects as output is that underspecified information states are more difficult to deal with.

7 Conclusions and future work

We hope that the proposed approach to dialogue management will enable one to bring significant ad-
vances from dialogue theory into the state-of-the-art of dialogue system development and design. It is
important to support important principles of interaction domain-independently, however our approach
does not constrain creation of domain-specific dialogue rules and strategies.

We are aiming at developing a hybrid system which: (a) maintains a rich information state, (b) has sets
of domain-independent and domain-dependent conversational rules and (c) will allow the assignment
of probabilities to rules and to the components of the information state and to train the probabilities
according to the new observations. In this sense our approach follows (Lison, 2015), which is based on
probabilistic rules.

We intend to develop a fully fledged spoken dialogue system on this basis that will enable it to support
theoretical notions similar to the ones developed in frameworks like KoS. Creating such an implemented
account of theoretical dialogue frameworks will enable researchers to test theories of dialogue and dis-
course and exhibit the results of their research to a broader public.

Acknowledgements

This research was supported by a grant from the Swedish Research Council for the establishment of the
Centre for Linguistic Theory and Studies in Probability (CLASP) at the University of Gothenburg. We
also acknowledge the support of the French Investissements d’Avenir-Labex EFL program (ANR-10-
LABX-0083). In addition, we would like to thank Robin Cooper and our anonymous reviewers for their
useful comments.

80



References

James F Allen, Lenhart K Schubert, George Ferguson, Peter Heeman, Chung Hee Hwang, Tsuneaki
Kato, Marc Light, Nathaniel Martin, Bradford Miller, Massimo Poesio, et al. 1995. The TRAINS
project: A case study in building a conversational planning agent. Journal of Experimental & Theo-
retical Artificial Intelligence 7(1):7–48.

Nicholas Asher and Alex Lascarides. 2003. Logics of conversation. Cambridge University Press.

Johan Bos and Malte Gabsdil. 2000. First-order inference and the interpretation of questions and answers.
In Massimo Poesio and David Traum, editors, Proceedings of the Götalog, the 4th Workshop on the
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Ellen Breitholtz. 2014. Reasoning with topoi–towards a rhetorical approach to non-monotonicity. In Pro-
ceedings of the 50th anniversary convention of the AISB, 1st–4th April 2014, Goldsmiths, University
of London.

Robin Cooper. 2005. Austinian truth, attitudes and type theory. Research on Language and Computation
3(4):333–362.

Robin Cooper. 2011. Copredication, quantification and frames. In Sylvain Pogodalla and Jean-Philippe
Prost, editors, Logical Aspects of Computational Linguistics (LACL 2011). Springer.

Robin Cooper. 2013. Clarification and generalized quantifiers. Dialogue and Discourse 4:125.

Robin Cooper. in prep. Type theory and language: From perception to linguistic communication.
https://sites.google.com/site/typetheorywithrecords/drafts.

Robin Cooper and Jonathan Ginzburg. 2012. Negative inquisitiveness and alternatives-based negation.
In Logic, Language and Meaning, Springer, pages 32–41.

Thierry Coquand, Yoshiki Kinoshita, Bengt Nordstrm, and Makoto Takeyama. 2009. A simple type-
theoretic language: Mini-TT .

Simon Dobnik and Robin Cooper. 2017. Interfacing language, spatial perception and cognition in type
theory with records. Journal of Language Modelling 5(2):273–301.

Arash Eshghi, Igor Shalyminov, and Oliver Lemon. 2017. Interactional dynamics and the emergence of
language games. In Proceedings of the ESSLLI 2017 workshop on Formal approaches to the Dynamics
of Linguistic Interaction. Barcelona.

Raquel Fernández, Jonathan Ginzburg, and Shalom Lappin. 2007. Classifying ellipsis in dialogue: A
machine learning approach. Computational Linguistics 33(3):397–427.

Jonathan Ginzburg. 1996. Interrogatives: Questions, facts and dialogue. The handbook of contemporary
semantic theory. Blackwell, Oxford pages 359–423.

Jonathan Ginzburg. 2012. The interactive stance. Oxford University Press.

Kristiina Jokinen. 2009. Constructive dialogue modelling: Speech interaction and rational agents, vol-
ume 10. John Wiley & Sons.

Staffan Larsson. 2002. Issue-based dialogue management. Department of Linguistics, Göteborg Univer-
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A Supplemental Material: “Hello world!” example
Differences between the field values in si−1 and si are marked with an asterisk (*).

1. s0 = init =
[

private =
[

agenda = []
]

dgb =
[

moves = []
] ]

2. USER0> hello is interpreted by NLU as a move m0 =

 spkr = user0
addr = agent
content =

[
c=gs(spkr,addr)

]


3. s1 = integrateUserMove(s0,m0) =



private =
[

agenda = []
]

dgb =


moves* = [

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]
]

latestMove* =

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]






4. s2 = counterGreeting(s1) =



private =

 agenda* = [

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
 ]



dgb =


moves = [

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]
]

latestMove =

 spkr = user0
addr = agent
content =

[
c=gs(user0,agent)

]





5. State s2 has non-empty agenda, thus agenda’s content will be emitted and NLG will produce an utterance: AGENT>

Hello world!.

6. s3 = fulfilAgenda(s2) =

=



private =
[

agenda* = []
]

dgb =


moves* = [

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]
,

spkr =user0
addr =agent
content=

[
c=gs(user0,agent)

]
]

latestMove* =

 spkr = agent
addr = user0
content =

[
c=gs(agent,user0)

]





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Abstract

In this paper, we build on research which has applied visually-derived features for grounded
semantics by leveraging an additional modality: simulated hand muscle activations. We apply
the Words-as-Classifiers model of grounded semantics to learn a mapping between features from
the two modalities and corresponding hand image descriptions. Our experimental results show
that a multimodal fusion of both visual and muscle features yields improved results for the model
than either of the modalities alone in image and description retrieval tasks. By simulating mirror
neurons, we further show that the simulated muscle activations can be derived from the visual
features and applied to our model.

1 Introduction

Part of the semantic representation and meaning of many words is grounded (Harnad, 1990) in how peo-
ple perceive and experience the physical world. For example, the semantic meaning of the word red is
grounded in a person’s perception and experience in perceiving objects denoted by others as red through
color vision. Though vision is an important and common modality for grounded semantics research,
the semantic meaning of words can also be grounded in other perceptual modalities, such as auditory
(Kiela and Clark, 2015) and olfactory (Grabski et al., 2012) perception. In this paper, we take inspira-
tion from Roy (2005) which set forth a theoretical framework for language grounding from embodied,
situated, sensorimotor primitives to words. We explore an embodied modality of simulated muscle ac-
tivations in hands for grounded semantics. We hypothesize that the meaning of words and descriptions
that are related to human hands, for example, grip, point, and thumbs up, are not only grounded in how
those hand configurations are depicted visually, but also grounded in the muscle activations and muscle
memory required to physically make those hand configurations. We explore this by simulating hand
configurations using a virtual, soft-robotic inspired hand (Schlagenhauf et al., 2018; King et al., 2018)
where the finger positions are defined by simulated muscle activations, which we use as features for the
Words-as-Classifiers (WAC) model (Kennington and Schlangen, 2015; Schlangen et al., 2016) as well
as a WAC-inspired neural network model and show that muscle activations coupled with visual features
strengthen the grounded semantic meaning applied to image and description recall tasks. Our results
could be used to augment human understanding in interactive robots by supporting a growing body of re-
search around an embodied semantics, which postulates that grounding incorporates not only perceptual
modalities, but also sensorimotor modalities (Johnson, 2008; Goertzel et al., 2010).

We further explore a potential approach to modeling mirror neurons in the brain–which discharge not
only during action execution, but also during action observation (Kilner et al., 2009)–which allows our
model to use muscle activations derived from a visual representation of the hands. If an embodied system
(e.g., such as a robot) is to make use of both visual and muscle modalities, then both modalities must
each come from some component that is part of the system where those features can be derived (i.e.,
a robot must have a camera for the visual and a soft-robotic hand for the muscles). It would be more
common, and potentially more useful, for a system to make use of muscle activation information by
simply observing someone else’s hand configuration visually. For example, an individual’s own neurons
are activated for generating a grip in his own hand when that individual sees someone else making a
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grip with her own hand. This is what mirror neurons afford humans, the existence of which has been
fairly well supported (Kilner et al., 2009).1 In summary, we make the following contributions: (1) We
model a form of grounded semantics using muscle activations and visual/image representations of hand
configurations, (2) we offer a set of data which includes images of hands with corresponding descriptions,
simulated muscle activations, and visual/image features, (3) we further a notion of embodied semantics
which leverages from perception (i.e., the outside world) as well as muscles (i.e., the inside, corporeal
world) and offer a simple model for applying mirror neurons.

2 Related Work

Several areas of research play into this work including seminal (Roy and Reiter, 2005; Roy, 2005) and
recent work in grounded semantic learning in various tasks and settings, notably learning descriptions
of the immediate environment (Walter et al., 2014); navigation (Kollar et al., 2010); nouns, adjectives,
and relational spatial descriptions (Kennington and Schlangen, 2015); attributes (Matuszek et al., 2012),
verbs (She and Chai, 2016), and grounded distributional semantics (Bruni et al., 2014). We build on
this previous work in that we represent the grounded semantics by linking meaning with visual features,
yet we go beyond this work in that we consider representations of muscle activations as an additional
modality of semantic meaning.

Other recent work has already gone beyond visual grounded semantics including olfactory perception
(Kiela et al., 2015), auditory perception (Kiela and Clark, 2015), haptics (Alomari et al., 2017), and
multimodal features including haptic, auditory, and proprioceptive (Thomason et al., 2016). Very similar
to our goal of grounding into modalities beyond vision is Marocco et al. (2010) who grounded action
words into sensorimotor actions of a simulated robot.2 Our work is novel in that we are not solely
focusing on a perceptual modality (e.g., such as vision); rather, we are building off of this line of research
to explore corporeal modalities for an embodied semantics.

3 Model: Words-as-Classifiers

The WAC model follows Larsson (2015) as a simple approach to bridging grounded and formal seman-
tics. It has recently been shown to yield state-of-the-art results in a reference resolution task using deep
neural networks to represent photographs (Schlangen et al., 2016) as well as in real-time dialogue sys-
tems that can resolve references made to visual objects (Manuvinakurike et al., 2016). Following Zarrieß
and Schlangen (2016), the WAC model is essentially a task-independent approach to predicting semantic
appropriateness of words in physical contexts and can be flexibly combined with task-dependent decod-
ing procedures. The WAC model pairs each word w in its vocabulary V with a classifier that maps the
real-valued features x of an object obj to a semantic appropriateness (i.e., class membership) score:

[[w]]obj = λx.pw(x) (1)

For example, to learn the connotative meaning of the word grip, the low-level features (i.e., visual,
sensorimotor, etc.) of all objects described as grip in a corpus of referring expressions are given as
positive instances to a supervised learning classifier. Negative instances are randomly sampled from the
complementary set of utterances (i.e., not containing the word grip). This results in a trained λx.pgrip(x),
where x is a novel object (in our case, features representing a hand pose) that can be applied to grip to
determine class membership. Traditionally, the WAC model has been applied using independent linear
classifiers, such as logistic regression. In this paper, we apply both this traditional approach to our
task, and we also apply the WAC model using a neural network where the fitness score is applied to all
words in the vocabulary (which makes up the top layer), thereby reducing the independence between the
classifiers. We chose WAC because of its simplicity and interpretability, and neural networks have been
shown to yield state-of-the-art performance in many tasks. Both approaches to WAC learn a mapping
between non-linguistic features and words.

1Though the existence and function of mirror neurons is not without debate (Dinstein et al., 2008).
2Similar in some ways to Grabski et al. (2012), we also explore how mirror neurons can be used to derive muscle activations

from visual features (originally published in French).
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Figure 1: The process of
gathering simulated hand
pictures from a variety of
poses

4 Data: The Multimodal Hand Corpus

In this section, we describe our approach to generating hand configurations with corresponding images,
descriptions, and muscle activations which we used in our experiments.

4.1 Creating a Simulated Soft Hand

We generated simulated hand configurations by leveraging and expanding upon a soft body Forward
Simulation Model (FEMSim) (Bern et al., 2017) which models a discretized two-dimensional soft object
with simulated muscles that lie along the perimeter of the object. These muscles can be contracted,
resulting in a state of the object (in our case, fingers of hands) where the potential energy is the lowest.
For the purposes of this work, we expanded this model to support three dimensions, with muscles that run
along the surface of the fingers. Because this model was more detailed than FEMSim simulation would
reasonably support, we used the program MeshLab to perform a Quadric Edge Collapse Decimation
and bring the model from over 56,000 faces to 1,000 faces. We then used a program called TetGen to
tetrahedralize the mesh and generate the internal structure of the hand.

We added the muscles on the skin of the simulated hands with the constraint that each muscle must
be able to naturally contract each finger. Each muscle is a collection of nodes of a mesh representing
the simulated hand. The muscle imposes a soft constraint on the energy model of the soft object that
allows the soft material to contract along the muscle nodes. A real number ranging from 0.0 to 1.0,
which we denote as muscle activation values, is assigned to each muscle at every simulation step. Higher
muscle activation values denote greater force that each muscle imposes in contracting the simulated
nodes. Although the human hand contains dozens of muscles, we were constrained by the limits of
our simulation to place 5 muscles on the hand to generate realistic motions. This resulted in a muscle
from the tip of each finger to the palm. To allow for a greater range of motion and expression in the
thumb, a 6th muscle connects the tip of the thumb and the wrist through the back of the hand. This
approach led to the challenge of ensuring that the two thumb muscles worked together to produce natural
thumb movements that mimicked human range of movements. As a result, we developed a coupling
mechanism to abstract the two thumb muscles into a singular thumb muscle activation: higher thumb
muscle activations result in the thumb approaching the palm of the hand.

4.2 Generating Hand Poses

After simulating a soft hand with acceptable movement fidelity to real hands, we captured images and
recorded the corresponding muscle activations of different hand configurations. After placing the mus-
cles on the simulated hands, we sampled the space of hand configurations by activating each muscle in
the vector t in the activation space s and recording the resultant hand configuration. This resulted in
|s||t| total hand configurations. Because of this exponential nature, we constrained the muscle activation
space s to be [0.0, 0.3, 0.7] as we found these activations to provide a meaningful range of distinguishable
finger motions. In total, we generated 35, or 243 distinct poses.

We captured each hand pose through four different visual perspectives: straight (i.e., facing the palm),
above (i.e., above the hand, facing downwards), left (i.e., with the thumb towards the camera), and
behind (i.e., facing the back of the hand). See Figure 3 for one hand configuration from two of the four
perspectives. This process resulted in a total of 972 images of hand configurations (243 hand poses * 4
camera angles; termed as perspectives below). Figure 1 depicts the entire process.

85



Figure 2: Evaluation strategy: select the high-
est scoring candidate from a set of N distrac-
tors and the gold image, given the description.

Figure 3: Two perspectives of the same muscle acti-
vation / hand configuration (left image: left perspec-
tive, right image: straight perspective).

4.3 Obtaining Image Descriptions
For the final part of our corpus, we used Amazon Mechanical Turk to obtain a description for each
generated image. Each participant read and agreed to an informed consent, then they were taken to a
web page that displayed 20 randomly selected hand images from our set, each with a text input box.
They were given instructions to describe each hand pose as they would to a friend.

This collection resulted in two descriptions for each of the 972 images. After removing one description
for inappropriate content, this resulted in 13,657 word tokens and a vocabulary size of 1,376. The average
length of the descriptions was 7 words (std 4.72), where the most common number of words in a descrip-
tion was 2 (217 times). The most commonly used word was hand (685 occurrences) followed by fingers
(525). 702 words occur once, and 185 words occur twice. Examples of words occurring once include
piano, scratch, and doornob. The following are examples of descriptions from four images that were
taken from the different perspectives (each perspective is denoted before each description) of the same
hand configuration, which had a muscle activation of [0,0,0.3,0,0] (i.e., all fingers are straight except for
the middle finger, which is slightly bent). Figure 3 corresponds to the left and straight descriptions:

1. straight: too little
2. above: the fingers and hand are curled as if holding a computer mouse but the thumb is outstretched
3. left: relaxed hand puppet
4. behind: fingers partially close thumb extended outward index finger slightly extended

We point out that these descriptions all described hands that had the same configuration (i.e., muscle
activations), but since the task was a description of what they saw visually, and each depiction was from
a different perspective, the descriptions can be quite varied. This tells us that our data captures something
slightly more challenging than simply determining the name of an object: a configuration of a hand can
be described in many different ways depending on the perspective.

5 Experiment 1: Hand Image Retrieval

In this section, we explain how we applied our model and data in an image retrieval task.

5.1 Task & Procedure
We follow Han et al. (2015) and Han and Schlangen (2017) and use a retrieval task to evaluate our model
(we leave other informative evaluations, such as generating descriptions from features, as future work).
That is, after our model has been trained, for each test instance we randomly select m distractor hand
perspectives and our model is to pick out the correct hand perspective, given the description. We trained
on all of the training data, and cross-validated the heldout data which comprised 10% of the data (i.e.,
195 instances) with four folds, averaged over five runs, on three model variants which we describe below:

• muscle - only uses features related to 5 muscle activations and the orientation of the image
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• visual - only uses visual features
• muscle+visual - use all muscle and all visual features

Representing the Features The muscle features are represented as real numbers between 0.0 and 1.0,
where 0.0 represents no muscle activation and 1.0 represents full muscle activation (e.g., a hand where all
5 fingers are in a tight grip would have all five activations near 1.0; a relaxed hand would have all muscle
activations near 0.0). For visual features, we apply a transfer learning approach (Pan and Yang, 2010) and
use a pre-trained VGG19 convolutional neural network (CNN), which takes in an image at the bottom
layer and outputs a softmax distribution over 1000 possible classes (Simonyan and Zisserman, 2014).
The VGG19 was trained on the ILSVRC-2012 data set which contains 1.3 million images grouped into
1000 classes (i.e., the images depicted individual entities such as an animal or an object). We used the
development data to empirically determine parameters, including which layer of the VGG19 model that
we should use. We also included four binary features that represented the particular perspective (i.e.,
straight, above, left, behind) of the image. This resulted in 5 possible muscle features and 1004 possible
visual features for our model.

Models We performed the experiment on two WAC model variants: logistic regression (WACLR) and
a neural network (WACNN ). For the WACLR variant, we used scikitlearn (Pedregosa et al., 2011) for
each word w in the vocabulary by taking all descriptions where w was found and used the corresponding
features for the hand configuration. This resulted in a separate classifier for each word in the vocabulary.
For the WACNN variant, the input features were identical to that of WACLR, but in keeping in the spirit
of WAC, the top layer was the full vocabulary. We used a dense input layer (activation=tanh) where the
input shape was the number of features (which varied depending on the modalities being evaluated), an
additional dense layer (activation=tanh) which had |V | ∗ 2 neurons, and a top (activation=softmax) layer
where the words in the vocabulary made up the class labels. We used the Adam (Kingma and Lei Ba,
2015) optimizer (learning rate=0.001) and categorical cross-entropy for gradient descent for 15 epochs
(batch=256). We determined these parameters empirically by cross-validating on our training data.

Training For WACLR we train individual classifiers for each word, where each classifier can determine
the probability of class “fit”, and for WACNN , we train a single model which yields a softmax distribution
for class “fit” for all words in the vocabulary. For the muscle variant, we only used the 5 muscle-related
features, for the visual variant , we used the 1004 image features, and for the muscle+visual variant we
used all of the features (i.e., muscle and visual concatenated) to give to each w as positive examples and
randomly selected negative examples from descriptions that did not use w. For each positive example,
we used three negative examples (the number of negative examples was also determined using the de-
velopment set of our data). This means that, at a minimum, each word had at least 4 training instances
(i.e., for words which only showed up once in our data). We removed several words from our vocabulary
which were common in many of the descriptions (hand, and, the, a, with, is, are, to, and of ) which
would provide minimal semantic value. Note that for WACNN , we tested L1 and L2 regularization using
a development set of data without any additional benefit.

Testing For each word w in each description, we apply the features of each of our distractor hand
configurations as well as the true hand configuration as candidates to the WAC for that w (for the WACNN

variant, we obtain the probability for w in the top layer’s distribution) and compose a final probability
over all of the candidates, adding together the results for each candidate. We take the argmax of the
distribution as the model’s guess and check if it is the true hand configuration which belongs to the
description. This process is represented in Figure 2.

Metrics We use the accuracy of choosing the true hand configuration for all of the data in our cross-
validation for each model variant using 1 to 5 distractors. The baseline for this model is random, or
1/(m+1) where m is the number of distractors. We hypothesize that the muscle variant will perform
above baseline, but will not perform as well as visual because the descriptions were based on visual
images, not on muscle activations. We further hypothesize that the multimodal muscle+visual variant
will have the highest performance.
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Figure 4: Results for Experiments 1 (image re-
trieval), 2 (description retrieval), and 3 (mirror neu-
rons), where cross-validation was performed using
the WACLR variant of WAC. Experiment 1 results are
solid, Experiment 2 results are dashed, Experiment
3 results are dotted.

Figure 5: Results for Experiments 1 (image re-
trieval), 2 (description retrieval), and 3 (mirror neu-
rons), where cross-validation was performed using
the WACNN variant of WAC. Experiment 1 results
are solid, Experiment 2 results are dashed, Experi-
ment 3 results are dotted.

Results For easier comparison across experiments, we grouped our results into two figures. The results
for the cross-validation performed using the WACLR is shown in Figure 4 as solid lines. The results for
the cross-validation performed using the WACNN is shown in Figure 5 as solid lines. As hypothesized,
the multimodal muscle+visual model variant yields the highest performance. The muscle activations
were above baseline, but do not perform very well on their own. Moreover, each hand configuration had
multiple images associated with it (i.e., from different angles), each of which had distinct descriptions.
This would cause confusion when WAC learned a mapping between muscle activations and words of a
description. Unexpectedly, the differences in the modalities are more pronounced with the WACLR model
variant, despite is linearity assumption.

6 Experiment 2: Description Retrieval

In this section, we explain how we applied our model and data in a description retrieval task.

Task, Procedure & Metrics An equally important evaluation of our model reverses the retrieval task
in Experiment 1. That is, for each test instance, we randomly select m distractor descriptions and task
our model with picking out the correct description given the hand configuration features. We perform a
4-fold cross-validation using the heldout data on the three variants explained in Experiment 1. Moreover,
instead of composing together the probability of each word in each description by summing, we average
the probabilities of all words in each description so that longer descriptions are not favored by the model.
The metrics for this experiment are similar to Experiment 1 except that we use the accuracy of the model
choosing the true description for the corresponding hand configuration.

Results The results for the cross-validation performed using WACLR is shown in Figure 4 and using
WACNN in Figure 5 as dashed lines. These results are comparable in trend to Experiment 1, with slightly
lower scores overall. The visual+muscle modalities together perform better than visual or muscle alone.
As in Experiment 1, WACNN does not yield as high results as WACLR. This is possibly due to the sparsity
of the data, but also potentially due to the way the two variants were approached: treating the WACLR

classifiers independently has some utility when the data are somewhat sparse.
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7 Experiment 3: Simulation of Mirror Neurons

In this experiment, we repeat the task and procedure of Experiment 1 using muscle activations that are
derived from the visual features.

Task, Procedure & Metrics The values that make up the muscle features are not directly observable
like they were in Experiment 1. We train a Ridge Regression classifier that maps from the 1004 visual
features to the 5 muscle features. We use the training data to learn this mapping, then pass each heldout
image through the trained classifier to create a new set of muscle features that were derived from the
visual features. This simulates, we claim, a very simplified function of mirror neurons; i.e., by observing
a hand configuration visually, not only can a system use the visual features directly, the system can also
derive muscle features from the visual features (RMSE on the development data is 0.0757). The training
for WACLR and WACNN is the same as Experiment 1; we train using the original data (i.e., a robot that
is making use of visual information to derive muscle information uses the model trained using its own
muscle activations). The metrics for this experiment are the same as Experiment 1.

Results The results for the cross-validation performed using WACLR is shown in Figure 4 as dotted
lines; WACNN is shown in Figure 5, also as dotted lines. The trend is largely the same as Experi-
ments 1 and 2, with muscle working well above baseline, visual working well above muscle, and the
visual+muscle performing the best for the WACLR variant, though, as expected, lower overall when com-
pared to Experiment 1, because the model is not using the true muscle values. For WACNN , the story
is somewhat different from the first two experiments: not only is muscle above baseline, muscle alone
performs better than visual, though visual+muscle perform the best. We explain this surprising, yet wel-
come, result by noting that the muscle features used in this experiment were derived from the visual
features using Ridge Regression, resulting in muscle activation values that ranged more continuously
between 0 and 1, whereas the muscle values in Experiments 1 and 2 were more discrete (i.e., values
0.0, 0.3, and 0.7). The WACNN model can make use of finer distinctions in the features better than the
WACLR variant, and the wider variety in data may reduce overfitting in the WACNN model .

8 Analysis

To understand the model’s interpretation of the semantics of hand poses, we train the WACLR and the
WACNN models as explained in Experiment 1 (i.e., muscle+visual) and isolate word w, then apply the
model to all images, resulting in a fitness score pw for that word. We then ranked the probabilities,
resulting in the top x images for w. The x images are then grouped by perspective, and each of the four
groups of perspectives are blended together to create four final images representing what a prototypical
hand configuration would look like for w. For cases when a particular perspective was not represented in
the top x images, then that perspective is labeled Blank Image. The more defined a region of the image,
the more often this region of the image was represented in all of the x images. This allows us to analyze
the overall “look” of a word by visualizing what configurations and perspectives in the image are more
solid. Our chosen words are: pointing, fist, ok, palm, and typing.

pointing After applying all images to the trained WACLR classifier for the word pointing (which occurred
103 times in our data), we took the 100 best fit images to produce Figure 6. We then repeated the above
steps for the trained WACNN classifier and generated Figure 7. All perspectives in both figures outline
a pointing hand, with the index finger extended; other fingers mostly contracted. This shows that both
models learned the prototypical grounded meaning of the word pointing. The results from the WACNN

are similar to the results from the WACLR, with the WACNN variation showing a slightly more relaxed
pointing hand than the WACLR variation.
fist, ok, palm and typing Figure 8 shows the top 100 images that the WACLR model learned to associate
with the words fist, ok, palm, and typing. Each word occurs 62, 27, 184, and 23 times respectively in our
data (we point out that WAC learned a reasonable semantics using only 23 examples for typing). Each
word only has one perspective in the top 100 images (all four of the words’ images are shown in one
figure), showing that the perspective of hand pose may have a large impact on the image description. For
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Figure 6: Blended fit for word
pointing using WACLR gener-
ated from the top 100 images.
Blank Image means no images
for that perspective.

Figure 7: Blended fit of the
word pointing using WACNN

generated from the top 100 im-
ages. In this case, all perspec-
tives are represented.

Figure 8: Blended fits for fist,
ok, palm, and typing where
only one perspective contained
any images; generated from the
top 100 images using WACLR.

fist, the behind perspective is shown, where all of the fingers are curled. For ok, the left perspective is
shown, and the index finger is extended because human participants often used phrases such as going to
make an ok sign. For palm, the straight perspective is shown, and the model learned that the position
of the fingers plays little importance as long as the palm of the hand is showing. For typing the above
perspective is shown. These demonstrate that the model learned the semantics of very specific words.

9 Discussion & Conclusion

In this paper, we presented novel, multimodal data which included simulated muscle activations with
corresponding generated images and descriptions. We applied the multimodal data to the WAC model
which learned a form of grounded semantics between words and two modalities of hand configurations:
simulated muscle activations and visual representations. We showed that the model performed well
above baseline using muscle activations alone, better with visual features derived from a VGG19 model,
and the best when both modalities were present in a challenging image and description retrieval task. We
also took inspiration from mirror neurons and applied a simplified approach to derive muscle features
from the visual features, which yielded good results in an image retrieval task. We then analyzed our
model and showed that WAC indeed learned to pick out prototypical hand configurations from the data.

A limitation of our solution is a lack of understanding of those external objects with which a hand
might interact. For example, in the description holding a small ball, our model does not comprehend the
physical meaning behind ball. We could augment our simulation with objects (such as balls) to provide
our model information about external objects. Furthermore, instead of considering words independently,
our model could be improved to develop a more contextual understanding.

Our work can potentially be applied to hand gesture recognition and sign language recognition through
the use of mirror neurons, which we leave for future work. Moreover, our work furthers the notion that
valuable information lies in embodied modalities. Roy (2005) stresses ”the importance of binding sym-
bols to sensorimotor representations, as evidenced by recent experiments that probe the embodied nature
of cognitive processes.” We envision a unified semantic theory that brings together distributional embed-
dings and grounded semantics (as posited in Thill et al. (2014)), which includes corporeal modalities. In
the future, we hope to tackle a hand pose description generation task, as well as gathering hand descrip-
tions from human participants experiencing the embodied sensation of particular hand poses. The code
we used for the modeling and experiements and multimodal hand dataset are available.3

3https://github.com/bsu-slim/WAC-Hands
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Abstract 

Most previous studies on questions pay much attention to the representation and answerhood 
problems, but are less concerned with the way how they are derived in discourse. Taking Martin-
Löf’s constructive type theory as the starting point, this article develops a function-based theory 
of question, which provides us with new formal tools for representing the various kinds of nat-
ural language questions and modeling their inferential behavior in a unified way.  

1 Introduction1 

Questions are undoubtedly important in both logic and linguistics. Studies on questions in formal logic 
date back to the late twenties of the last century. Since then, many different accounts have emerged as a 
result of the development of logical tools. However, while much attention has been paid to the represen-
tation of questions in a particular formalism or the definition of questions in terms of answerhood (see 
a detailed review in Wiśniewski, 2015), less is devoted to exploring the way a particular question is 
derived in discourse context. Taking Martin-Löf’s (1984) constructive type theory (CTT, henceforth) as 
the starting point, this article proposes to analyze questions as different kinds of functions and provides 
a theory for their derivation (especially, question-evocation) in discourse.  
    The article is organized as follows: section 2 introduces a linguistic taxonomy of questions in natural 
language, mainly based on Wiśniewski’s (2013) and Ginzburg’s (2012) informal analyses and thus sets 
a list of desiderata for the theory to be developed in subsequent sections; section 3 is a brief reminder of  
Martin-Löf’s constructive type theory; section 4 compares (formal) questions to functions, and distin-
guishes between three different kinds of erotetic functions, namely, proof search, type inference, and 
type checking; section 5 applies the theory to representing the different kinds of natural language ques-
tions that we introduce in section 2, and also provides a preliminary analysis of erotetic reasoning in 
dialogue; section 6 briefly compares the new theory with other previous proposals within the same ap-
proach; and the final section concludes the article and outlines the tracks for future research.  

2 A Taxonomy of Questions in Natural Language 

The method to classify natural language questions varies depending on the criteria one takes into account. 
In English, one may easily distinguish between a yes-no question and a wh-question, as they are obvi-
ously different in their syntactic form. However, to understand and to model the inferential behavior of 
questions, we are more interested in the meaning part of questions. Alternative Semantics is usually 
conceived as the standard theory for the meaning of questions (Hamblin, 1973), according to which, the 
semantic meaning of a question is the set of alternative propositions that answer that question. The size 
of the answer set (or the (in)finiteness of answer alternatives) is taken by some researchers as an essential 
criterion for classifying questions. For instance, Wiśniewski (2013) made the following classification: 

	
(1) Open-condition question: An open-condition question expresses open conditions requested to be 

filled. For example: Who left for London? 
(2) Delimited-condition question: A delimited-condition question expresses a condition to be filled, 

yet associated with a list of instances. For example: Who left for London, John or Mary? 
																																																								
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://crea-
tivecomons.org/licenses/by/4.0/ 
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(3) Choice question: A choice question lists certain implicit alternatives among which a choice is 
requested to be made. For example: Did John leave for London? 

(4) Topically-oriented question: A topically-oriented question, for instance, a why-question, ex-
presses a condition of the form ρ because … requested to be filled. For example: Why did John 
leave for London? 

 
    The distinction between (1) and (2) is evident as they correspond respectively to a restricted and 
unrestricted set of alternative answers. (3) can also be put in the category of delimited-condition question, 
but it differs from (2) in the sense that it is a request for a truth value that can be assigned to the encoded 
proposition. (4) is different from all of the above cases: it contains a complete proposition, which is 
already presupposed to be true, and it seeks an assumption under which the truth of the proposition holds. 
In logic, this is equivalent to conducting an abductive research, i.e., seeking a possible explanation for 
a given confirmed conclusion. For the convenience of discussion, we will call it abductive research 
hereafter. 1 
    The use of questions (1-4) is not homogenous in discourse: while in some cases, they can be uttered 
out-of-blue, in some others, they are used as a response to a preceding move. Drawing upon Ginzburg’s 
(2012) analysis of (meta)communicative questions, we distinguish three main kinds of question use: 
 
(5) Simple query: A simple query is a question that can (but need not) be introduced out-of-blue, and 

imposes no specific expectation towards the answer.  
(6) Truth confirmation: A truth confirmation question arises as a response to the previously asserted 

proposition and requests a confirmation of the truth value assigned to that proposition. For example:  
a. A: John left for London.  
b. B: Did John leave for London? (= Are you sure that John left for London?) 

(7) Clarification: A clarification question arises as a response to the previously asserted proposition 
and requests a clarification of either the clausal content or the intended content of a given (sub-)ut-
terance. 
(7.1) Clausal confirmation: A clausal confirmation queries the semantic contribution of a partic-

ular constituent. For example: 
a. Emily: John left for London. 
b. David: John? (= Are you saying John?) 

(7.2) Intended content: An intended content clarification queries the content associated with a 
given (sub-)utterance. For example: 
a. Emily: John left for London.  
b. David: John? (= Who is John?) 

 
    A successful theory of question is expected to be able to represent the abovementioned different types 
of natural language questions, and to explain how these questions are inferred and resolved in discourse 
context. The proposal is based on Martin-Löf’s CTT, which is to be briefly introduced in the next section.  

3 A Brief Reminder of Constructive Type Theory 

Constructive type theory (CTT) is a logical framework developed in a series of papers published by Per 
Martin-Löf since the late 70s. Central to CTT is the principle of propositions as types, according to 
which, a proposition (or a formula) can be interpreted as a set whose elements count as the proofs for 
that proposition. The most fundamental notion of CTT is that of a judgment: a judgment a : A classifies 
a proof object a as being of a specified type A. It can be read in a number of different ways, for instance, 
a is an element of the set A, or a is a proof of the proposition A (Martin-Löf 1984: 4). If a proposition 
has a proof, it is true. The law of excluded middle A∨¬A thus does not hold in CTT.   

																																																								
1 However, it is not to say that abductive research (i.e., a why-question) is the only kind of topically-oriented question. In 
Wiśniewski’s (2013) examples, we also find another kind – how-questions – which usually has a procedure-seeking function, 
that is, questioners making such inquiries are looking for an explanation of the procedure (instead of the reason) of doing 
something. For a detailed discussion of the difference between abductive research and procedure-seeking questions, see, for 
instance, a logical analysis in Wang (2018).  
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    There are in general two kinds of judgments in CTT, namely, categorical judgments and hypothetical 
judgments. A categorical judgment does not depend on any assumptions. There are four different types 
of categorical judgment (Martin-Löf 1984: 3): 
 

A : type A = B : type 
a : A a = b : A, 

 
    Hypothetical judgments are those that are dependent on a set of assumptions. There are two basic 
forms of hypothetical judgment in CTT (Martin-Löf 1984: 9-10): 
 

B : type (x : A) b(x) : B (x : A). 
 
If one takes the antecedent x : A as the domain and the consequent B : type and  b(x) : B as the range, the 
two hypothetical judgments can also be understood as introducing two corresponding functions: 
 

f: (x : A) → B(x) : type f: (x : A) → b(x) : B(x). 
 
    A hypothetical judgment can take an infinite number of assumptions, which constitute the context for 
making that judgment:  

 
b : B (Γ) or Γ ⊢ b : B, where Γ : context 

 
    For the time being, a brief introduction to CTT shall be sufficient. For more technical details, see, for 
instance, Martin-Löf (1984), Ranta (1994), and Granström (2011). 

4 Questions as Functions 

4.1 Erotetic Judgment 
The relationship between assertion (as a kind of speech act) and judgment has been discussed exten-
sively in logicians’ and philosophers’ studies. The most classical view, due to Frege (1918), takes asser-
tion as the outward sign of a judgment. Similar ideas are found in Dummett (1973) and Granström 
(2011), among many others (see van der Schaar 2011 for a detailed review).  In terms of CTT, by making 
an assertion, i.e., a typed judgment a : A, one takes a public commitment to providing a justification for 
A. Kvernenes (2017) generalizes the analysis to explaining questions. According to Kvernenes (2017), 
questions should also be considered as some sort of judgments, as they behave like assertions in two 
important aspects: on the one hand, asking a question stands for one’s commitment to its answerability, 
i.e., there exists an answer that can resolve the question (c.f., the existential presupposition of questions, 
see Dayal 2017 for a review); on the other, the questioner is also believed to able to justify the inquiry 
he makes. In line with Kvernenes (2017), a distinction is made between assertive judgments (⊢J) (evident 
judgments in terms of Kvernenes) and erotetic judgments (?J) (demanding judgments, ibid; cf. Wiśniew-
ski’s e-formula):  
 
(8) Assertive judgment: An assertive judgment is the result of the act of making an assertion (⊢J), 

that is, to take a public commitment to providing justification for the truth of the proposition.  
(9) Erotetic judgment: An erotetic judgment is the result of the act of asking a question (?J), that is, 

to take a public commitment to providing justification for the answerability of the question (or 
equivalently, for the truth of the existential closure of that question).   

 
    The Moorean paradoxes of assertion and question (see van der Schaar 2011 and Wall 2012 for more 
comments) show some hints on the condition under which one is entitled to assert and query. Consider 
the examples in (10) and (11):  
 
(10) Moorean paradoxes of assertion 

a. #It rains, but I doubt it.  
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b. #It rains, but I don’t believe it.  
c. #It rains, but I have no evidence for it.  

(11) Moorean paradoxes of question 
a. #Who killed John? – but I doubt that anyone killed him. 
b. #Who killed John? – but I don’t believe that anyone killed him. 
c. #Who killed John? – but I don’t have any evidence for that someone killed him.  

 
The oddity of the sentences in (10) suggests that one is entitled to assert if and only if he can justify the 
proposition that he believes to be true; whereas the sentences in (11) imply that one is entitled to query 
if and only if he can justify the question that he believes to be answerable.  

4.2 Representing Questions with Different Functions 

Ginzburg (2012) expresses an idea, which is akin to ours: a question can be considered as a propositional 
abstract, that is, a function from records (i.e., proof objects for record-types) into propositions. In what 
follows, we further exploit this idea and proposes to categorize the erotetic function into three different 
kinds: proof-search, type-inference, and type-checking. 1 

In order to make an assertion ⊢	 a : A where A : prop, one needs to know at least three kinds of 
information: the type (either simple or complex), the proof (or at least the existence of a proof), and the 
coherence of the proposition with other true propositions in the system. When only some of them are 
available, one may put forward a request for the lacked pieces. Therefore, we may identify three different 
kinds of inquiries: 
 
(12) Proof search: Given a type A, search for a proof object x such that x can be classified as being of 

type A under the context Γ:  
Γ ?P x : A	[b(x) : B] = Γ ?P (λx)b(x) : (x : A)[B] 

which can be interpreted as a question that queries the (existence of a) proof object x of the type A 
such that b(xA) : B.  

 
(13) Type inference: Given a proof object a, search for a type x such that a can be classified as being 

of the type x under the context Γ: 
Γ ?T a : x	[b(ax) : B] =	Γ ?T (λx)b(ax) : ((x : type)[a : x])[B] 

which can be interpreted as a question that queries the type x of the proof object a such that b(ax) : 
B.  

 
(14) Type checking: Given a proof object a and a type A, decide whether a is of type A under the 

context Γ:  
Γ ?C a : A[b(aA) : B] =	Γ ?C (λx)b(ax) : ((x : type)[a : A(x)])[B] 

which can be interpreted as a question that queries the correctness of the judgment a : A such that 
b(aA) : B.  

 
Making a type checking usually follows two steps: (i) starting with a given proof object a, infer the 
corresponding type x, and then (ii) compare the inferred type x with the given type A and return the 
result Γ ⊢ a : A if A=x, or otherwise, return an error, i.e., Γ	⊢ a :/ A (if A≠x ). Type checking thus also 
comprises proof checking in virtue of their symmetrical relation: to check whether a proof object is of a 
particular type is also to check whether the type can categorize the given proof. 

4.3 Logical Rules for Question-Evocation 

In the previous section, we discussed the possible formal questions that are allowed in CTT. The remain-
ing question is how these questions are derived in discourse context. In his pioneering research, 
Wiśniewski (2013) makes a distinction between two different but interrelated derivational processes of 
questions: (i) question-evocation, in which a question is evoked based on a list of assertions or possible 
assertions, and (ii) erotetic implication, in which a question is implied by another question. Due to space 
limitations, this section will only concentrate on the first kind, the question-evocation.  
																																																								
1 The terms are borrowed from computer science. See Ranta (2012) for a technical explanation.  
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Let’s start with an example: 
 
(15) Context: Emily’s cousin John left for London last week.  

a. Emily: John left for London.  
b. David: Who is John? 
c. Emily: My cousin.  

 
    The question (15b), as an intended content clarification, arises as a result of two premises, i.e., that 
David does not know who John is, and that Emily knows that because she has mentioned the name in 
(15a). In this case, both premises are assertions (either explicit made or stored as part of the implicit 
world knowledge), and the derivation of the question (15b) thus belongs to the category of question-
evocation. (15c) resolves the question (15b) and thus favors David’s grounding of (15a).  
    The question derivation and resolution can be modeled by using a series of natural deduction rules, 
namely, formation rules, introduction rules, elimination rules, and equality rules:  
 
(16) Proof search (?P) 

 
(Ξ, (Γ ⊢ x  : A))
Γ ⊢ b(xA) : B

Ξ ?P (x : A)[b(xA) : B] : function
?PF 

(Ξ, (Γ ⊢ x  : A))
Γ ⊢ b(xA) : B

Ξ ?P (λx)b(xA) : (x : A)[B]
?PI 

Ξ ?P p : (x : A)[B]
(Γ ⊢ a  : A)

Γ ⊢ ap(p, a) : B(a  : A)
?PE 

(Ξ, (Γ ⊢ x  : A))
Γ ⊢ b(xA)  : B (Γ ⊢ a  : A)

ap((λx)b(xA), a) = b(a/xA) : B
?PEq 

(17) Type inference (?T) 
(Ξ, (Γ ⊢ a  : x (x : type)))

Γ ⊢ b(ax) : B
Ξ ?T ((x : type)[a : x])[b(ax) : B] : function

?TF 

(Ξ, (Γ ⊢ a  : x (x : type)))
Γ ⊢ b(ax) : B

Ξ ?T (λx)b(ax) : ((x : type)[a : x])[B]
?TI 

Ξ ?T p : ((x : type)[a : x]) [B]
(Γ ⊢ A  : type)

Γ ⊢ ap(p, A) : B(a  : A)
?TE 

(Ξ, (Γ ⊢ x  : type))
Γ ⊢ b(ax) : B (Γ ⊢ A  : type)
ap((λx)b(ax), A) = b(aA/x) : B

?TEq 

(18) Type checking (?C) 
(Ξ, (Γ ⊢ a : A(x) (a  : x (x : type))))

Γ ⊢ b(ax) : B
Ξ ?C (((x : type)[a : x])[a : A(x)])[b(ax) : B] : function

?CF 

(Ξ, (Γ ⊢ a : A(x) (a  : x (x : type))))
Γ ⊢ b(ax) : B

Ξ ?C (λx)b(ax) : (((x : type)[a : x])[a : A(x)])[B]
?CI 

Ξ ?C p : (((x : type)[a : x])[a : A(x)]) [B]
(Γ ⊢ A  : type)

Γ ⊢ ap(p, A) : B(a  : A)
?CE 
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(Ξ, (Γ ⊢ x  : type))
Γ ⊢ b(ax) : B (Γ ⊢ A  : type)
ap((λx)b(ax), A) = b(aA/x) : B

?CEq 

 
The formation rule (F) states how a formal question is formed. The introduction rule (I) describes how 
a particular type of formal question is introduced. The elimination rule (E) suggests how the interroga-
tive operator is eliminated or equivalently, how the question is answered, whereas the equality rule (Eq) 
justifies the elimination rule by stating how it operates on the canonical elements that are formed by the 
introduction rule. Since we are only interested in question-evocation, all of the premises in the derivation 
process are assertions. In the next section, all of these formal tools are implemented to model natural 
language questions.  

5 Representing Natural Language Questions 

In section 2, we set a list of desiderata for a formal theory of question: it must be able to represent both 
the form and the derivation of the different kinds of natural language questions: open-condition ques-
tions, closed-condition questions (i.e., delimited-condition questions and choice questions), abductive 
research, and also the three kinds of pragmatic use of questions in discourse context: simply query, 
confirmation, and clarification (i.e., clausal content confirmation and intended content confirmation). In 
what follows, we will show how this is done by using the theory we proposed in section 4.  
    First of all, as we already mentioned in the above discussion, choosing a particular form of question 
for making a query depends on what information is available and what is absent in discourse context. If 
both proof and type are present, the questioner can check the correctness of the judgment; whereas when 
only some of them are available, one may put forward a request for the lacked pieces. Now let’s consider 
in turn what kinds of information are absent (and thus need to be requested) in the various questions we 
have seen in section 2.  

Consider for instance the open-condition and closed-condition questions in (19). 
 
(19) Open-condition and closed-condition questions 

a. Who left for London? 
b. Who left for London, John or Mary? 
c. Did John leave for London? 

 
In both (19a) and (19b), the questioner presupposes that someone left for London and would like to 
know who the guy is. In type-theoretical terms, the propositional type is available and what is requested 
is an explicit proof object. Delimitating the conditions does not influence the question-evocation process 
but constrains the possible subquestions to be generated. Splitting a question into subones reflects a 
process of question-implication, which is beyond the scope of this article. Both (19a) and (19b) can be 
modeled by using the proof search operation:  
 
(20) a. Γ ?P (λx)a(x) : (x : human)[A]. 

b. Γ ?P (λx)a(x) : (x : human)[A], where only j : human and m : human. 
Notation: Here and in what follows, A=John left for London.  

 
In the case of (19c), the speaker asks for a truth value (or Boolean value) that can be assigned to the 
proposition and thus is equivalent to searching for either a positive proof or a negative proof (but not 
both) for the corresponding form of the encoded proposition. As a result, it can be represented in two 
different ways: either as a type inference question (21a), or as a proof search question (21b).  
 
(21) a. Γ ?T (λx)V(A) :	(x : bool)[x], where V is a valuation function that assigns a truth value to each 

proposition.  
b. Γ ?P (λx)x : A | ¬A, where | is a symbol for exclusive disjunction.  
  

    In an abductive research, such as (22), one would like to know how a given judgment – that John left 
for London – as the conclusion, is arrived at. By doing so, one takes for granted that the speaker who 
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made that judgment/assertion must be able to justify his words, that is, to provide other true propositions, 
such as (22b), as premises. As a result, an abductive research can be modeled by using the type inference 
operation, as given in (23). 
 
(22) Abductive research 

a. David: Why did John leave for London? 
b. Emily: He found a position in HSBC. 

(23) Γ ?T (λx)a(bx) : ((x : prop)[b : x])[A]. 
 

The different pragmatic uses of questions can also have a proper explanation and formalization by 
using the new formal tools. Consider first a truth confirmation question in (24).  
 
(24) Truth confirmation 

a. Emily: John left for London.  
b. David: John? (= Are you sure it was John?) 

 
David was told by Emily that John left for London but by making a truth confirmation question (24b), 
it is obvious that David is still hesitating to accept the truth of the proposition. What David intends to 
do by asking (24b) is to check again whether the statement is true, or in other words, to get Mary to 
think over her words. In type-theoretical terms, what David seeks to check is not the truth, but the cor-
rectness of the typed judgment, i.e., whether the proof object is correctly typed. Consequently, it can be 
modeled by using the type checking operation: 
 
(25) Γ ?C (λx)a(bx) : ((x : type)[b : j(x)])[A]. 

 
Clarifications are different from truth confirmations. The following examples in (26) illustrate the 

two kinds of clarification questions.  
 
(26) Emily: John left for London. 

a. Intended content  
David: John? (= Who is John?) 

b. Clausal confirmation 
David: John? (= Are you saying John?) 

 
(26a) is an intended content clarification, by which the speaker David requests the semantic content 
associated with the constituent ‘John’. After being told that John left for London, David knows that there 
exists some guy whose name is John and who had left for London, but he cannot make it cohere with 
his world knowledge as he doesn’t know who John is. In type-theoretical terms, the proof is already 
given and what needs to be requested is the corresponding type that categorizes that proof. Therefore, it 
can be considered as a type inference question:  
 
(27) Γ ?T (λx)a(jx) : ((x : type)[j : x])[A] 
 
In the case of (26b) – a clausal confirmation question –, the speaker David knows that Emily has asserted 
something and she holds a proof for her words, but David does not know exactly the semantic content 
of the constituent ‘John’ inside Emily’s assertion. It could be due to that David only overheard Emily’s 
words or that David was not being attentive while Emily was speaking. Consequently, by (26b), David 
is making a type inference, as given in (28), but it differs from an ordinary type inference in that the 
speaker already provides an alternative option, that is, a possible type ‘John’. 
 
(28) Γ ?T (λx)a(bx) : (((x : type)[b : x])[b : j(x)])[A] 
 

To sum up, each kind of natural language question that we introduced in section 2 can be represented 
by a specific erotetic function, concretely,  
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Function Erotetic judgment Natural language question 

Proof search Γ ?P (λx)b(x) : (x : A)[B] • Open-condition question 
• Closed-condition question 

Type inference Γ ?T (λx)b(ax) : ((x : type)[a : x])[B] 
• Abductive research 
• Clausal confirmation 
• Intended content 

Type checking Γ ?C (λx)b(ax) : ((x : type)[a : A(x)])[B] • Truth confirmation 
 
Finally, consider a dialogue fragment in (29), which can be represented in the form of the deduction-

like tree, as given in (30). In such a way, the inferential relationship between every two dialogue moves 
is clearly exhibited.  
 
(29) Context: Emily’s cousin John found a position in HSBC and left for London last week.  

a. Emily: John left for London.  
b. David: Who is John? 
c. Emily: My cousin.  
d. David: Okay, why did he leave for London? 
e. Emily: He found a position in HSBC.  
f. David: Are you sure? 
g. Emily: Yes.  

 
(30) Notation: Γ0 stands for the original context of Emily and Ξ0 for that of David. A=John left for 

London, B=Emily’s-cousin(x), C=John found a position in HSBC. 
 
(28a)

(28b)
(28c)

(28d)
(28e)

(28f)
(28g)

Γ0 ⊢ a : A
⇓

Γ0 ⊢ a(jx) : A
(Ξ0, (Γ0 ⊢ j : x (x : type)))

Ξ1 ?T(λx)a(jx) : ((x : type) j : x )[A] ?TI (Γ1 ⊢ j : B)
Γ1 ⊢ a(jB/x) : A

⇓
Γ1 ⊢ a(cx) : A

(Ξ1, (Γ1 ⊢ c : x (x : type)))
Ξ2 ?T(λx)a(cx) : ((x : type) c : x )[A] ?TI (Γ2 ⊢ c : C)

𝛤' ⊢ a(cC/x) : A
(Ξ2, (Γ2 ⊢ c : C(x) (c : x (x : type))))

Ξ3 ?T(λx)a(cx) : (((x : type) c : x ) c : C(x) )[A] ?CI (Γ3 ⊢ c : C)
Γ3 ⊢ a(cC=x) : A ?CI

?TE

?TE

 

6 Comparison with Other CTT-based Formalisms  

As we have mentioned in section 4.2, it is not a new idea to analyze questions as functions. Indeed, we 
have benefitted a lot from three early attempts within the same approach: a preliminary type-theoretical 
analysis of question by Ranta (1994), the propositional abstract account in Ginzburg and Sag (2000) and 
Ginzburg (2012), and a CTT-based logical analysis of inquiries by Kvernenes (2017).  
    Ranta (1994) is probably the first one who attempts to provide a new paradigm for natural language 
research from a constructive type-theoretical perspective. With regard to questions, Ranta (1994) makes 
a dichotomy between propositional questions, in which (at least) two alternative propositions are given 
as choices, and wh-binding questions, in which a wh-operator binds the variable x and determines its 
semantic range.  
 
(31) A | B, where A : prop and B : prop.  
(32) (Wh x : A)B(x), where A : prop and B(x) : prop (x : A).  
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Ranta’s (1994) analysis is inspiring but also rudimentary. Some types of questions, such as the polar and 
wh-constituent questions can be well modeled following his suggestions, whereas some others, espe-
cially, the different pragmatic uses of questions are beyond his concerns. Moreover, Ranta (2014) cares 
less about the epistemic basis of querying (i.e., what is already known and what needs to be requested), 
nor the conditions under which a question is inferred.  
    Ginzburg’s (2012) function-based analysis conceives a question as a propositional abstract (similar to 
an abstract in lambda calculus) – a function from record-level proofs to a complete proposition. This 
naturally applies to the representation of wh-constituent questions, where a variable x is bound by a wh-
expression that specifies the record-type (for instance, x : person, a type determined by the wh-expres-
sion who). To answer a wh-constituent question, accordingly, is to locate a proof object that can be 
classified as being of the specified type. Polar questions are treated in Ginzburg (2012) (and also Ginz-
burg and Sag 2000) as 0-ary abstracts/types. Though technically sound, the notion of 0-ary abstract/type 
is somewhat dissatisfactory in the sense that it is not epistemically underpinned. The alternative way we 
suggest in section 5 is motivated by the core idea of CTT, that the truth of a proposition is a side product 
of provability, and to ask a polar question is therefore equivalent to checking whether there exists a proof 
or a counterproof for that proposition.  
    A recent attempt to interpret questions in CTT is made by Kvernenes (2017), according to whom, 
three types of formal inquiries need to be differentiated: (i) type declaration inquiry ?type A [J(x)], which 
searches for the type of an assumption of J(x); (ii) assumption inquiry ?ass x : A [J(x)], which requests an 
assumption of J(x); and (iii) definition inquiry ?def x : A [J(x)], which seeks a proof object (p.p. 54-57). 
Leaving aside the syntactic difference, Kvernenes’ (2017) proposal comes closest in concept to ours: 
making a type declaration inquiry is actually doing a type inference, whereas seeking a definition is 
equal to searching for a proof. However, a remarkable difference is noteworthy: the assumption inquiry, 
which Kvernenes (2017) treats as an independent type, is subsumed as a special kind of type inference 
question in our system. The reason is, as we have explained in section 3.2, to ask for an assumption, the 
questioner actually presupposes that the speaker can provide such a reason and what he actually asks for 
is not the truth of the reason, but the propositional content. Another difference between the two proposals 
is that we include an additional formal question type – type checking – which is absent and cannot be 
subsumed under any of the three inquiry types in Kvernenes’ (2017) system. 

7 Conclusion and Future Research 

Drawing upon Martin-Löf’s constructive type theory, this article develops a function-based theory of 
question, which provides us with new formal tools for representing the various kinds of natural language 
questions and modeling their inferential behavior in discourse context. Yet, the theory is far from being 
satisfactory, as there are still plenty of questions and phenomena that require a close examination in the 
future. First of all, as we have already mentioned, a question can not only be inferred from a list of 
assertive premises, but it can also be implied by another question. The latter kind of question derivation 
– what Wiśniewski (2013) calls erotetic implication – needs to be analyzed in more detail and compared 
with the former kind. Second, there are many different non-canonical questions in human language, for 
instance, declarative questions, echo questions, tag questions, and rhetorical questions, all of which de-
serves close attention and future consideration. Finally, as suggested by an anonymous reviewer, it 
would be an interesting question how the above analysis may go beyond a technical application toward 
a deeper understanding of the notion of question: what counts as a question, why would one ask a ques-
tion, and what are the norms that should be observed while asking a question, etc.  
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Abstract

This paper aims at the generation ofspeech act conditionals(SACs) and modified numerals in
answers in an interactive question answering system. SACs and modified numerals in indirect
answers to a polar question do not only provide surplus information concerning the question,
but also an indication why the answer might be relevant. The model we develop is based on
a probabilistic approach to content determination that generates SACs and modified numerals
based on an estimation about the user’s requirements. Acceptability studies show that positive,
negative and alternative SACs are appropriate answers in a real estatedomain where users ask
about properties of apartments they take interest in, and that modified numerals can be used
strategically to mark qualitative differences between apartments.

1 Introduction

Speakers tend to answer polar questions indirectly if a direct answer would be inappropriate, be it for
politeness reasons or since a simpleyesor no is informationally underspecified. Since questions signal
the inquirer’s underlying requirement the listener does not have accessto, his primary inferential task is
to estimate what the most probable requirement of the inquirer might be. For example, if a client seeking
an apartment asks a realtorIs there a basement for the apartment?, the realtor could assume the client
needs the basement as a storage room. Hence, in case no basement is available, he might just answer
Storage rooms can be rented in the neighboring house.In this case, the client will hopefully infer that
no basement is available, and that the realtor assumes he needs the basement for storing items.

The assumed requirement could also be made explicit by the realtor. He couldmention his assumption
(You seem to need a place for storing some of your belongings. Storage rooms can be rented in the house
next-door), or he uses a so-called speech act conditional (SAC):If you need space for storing, storage
rooms can be rented in the neighboring house.Which one of these indirect answers is appropriate
depends on discourse-dependent and stylistic reasons, but using anSAC enables one to express, by
means of the antecedent, why the information in the consequent is discourse-relevant. SACs signal the
link between the assumed requirement of the inquirer and its impact on the asserted information in the
consequence.

Comparatively modified numerals such asmore than one hundredcan also be used to signal an under-
standing of requirements. The answerThere’s a bus stop more than 4 miles awayto the questionIs there
a bus stop nearby?communicates that the realtor has understood that “nearby” signals an underlying
decision problem where ‘closer’ is ‘better’ and that a train station 4 miles away is not ‘nearby.’

This paper aims at the generation of SACs and modified numerals in indirect answers in a question
answering system. In what follows, we will first describe the pragmatics ofthree types of speech act
conditionals when used as answers to a polar question. Section 3 presentsthe probabilistic model of
content determination for generating these SAC types and a procedure for generating modified numerals.
It results in a decision tree that checks whether certain utilities are met in order to generate a suitable
SAC vs. a simplenoandyes, respectively. Section 4 goes into the empirical grounding of the model, and
concludes with model evaluation.
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2 The pragmatics of speech act conditionals and modified numerals as indirect answers

Speech act conditionals, often called “biscuit” conditionals in remembrance toAustin (1970), are con-
ditionals like there are biscuits on the sideboard if you want some. These are conditionals where the
if -clause expresses a condition for uttering the main clause, namely the circumstances under which the
consequent is discourse-relevant, and not a condition for the truth of the main clause.

Contrary to classical conditionals, SACs do not have a meaning related to material implication; we
perceive both propositions expressed as semantically unrelated. Instead, what matters is the speech
act level of interpretation and, therefore, the felicity conditions for successfully using an SAC. The
antecedent seems to assure that the consequent is understood in a suitable way. For example, the SAC
given above seems to legitimate the assertion that there are biscuits on the sideboard: The reason for
mentioning the propositional content in the consequent is the assumption of thespeaker that the addressee
is hungry.

Two broad classes of SACs have been identified in the literature. The firstclass – the class we are
interested in – constitute “problem-solving” SACs (Csipak, 2015), i.e. SACsindicating that the assertion
of the consequent is in some way discourse-relevant. The second classare SACs that indicate a kind of
topic shift in a conversation likeIf I am being frank, you are looking tired. However, we ignore SACs of
this kind in this paper since they touch various aspects of topic organisation and politeness effects that
are beyond the scope of our work.

SACs have received some attention in formal semantics and pragmatics (Franke, 2007; Fulda, 2009;
Siegel, 2006), since they raise the question whether a unified theory of theinterpretation of SACs and
other types of conditionals can be developed, but these studies neither consider computational issues
concerning their interpretation and generation, respectively, nor do they explicate their use as answers.

SACs can be used as indirect answers to polar questions. While indirect answers are typically negative
ones since the surplus information given in that anwer is about alternatives, SACs can be used as indirect
negative and positive answers.

SACs as indirect answers come with three different pragmatic functions. Their uses have different
consequences in Q/A systems but should be modeled in a common way. For example, the question of the
customer in the real estate domainIs there a restaurant nearby?can be answered by the real estate agent
sayingIf you enjoy eating out, there is an Italian restaurant in the vicinity. The real estate agent might
assume that the customer is able to infer that the Italian restaurant is the only restaurant nearby, and that
the question was motivated by the customer’s general pleasure of eating out. In sum, this positive speech
act conditional (PSAC) conveys: the answer isyes, the customer shall infer that the only restaurant
nearby has been mentioned, and the supposed motivation of the customer for asking this question has
been mentioned by the antecedent of the SAC.

Things are different with SACs that function as a negative answer to a polar question (NSAC). If
the answer to the aforementioned question isIf you enjoy eating out, there is an Italian restaurant in
the neighboring quarter, it signals the following information: The answer isno and given the assumed
requirement for the question as expressed by the antecedent of the SCA, this requirement can be satisfied
by the restaurant in the neighbored quarter.

The third type are alternative speech act conditionals (ASACs), as we name them. An ASAC as
suitable answer to the aforementioned question would beIf you enjoy eating out, there is an Italian
restaurant as well as a food court nearby. By means of this answer, the system answers the question
positively, but it offers two alternatives for the presumed requirement of eating out that are more or less
equally probable.

The examples given so far suggest that requirements are directly tied to theattributes mentioned in the
consequent (e.g., enjoying eating out – mentioning a neighbored restaurant), but the distance between the
apartment under discussion and the target the client asks for results in aninteresting order of alternatives
to the target:There’s an Italian restaurant in the neighboring quarter, but there’s also a food court less
than 1 mile awaycommunicates that although the food court is closer to the apartment than the Italian
restaurant, the restaurant is a better fit to the user’s requirement of eating out because otherwise it would
not be worth mentioning the restaurant at all.
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In sum, the antecedent of positive, negative, and alternative SACs expresses the presumed requirement
underlying the question, but these three types of SACs have slightly different discourse functions. While
PSACs answer the question by providing an asserted proposition and mentioning the supposed motiva-
tion for the question (and possibly triggering an implicature), NSACs providean alternative solution to
the assumed motivation underlying the question and, by that, triggers the implicature that the answer has
been negated. Alternative SACs offer more than one attribute for the presumed requirement.

3 The model

Our model is rooted in probability theory and generates SACs by strategic reasoning about possible
requirements of the user. It follows current probabilistic approaches that attribute communication to
basic cognitive principles concerning various kinds of decision making based on the agent’s common
ground (Frank and Goodman, 2012; Franke and Jäger, 2016; Potts et al., 2016; Qing et al., 2016; Zeevat
and Schmitz, 2015), but it differs from these models in focusing on the generation task of determining
the most probable content for solving the decision problem of the inquirer and realizing that content
by a suitable answer. Our model constitutes the basis of a Q/A system where aclient is looking for an
apartment to rent and the system answers the user’s questions about desirable attributes, either directly
or indirectly. We presume that each question is motivated by an underlying requirement of the client.
The system elicits this requirement.

The represented partial information of the sales agent contains informationon the attributes of the
object under discussion, but lacks certainty about the underlying decision problems the client has. The
client lacks knowledge on the configuration of the object under discussion, while he has full awareness
of his requirements. The generation of answers therefore serves the function of enriching the common
ground with the user’s requirements such that the sales agent may react todecision problems while the
client evaluates in which kind and degree the object under discussion satisfies his needs.

The basic objects in the database are the available flats with one being the current object under dis-
cussion, requirementsr and attributesa. The user’s questionQ is about some attributeq of the object
under discussion. Requirementr constitutes the underlying decision problem motivatingq, on the base
of whicha may be offered as an equal or better substitute for satisfyingr.

User responses may be accept the object, reject the object, or pose a follow-up question. The agent’s
goal is helping the user to find an optimal object efficiently by anticipating the requirementsr that are
relevant to the user. Modified numerals should be generated when the anticipated requirements involve
distance, for instance.

A discourse-sensitive and category-dependent parameterκc measures the amount of common ground
concerning the requirements of categoryc. If κc exceeds some threshold, the generation of an SAC for
categoryc is blocked since mentioning the assumed requirement would not be informativeanymore.

3.1 The model in a nutshell

Suppose we are inferring requirementsr which are at leastρ relevant to a question Q asking for attribute
q.M is the set of requirementsr which are more thanρ likely for a question attributeq.

M= {r∣P (r∣q) > ρ} (1)

In our database, a garden serves several requirements, among them are:

P (enjoy greenery ∣garden) = 0.89
P (gardening ∣garden) = 0.85

P (dog walking ∣garden) = 0.54
P (smoking ∣garden) = 0.35

The requirements and their probabilities have been determined by experimental studies that will be de-
scribed in the next section. Withρ > .5 we haveM = {enjoy greenery, gardening, dog walking}. The
setS contains all pairs of attributesa and requirementsr with r ∈M, and they are more thanv useful to
choose between alternativesa.

S = {(a, r)∣r ∈M∧ P (a∣r)U(a, r) > v} (2)
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Figure 1: Example inference

P (a∣r) is the probability that attributea fulfills requirementr. The aim is to determine a utility of
attributea for requirementr. U(a, r) might determine how usefula is for requirementr. For example,
a balcony is less useful for gardening than a garden, but when a userasks for a garden for an apartment
which has no garden, a balcony is still a good alternative because it can be used for gardening, too. If a
requirement hinges on a numerical property such as distanced, U ∝ 1

1+d
. In our example,S is the set

{(garden, enjoy greenery), (garden, gardening), (garden, dogwalking), (balcony, gardening)}.
Hence, the first task is to determine the set of requirements for questionq. Being an empirical task,

we performed studies via Mechanical Turk to determine the requirements thathave subsequently been
represented in the database of our Q/A system. In a second step, we inferthe attributes true of the
apartment (does it have a balcony, a garden, what public transports are in the vicinity etc.) which best
fit the requirements. Questionq and attributea mentioned in the answer are thus linked indirectly via
relevant requirementsr.

In our example, a question about a garden triggers three requirements which are more thanρ = 0.5

likely: r1 = enjoy greenery,r2 = gardening, andr3 = dog walking. There are three pairs inS where
attributea1 = garden meets all three requirements and only one pair where the attribute balcony meets
requirementr2. We can represent the competition between which attribute should be mentionedin an
answer to a questionq as in Figure 1.

For example, if an apartment has both a garden and a balcony, a garden meets all potential requirements
better than the balcony. So a sales agent who is ignorant about what a user’s true intentions for asking
about a garden are, should not mention the balcony. Only if the apartment has a balcony but no garden,
is the balcony a valid alternative.

The database contains numerical properties of objectso such as distance to the apartment. The nu-
merical properties contribute to an object’s expected utility through a quality coefficient. For instance,
the greater the distance betweeno and the apartment, the lower the expected utility. The system gener-
ates modified numerals by considering the distance of allo from the apartment, rounding the distance
estimates to a contextually appropriate level of precision, preferring fractal reference points observed
by Jansen and Pollmann (2001) and Dehaene and Mehler (1992), modifying them by the comparative
quantifier “more than”. The system then translates this information into naturallanguage by using simple
sentence templates like “There’s a(n) X [more thann [unit]] away.”

3.2 The model in detail

The general inferential task outlined in the previous subsection will now bedescribed in more detail to
explain how the Q/A system infers the necessary information for generatingour three types of SACs as
indirect answers.

Input to the model are the prior probabilities of requirementr, a setRq of possible requirements true of
q and attributesq anda, respectively. The conditional probabilityP (r∣q) will be determined by Bayes’
rule, which allows us to trace back the probabilityP (r∣q) that a user posing questionq is motivated by
requirementr to the task of finding the most relevant question for expressing a requirement:

P (r∣q) =
P (q∣r) × P (r)

∑r
′

∈Rq P (q∣r′) × P (r′)
(3)

Depending on whether or not the object under discussion has attributeq, the system chooses between a
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positive or negative answer. In case the model leads to generating a speech act conditional, it chooses
between a PSAC, an NSAC, or an ASAC. For example, for a certain apartment as the object under
discussion, assumed requirementr = gardening,q = garden (Does the apartment have a garden?) anda
= balcony, the SACs are generated as follows:

r = ⟦ If you want to do some gardening⟧
NSAC: ... the appartment has a balcony.
PSAC: ... the appartment has a garden.
ASAC: ... the appartment has a balcony and a garden.

In general, the system has to anticipate the underlying decision problem thatinduces the client to ask for
question attributeq. For this, we define a benefit that depends on whether the chosen requirementr is
suitable forq or not. The benefit of looking up requirementr for attributeq is defined as:

B(r∣q) = 1, if r ∈ Rq; else0 (4)

Questionsq, as well as attributesa, are associated with a set of requirementsRq. Furthermore, ques-
tions are about attributes of some subdomainc of the overall domain of apartment attributes, for example
interiors or transportation connections.

Since the requirement of the client is not known to the sales agent, his strategy is to maximize the
utility of a chosen requirement. This is handled by the expected benefitEB for a requirement, given the
attributeac of categoryc and the set of all possible requirementsRa of the attributeac:

EB(r∣ac,R
q) = ∑

r∈Rq

P (r∣ac) ×B(r∣ac) (5)

Attribute ac can be the attribute the user is asking for (i.e.,ac = qc). In this case the benefitB results
invariably in 1 and the conditional probabilities will just be added. But if we compare an alternative
attributeac of categoryc with question attributeqc, andqc is not true of the apartment, we consider only
the requirementsRq for the original questionqc.

The expected utility ofr andq of categoryc can be determined by:

EU(r, qc) = EB(r∣qc,R
q) − κc (6)

κc is a dialogue-sensitive cost for realizing the category-dependent requirement. This cost encodes the
burden from choosing a more complex answer containingr in comparison to a straightforwardyes/noas
answer. The costκc is a dynamically calculated value that depends on the recent dialogue historyand
the category of requirementsc.

For example, when the user asks several times about attributes concerning transportation issues, after
some time the system does not generate an SAC sinceκtransportation receives a value that results in
EU < 0, which blocks the generation of an SAC. An SAC is only generated ifEU > 0, because in this
case it is more advantageous to linguistically realize the requirement than to notmention it. If more
than oner causesEU(r, q) > 0 to be true, than the maximal value is chosen for generating the speech
act conditional. The pseudocode of the decision tree for the generation of direct answers and SACs as
indirect answers is given in Table 1.

If attribute qc is true of a flatf , we determine whether there is some requirementr in the set of
possible requirementsRq which triggers the expected utility ofr andqc to be positive (> 0). If this is not
the case, none of the requirements are relevant enough to outweigh the cost of generating a more complex
answer. If more than oner satisfying the condition is found, the model chooses the most probable one.
Following this decision, the model checks whether there is some alternative attributeac that is true off ,
whose expected utilityEU(r, ac) is larger or equal toEU(r, qc). If such an attribute is found, the model
generates an ASAC naming both attributes,qc andac. Else, the model generates a PSAC.

If attributeqc is false of flatf , the model checks whether there is some alternative attributeac satisfying
requirementsr such that the expected utilityEU(r, ac) is positive. IfEU(r, ac) is negative, the decision
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Algorithm 1 An algorithm for determining the content for speech act conditionals
Input: A database with category-related attributesAc and requirementsR, an object under discussion
f with attributes fromAc, a probability distributionP (r∣p), a user question providing the attributeq
the user is asking for, thresholdτ
Initialize: ∀c ∶ κc = 0, τ
1: while user response≠ accept(f ) or reject(f ) do:
2: if f(qc) == true:
3: if argmax(EU(rq, qc)) > 0:
4: if argmax(EU(rq, ac)) ≥ argmax(EU(rq, qc)):
5: generate ASAC(ac, qc, r)
6: else
7: generate PSAC(qc, r)
8: else
9: generate direct positive answer
10: if f(qc) == false:
11: if argmax(EU(rq, ac)) > 0:
12: if P (rq ∣ac) ≥ τ :
13: generate NSAC(a, r)
14: else
15: generate indirect answer
16: else
17: generate direct negative answer
18: κc ∶= κc +∑n

i=1 P (r
c
i ∣ai) (update ofκc values)

Table 1: Content determination for SACs

tree terminates, generating a direct negative answer. If someac is found, the model checks whether the
probabilityP (rq ∣ac) is larger than the thresholdτ that represents the average of allP (ri∣a):

τ =
∑i P (ri∣a)

∣(r, a)∣
(7)

with ∣(r, a)∣ the number of all requirement-answer combinations. This value determines whether a re-
quirement is probable enough to be worth the effort made to utter it. In other words, if the probability is
higher thanτ , the underlying decision problem is obvious enough to be uttered. In this case, the system
generates an NSAC. If the requirement is not that obvious, the system generates an indirect answer.

4 Empirical grounding

We performed three studies to support the assumptions made in this model. Eachstudy was designed
using Testable.org and carried out via Amazon Mechanical Turk. Participants received a small compen-
sation for their work. The studies were designed to test the acceptability of SACs as indirect answers by
users of the system. The first study was performed to determine the input probabilities for the model.
With two different questionnaires, 120 subjects (7 of them failed to pass theexperiment) were presented
a set of requirements or attributes randomly, and they were asked to rate for each item whether there
is a possibility of talking about them during a conversation in a sales setting. In order to receive the
probabilities of both interlocutors in a dialogue, we divided the participants intotwo groups to judge as
a customer (54) or a real estate agent (59).

The second study tested the acceptability of the different types of SACs asindirect answers. Partic-
ipants took on the role of either customer or realtor. 241 out of 250 subjects(119 as customers and
122 as realtors) successfully participated in the experiment. Participants were shown 5 questions such
asAre there any restaurants near the apartment?and for each question they were shown 5 possible
answers (direct yes/no, and the 3 SACs) and had to rate the acceptability of each answer on a scale from
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0 to 100 (Figure 2, left panel). One-way ANOVA found significant variation among the 5 types of an-
swers (F (4,2405) = 217.3, p < 0.001) and Tukey HSD revealed that the significance was due to the low
acceptability of NSAC while PSAC and ASAC received similar ratings to direct answers.

The third study investigated the acceptability of NSACs by eliciting how well an object in the database
fulfills users’ requirementsr. Our assumption was that an objecta should only be presented in an NSAC
as an alternative to the object the user asksq if it fulfills the requirements better (P (a∣r) > P (q∣r)) or at
least as good asq (P (a∣r) = P (q∣r)). 49 participants were recruited and found NSACs less acceptable
whena was worse at fulfillingr thanq (P (a∣r) < P (q∣r), Figure 2, right panel.

Figure 2:Left: Acceptability of answer types.Right: NSAC meeting requirement.

5 Overall evaluation of the system

The Q/A system described in this paper and used for the experimental studies is available at
https://www.linguistics.rub.de/app/pragsales/biscuit. We compared this Q/A
system that is able to generate SACs dynamically with a baseline system that generates direct answers
only. This baseline system is our original system with highκc values so that no SACs will be generated.
Let us call the system that is able to generate SACs as answers the dynamic system and the other one the
static system.

In using each system, participants were prompted to ask questions about a flat for her/his friend. The
participants were informed about requirements for their friend. By means of their questions, they have to
find out whether the flat is appropriate or not. We mentioned that they are interacting with a Q/A system
and that our goal is to evaluate the quality of the generated answers.

13 out of 50 participants failed the experiment with the dynamic system since they have asked less
than 4 questions, which is obviously not sufficient for determining language efficiency. The questions
were answered with SACs and directyes/noanswers. At the end of the experiment participants answered
10 questions on the quality of the answers on a feedback page for the final evaluation.

We performed the same study with the static system. The answers were directyes/noanswers or, by
random, simple alternative answers. 11 out of 50 participants failed this test.

Figure 3:Comparison of dynamic and static system.

Figure 3 (left panel) shows that in interacting with the static system 9 particiantsasked more than 10
questions to make a decision about the apartment, while only 1 participants raised more than 10 questions
with the dynamic system. There is also a tendency to accept the apartment than rejecting it when SACs

109



have been used. SACs are obviously more informative, and their use seems to cast a positive light on the
apartment.

Although the comments show more satisfaction when using the dynamic system, the analysis of the
participant ratings did not show a significant difference between both systems (see Figure 3, right panel).
However, for the questions on the feedback pageHow probable is that a human agent generates the
same answers?andHow probable is that you found out the answers were generated by a machine if we
hadn’t mentioned?we received significant differences. The dynamic system scored better on human-like
answers. In sum, the generation of speech act conditionals has a positive effect on the efficiency of the
dialogue sequence, and they have been rated as quite natural.

We conducted a separate evaluation study for modified numerals in order to distinguish their contri-
bution to indirect answers from the contribution of SACs. In evaluating the generation of numerals, we
start from the assumption that a system which can communicate qualitative differences is one which can
make things that are objectively speaking not differentseemlike they are. Participants are led to believe
they will view five different properties for a friend who is looking to buy a house in Brooklyn, New York,
but in actuality two of the houses are identical. Participants are misled by the realtor (our system) who
generates a different numeral for the two identical houses with respectto one attribute—the distance to
the nearest subway station—so as to make it seem like there is a qualitative difference between the two.
For one, the system will generate a vague expression using a comparatively modified numeral (“more
than 1 mile”), for the other, it will generate an exact unmodified numeral (“1.2 miles” or “1.7 miles”).
The unmodified numeral is the objective distance rounded to one decimal. Thisway, we test whether
“1.2 miles” or “1.7 miles” comes closer to participants’ expected reading of “more than 1 mile,” cf. the
normative versus transgressive reading in the approach by Anscombre and Ducrot (1983).

We recruited 100 participants with U.S. IP addresses via Amazon’s Mechanical Turk, 76 successfully
completed the study. When participants ask about a subway station near house 4, they are told it is “more
than 1 mile away.” When they pose the same question for house 5, the agent will give them an exact
distance. The 50 participants in the first version of the study are told the subway station is “1.2 miles
away” from house 5; those in the second version are told the station is “1.7 miles away.”

Participants are asked to select their favorite house. The left graph in Figure 4 shows that the majority
of participants shortlist house 4 and house 5, the two identical properties,but they favor house 4 to house
5 at a ratio of 2:1 when told the subway is “1.2 miles away” and 3:1 when told it is “1.7 miles away.”
After submitting the shortlist to their friend, the true distance of the subway station qualified as “more
than 1 mile” was revealed. When participants learned the true distance, they indicated on a 7-point Likert
scale whether they felt they had been misled (-3) or whether felt an imprecise numeral was appropriate
(+3). The graph on the right in Figure 4 shows that, on average, participants who favored house 4 and
learn that “more than 1 mile away” really meant “1.7 miles away” (red) give ratings which are 1.561
lower then participants who found out it meant “1.2 miles” (blue).

We fitted a linear mixed effects model to the Likert ratings with participants’ group membership as
fixed effect and by-subject variation as a random effect with randomintercepts and random slopes. Ac-
cording to this model, group membership predicts a significant difference in ratings of 1.561 (SE = 0.535,
t = −2.917, p = 0.0054), the lowering actually observed. A null model without the fixed effect only ac-
counted for a lowering of 0.06. We conclude that our system successfully deceived participants into
perceiving a qualitative difference where there was none.
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Abstract

Expectancy disconfirmation by an unexpected event can initiate a scan of the situational infor-
mation by the speaker, aiming at attributing to someone/something the cause of what happened.
Questions with a sentence initial wh-item comment (how) in a reason reading verbalise such an
exploratory behaviour that serves the speaker’s adaptation in the face of failure represented by
the unexpected actual or potential situation depicted in the clause. The speaker is seeking in-
formation for resolving the opposition. Expectation is a set of propositions characterising some
aspects of potential worlds according to her view, and is defined as a minimal set that makes the
proposition characterising the situation depicted in the clause as non contingent.

1 The issue

Expectancy disconfirmation by an unexpected event can initiate a scan of the situational information
by the speaker, aiming at attributing to someone/something the cause of what happened. This is what
social psychologists call an attributional search, and it appears to be one of the discourse functions that
questions with the wh element comment (how) in French can have in a dialogue. Consider first the
various readings of question (1).

(1) Comment Max lit le courrier de Paul?
a. Q: How is Max reading/reads Paul’s mail? (manner)

A: He does it furtively.
b. Q: How is Max reading/reads Paul’s mail? (means)

A: He does it with a remote login.
c. Q: How (is it that/come) Max reads Paul’s mail? (reason)

A1: He is a nosy person.
A2: He certainly doesn’t, he is so respectful.

The question in (1)—as shown by its various translations in (1a,b,c)—allows several types of inter-
pretations that are highlighted by its taking several congruent answers. A first interpretation is enhanced
by the suitable answer about manners, cf. (1a). A second interpretation is enhanced by an answer about
means, cf. (1b). Both cases are characterised by a ‘literal/basic’ interpretation of the wh expression, if
we may talk of literal meaning of wh expressions, they differ insofar as the former is typically associated
with a domain that is not easily contextually restricted, hence the issue of getting an exhaustive answer
looks problematic. Another interpretation is highlighted by the suitable answer about reasons, cf. (1c),
and may be more easily accessible in a variant of (1) with a modal as in (2).

(2) Comment peut-il lire le courrier de Paul? (How can he read Paul’s mail?)

The case illustrated by (1c) is special from several points of view. The wh expression comment has a
why-like reading that is non-literal/basic. Comment does not freely alternate with pourquoi (why), for
instance it cannot be used to inquire about the motivation of the initiator of the event, e.g. Max’s goals
in (1). The why-like reading is not exclusive of French, see i.a. (Collins, 1991; Tsai, 2008; Hsiao, 2017)
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about the how-why alternation. It might be a case regular polysemy (Apresjan, 1974). Considering
the types of grammaticalisation often discussed, a.o. (Closs Traugott and Dasher, 2002), it might be
amenable to a metaphor from manner of action to form of epistemic state, with a consequent change in
the semantic type of the domain taken by the wh word, but this issue would deserve a study on its own.
Next, comment is a proform for a proposition in (1c). The answer to (1c) can be positive or negative, cf.
answers A1 and A2 to (1c). Furthermore, the question has a mention-some reading, as Max’s being nosy
is not the only relevant factor in the dialogical context, yet A1 may count as a satisfactory answer.

The reason reading of questions with comment is the reading this paper is primarily concerned with. In
order to appreciate its conversational import, it is essential to take into consideration information on the
epistemic state of the speaker relatively to a matter discussed in a conversation, his expectations about it,
and the point of view that he may ascribe to other participants in the dialogue. Our working hypothesis
is that the main dialogical function of questions with comment with a reason reading is to channel an
attributional search by the speaker. They are used to verbalise exploratory behaviour that may serve the
speaker’s adaptation in the face of failure represented by an unexpected event, or an unanticipated and
unfavoured potential event. Expectations are defined as a minimal set of propositions that, from the point
of view of the speaker, characterise the potential worlds in which the event does/can not hold. We look at
questions where comment occurs sentence initially, as they are ambiguous—contra in situ occurrences—
and focus on simple questions so as to better understand the core mechanism of this construction without
the hindrance of island effects, and the like, that may arise from biclausal or more complex structures.

2 Some data and notions

2.1 The wh element comment

When question (1) is interpreted as being about a manner or a means, the wh element is used to ask about
a participant in the event/situation described by the clause, or a modifier of the event. For example, (1a)
and (3) ask about the manner in which the event unfolds or the state holds, e.g. (3a) illustrates an adjunct,
and (3b) a subcategorised manner.

(3) a. Q: Comment Max a-t-il couru? A: Vite
How did Max run? Fast

b. Q: Comment Max se porte-t-il? A: Bien
How is Max doing? Fine

Question (1b) asks about a means used to perform the action of reading Paul’s mail, and (4) provide
another example. Sometimes the distinction between manner and means readings may not be straight-
forward. For instance, opinions may diverge when the question (1) is congruent with an answer that is
the description of a concomitant event, as with the expression by looking at the letter against the light.

(4) Q: Comment sortir du palais de justice? A: Par la porte arrière
How to get out of the courthouse? Through the back door

The wh element comment can question adjuncts and arguments low in the syntactic structure, and it
may be seen to bind a variable in what semantically is an open proposition. Conversely, when comment
is interpreted as being about a reason, the wh element is used to question some conditions about the
proposition expressed by the clause. In this case it is understood not to bind a variable low in the
syntactic structure, below the IP node. The issue of whether it binds a variable and where this would
be positioned can be left aside, in spite of its importance, because what is relevant for our purpose is
the opposition between occurrences of a wh element that bind arguments and adjuncts on the one hand,
and why-like expressions that look like operators on propositions on the other hand. It seems plausible
to say that comment with a reason interpretation works as an operator, and that the rest of the sentence
describes a situation. In the following, we call (pseudo) prejacent the proposition expressed by the clause
the comment of reason operates on, borrowing the term from the literature on modality. In the cases of
manner and means interpretation of comment, we prefer not to talk about a prejacent. The event/situation
described by the clause is assumed to hold, precisely with respect to a particular value for the variable
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bound by the wh element, not on its own, which is reminiscent of the debate in the literature on whether
wh questions come with existential presuppositions. In the next section, we discuss about the status of
the (pseudo) prejacent, and for the sake of simplicity, we drop the qualifier ‘(pseudo)’.

2.2 The prejacent
Once it is assumed that comment of reason applies to a proposition, a natural question to ask is whether
such a proposition is assumed to be true or not. Another question is whether the truth is in the eye of an
epistemic agent. When comment is used in question (1) interpreted as being about a reason, cf. (1c), the
event/situation described by the prejacent p is not necessarily assumed to hold, for the speaker. In case
it is not believed by the speaker, it is contextually relevant because the speaker ascribes to someone the
belief that p is true. The simplest instance is one where he ascribes such a belief to his interlocutor.

Even if, as just argued, the speaker does not have to assume p, there are linguistic factors that contribute
to influence the status of the prejacent. Passé composé is known to give rise to actuality entailments in
French, compare (5) with (1). A salient reading of (5) is about the reason of the fact that Max read Paul’s
mail, with the prejacent as non-at-issue information conveyed by the clause with passé composé.

(5) Comment Max a lu le courrier de Paul? (How did Max read Paul’s mail?)

This same reading is available for (1), but in (5) it is strongly enhanced by the passé composé form. With
a different prosody, another possible interpretation of (5) is as a question about the manner of a reading
event. On the contrary, the question is understood to be about the reason of an event of reading by Max
that is not assumed to be true in (6) where the verb is in the conditional form.

(6) Comment Max aurait lu le courrier de Paul? (How would have Max read Paul’s mail?)

There is a host of factors that make the reason reading more prominent and many seem to be related
with the syntactic expression of the prejacent as a separate clause, for instance as a clausal complement
under attitude or opinion verbs, or embedded under a modal, as illustrated in (2). On the contrary, the use
of a second person pronoun in the prejacent makes the reason reading less accessible. A corpus study of
these factors will help to clarify the situation. In this article, we mainly focus on reason questions from
the speaker point of view and do not address the issue of interpretation from the addressee point of view.

Whether p is the case, and whether the speaker believes p to be the case, he perceives the prejacent as
describing a fact or a potential situation contrasting with his expectations. We turn next to expectations.

2.3 About expectations
According to a widespread assumption, the Common Ground (CG) is the set of propositions that are taken
for granted by a group of interlocutors in a conversation. They represent common or mutual knowledge
among the participants. The Context Set is the set of worlds compatible with the common ground i.e.
the intersection of all the propositions in the common ground (Stalnaker, 1979; Stalnaker, 2002). Several
frameworks have been proposed for modelling dialogues. For example, it has been proposed to treat
discourse as a game, with context as a scoreboard organized around the questions under discussion by
the interlocutors, see i.a. (Roberts, 2012). At the moment, we have no reasons for opting in favour of one
specific framework, and we leave the choice for the future. This is the backdrop that we adopt.

Against this standard backdrop, an agent may entertain an articulated view and have expectations
captured by several relevant propositions. They are collected in a set called Exp, to which we refer as the
expectation set or simply the expectation(s) in the following. This expectation set should contain only
the propositions that are relevant for the truth of the prejacent at the time the question with comment is
uttered. For the speaker, these propositions are those that make the prejacent non contingent, i.e. true in
all the worlds faithful to this expectation set or false in all these worlds. In the case of reason questions
with comment, Exp makes the prejacent false in all these worlds. For our purpose, the expectation set
needs not contain all the propositions that the speaker considers true or relevant for the discussion.

The speaker’s expectation has a crucial utility in the case of a question about reasons. The speaker
has a judgment about the situation, and the truth of the prejacent in the situation. When he gets new
information, he checks how it may affect his initial judgment about the situation and the truth of the
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prejacent. A reply of a cooperative addressee provides information supposed to have an impact on the
speaker’s initial judgment. Such information is ‘good’ for him if it affects his initial judgment so as to
make it compatible with the truth of the prejacent, and it is ‘bad’ otherwise. On the contrary, the criterion
the speaker uses to decide if the new piece of information is good in questions about manner or means,
is to check whether it makes the open proposition true, regardless of his expectation.

In the case of a question about reasons, the propositions in Exp can be of two types, namely propo-
sitions that are about events or states, and propositions expressing relations of dependence between the
propositions of the first type. The dependence relation may arise from a cause-and-effect relationship or
any other relationship—deontic, stereotypical, metaphysical, logical, etc.—that may be relevant in the
context. For instance, the concept of cause and effect is used by Alonso-Ovalle and Hsieh (2017) in
their analysis of the interpretation of a Tagalog ability/involuntary action verbal form, inside the Causal
Premise Semantics framework (Kaufmann, 2013).

Consider (1) in a scenario where the speaker believes he knows Max and believes him to be respectful.
His belief may be based on findings, be a stereotypical judgment, or a mixture of the two. In addition,
the speaker expects a respectful individual to refrain from reading another person’s mail. This is a
stereotypical relationship between the proposition Max est respecteux (Max is respectful) (p1) and Max
ne lit pas le courrier d’autrui (Max does not read someone else’s mail) (p′), thus p1 → p′.

Let’s now consider a different scenario, where the speaker does not know Max, but has deontic—or
even stereotypical—expectations about the conventional behaviour of every human being in the society.
In this case, the expected relation is that the proposition Max suit les conventions sociales (Max follows
the social conventions) implies the proposition Max ne lit pas le courrier d’autrui (p′). From a conver-
sational point of view, the interlocutor will not have access to the grounding of this expectation, but only
to the existence of an expectation that is antagonistic to the prejacent (Max reads Paul’s mail). But the
response of the interlocutor—or any other type of intervention in the conversation, for that matter—will
have an effect on this expectation, be it its confirmation, reversal, or revision.

In short, expectations are propositions meant to characterise some aspects of potential worlds accord-
ing to a specific epistemic agent. They are relevant to the analysis of comment questions with a reason
reading because this type of question has two specific properties. First, the question is not about the truth
value of the prejacent, like yes-no questions, nor is it about a participant in the situation described by the
prejacent, like a standard partial question. The prejacent conveys topic information, and the reason(s)
for the (potential) actualisation of the situation it describes are focussed on in the question. This yields
a question where prejacent and expectation of the speaker are compared, and the comparison gets dis-
cursive relevance. Second, it is an antagonistic comparison. The question depicts the prejacent p and
an expectation about such a prejacent as opposing, and the opposition is ascribed a discursive function.
This particular type of question helps to communicate the fact that the speaker has an expectation that
is inconsistent with the truth of the prejacent. This is independent from the actual truth value of the
prejacent, and of whether the speaker knows such a value.

Let’s see how to represent the opposition. Assume that the expectation of the speaker is a structured
object, and has the form Exp = {p1, p2, . . . , pn}∪{q1, q2, . . . , qm}where the propositions pi are attached
to events or states and the propositions qj are implications involving pi propositions. This setup is
inspired from the causal structure used in (Alonso-Ovalle and Hsieh, 2017). For our purpose, modality
is not called in and the relations between propositions are not necessary causal relations.

For example, assume the speaker of (1c) has expectation Exp = {p1, (p1 → ¬p)}, where p1 = Max
est respectueux (Max is respectful). He expects Max to be respectful and that if Max is respectful he
does not read Paul’s mail. The set of propositions representing the expectation of the speaker is clearly
inconsistent with the prejacent p, i.e. with the proposition Max lit le courrier de Paul. Inconsistency
captures the opposition. Another way to capture this opposition is by writing

⋂
(Exp ∪ {p}) = ∅,

which means that there is no world faithful to the expectations of the speaker in which the prejacent
is true. Note q1 the proposition p1 → ¬p. In this simple example, q1 involves the prejacent p. But
the speaker’s judgment can be more complex. Instead of expecting the truth of a specific proposition
about Max, he could have a more generic expectation characterised by the proposition q′1 = someone
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respectful does not read someone else’s mail. Proposition q′1 involves the proposition p1 in that we
can apply it to Max, i.e. if Max is respectful then he does not read someone else’s mail. Propositions
pi and qj may both be existential or universal instantiations. Here, we have p1 = respect(m) where
m represents Max and respect is the predicate such that respect(x) means x is respectful, and q′1 =
∀x∀y∀z[respect(x) ∧ mail(y, z) → ¬read(x, z)] where mail(y, z) means that z is mail of y and
read(x, z) means that x reads z. When we apply q′1 to m, we get a proposition that involves p1.

Expectations may evolve during a conversation. Typically, the speaker may use a reason question with
comment and intend to modify his expectation in an effort to make sense of a prejacent p that is perceived
to be true in the actual world. The sought information is likely to modify his initial judgement so as to
make it consistent (or compatible) with p. The ensuing change can concern the pi propositions and/or
the qj ones. For instance, if the new piece of information is that Max is not respectful and if the speaker
accepts the truth of it, then his expectations should reflect this and be adapted accordingly.

In order to explain the mechanism for adapting expectations, we need to define a specific expectation
set related to the prejacent, its inputs and outputs. What exactly happens during this processing depends
on the choice of the general framework in which the mechanism is embedded. The input, here, is p′1 (Max
is not respectful) which is incompatible with p1 (Max is respectful). As a result, p1 is taken out, and the
expectation set has to be recomputed. Alternatively, suppose the new piece of information is that Max
got permission from Paul to read his mail, and the speaker accepts the truth of it. Then, the implication
q1 (i.e. p1 → ¬p) has to be taken out of his expectations. The speaker uses the more complex implication
if Max is respectful he does not read Paul’s mail except if he got permission from Paul instead. In either
scenario, the prejacent is no longer incompatible with the new expectations of the speaker, and it is as if
his new expectation set were empty with respect of the prejacent.

2.4 Expectations and attributions

Since (Heider, 1958), the explanations humans come up with in order to understand the causes of be-
haviours, actions and events, are called attributions. The background hypothesis of this paper is that
reason questions with comment are possible linguistic expressions of attributional searches. To Heider,
humans are motivated to understand others, assign causes to their actions and explain their behaviour.

Within social psychology, it has been proposed that we often attribute causality on the basis of correla-
tions (Kelley, 1973). However, we may at times not have enough relevant information from observations,
possibly multiple and at different spatio-temporal locations, to make that kind of judgment. This looks
typically the case where questions with comment are used. Speakers are often likely to fall back on past
experience and exploit causal schemata (Kelley, 1973) that allow them to look for necessary causes or
sufficient causes for an observed or potential situation. First, notice that any one reason would be suffi-
cient, and this corresponds to the preferred mention-some meaning of questions with comment that we
pointed out in the introduction. Second, a causal schema may refer to the way a person thinks about
plausible causes in relation to a given effect, and may also be understood in more general terms as the
use of some rhetorical rules of thumb.

Topoi (Ducrot, 1988; Anscombre, 1995; Breitholtz, 2010; Schlöder et al., 2016) look like suitable
instances of such schemata. For example, we can assume a topos relating some social behaviour—
e.g. not invading someone’s private space like the content of email and social accounts, etc.—with the
attribution of some internal characteristics, e.g. being respectful, or with some external attribution, e.g.
being confined to a prison institute. A set of topoi, called in on demand, could capture knowledge
that helps to define the space of plausible answers, without forcing logical consistency on the speaker,
nor mutual acceptance between dialogue participants. Although qj relations in the expectation set are
expressed as logical implications, it may be that they are not logical from the view of the speaker, but
rely on other language resources such as topoi. Furthermore, the worlds faithful to these relations may
be determined by means of topoi in addition to the propositions of the expectation set.
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3 A detailed discussion of exemple (1) with reading (1c) and answer A1

In this section, we are going to discuss in detail the exemple (1) with reading (1c) and answer A1. We
first present how expectations are used when computing the meaning of the question, and next discuss
some discourse functions of the question.

3.1 Expectations in action

In order to illustrate how the expectations of the speaker contribute to the meaning of a reason question
with comment, and how these expectations may evolve during the discourse, let us consider the dialogue
in (7) where speaker A is aware that Max read Paul’s mail. By ‘aware’ we mean that either someone told
the speaker that Max read Paul’s mail or the speaker saw (or thinks he saw) Max reading Paul’s mail.

(7) a. A : Comment Max lit le courrier de Paul? (reason)
How (is it that/come) Max reads Paul’s mail?

b. B : Max est trop curieux (Max is ways too curious)
c. A : Ce n’est pas une raison (That’s no reason)
d. A : Non, c’est faux (No, that is false)
e. A : Dans ce cas, je comprends mieux (Then, I have a better understanding)

Let’s assume that the speaker expects that Max is respectful (p1) and that if Max is respectful then he
doesn’t read the mail of others, in this situation Paul’s. The expectation set of the speaker, at the time
of uttering the reason question (7a), is: Exp = {p1, p1 → ¬p}. From Exp, we define a partition on
possible worlds W , along the lines of (von Fintel and Gillies, 2010). If p1, . . . , pn, are propositions in
Exp, we define a partition SExp as follows.

i) S0 =W ×W (universal relation on W )

ii) S[p] = {< w, v >∈ S : w ∈ p iff v ∈ p} (S a partition on W and p a proposition)

iii) SExp = S0[p1] . . . [pn]

iv) A proposition q is an issue in the partition S if and only if S[q] = S

In this exemple, we have : SExp = S0[p1][p1 → ¬p]. There are three equivalence classes, p ∧ p1,
¬p ∧ p1 and ¬p1. In Figure 1, the expectation p1 is represented by a hatched area, and the expectation
p1 → ¬p by a grey area. The intersection of these two areas is

⋂
Exp, that is ¬p ∧ p1.

p ∧ ¬p1

p ∧ p1

¬p ∧ ¬p1

¬p ∧ p1

Figure 1: Exp = {p1, p1 → ¬p}

Exp = {p1, p1 → ¬p} is incompatible with the prejacent p (Max reads Paul’s mail) because p turns
out to be false in all the worlds faithful to this expectation set, i.e. is incompatible with the intersection⋂
Exp = ¬p ∧ p1. The speaker is looking for new information able to change his expectations into a

new expectation set Exp′, i.e.
⋂
Exp′, compatible with the prejacent.

By answering (7b), the addressee B brings new information into the conversation, namely that Max is
ways too curious (p3). Then, the speaker can refuse the relevance of this new piece of information and
answer (7c). Or, if he accepts the relevance or p3, he has to recompute his expectations no matter what
he thinks about the truth of p3. First, the speaker settles the relations between p3 and the propositions
in Exp. For instance, he thinks that if Max is ways too curious (p3) then he is not respectful anymore
(p3 → ¬p1), and if Max is not so curious then he is still respectful (¬p3 → p1), that is p3 ↔ ¬p1.
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Moreover, he thinks that p1 → ¬p holds in anycase. In Figure 2, p3 ↔ ¬p1 corresponds to the hatched
area, and p1 → ¬p to the grey area. The new expectation set is Exp′ = {p3 ↔ ¬p1, p1 → ¬p} and the
intersection of this new expectation set is

⋂
Exp′ = (¬p1 ∧ p3) ∨ (¬p ∧ p1 ∧ ¬p3). Then the prejacent

p is compatible with this new expectation set. For instance, we can have ¬p1 ∧ p3 ∧ p (w0 in Figure 2).

p ∧ ¬p1

p ∧ p1

¬p ∧ ¬p1

¬p ∧ p1

p3

w0

Figure 2: Exp′ = {p3 ↔ ¬p1, p1 → ¬p}

Now, if the speaker does not accept the truth of answer (7b), he could utter (7d). Then, ¬p3 is a
new piece of information to compute with Exp′. We get Exp′′ = {p3 ↔ ¬p1, p1 → ¬p, ¬p3} and⋂
Exp′′ = ¬p∧p1∧¬p3, and the prejacent p is incompatible with Exp′′. On the contrary, if the speaker

accepts the truth of answer (7b), he could utter (7e). Then, p3 is a new piece of information to compute
with Exp′. We get Exp′′′ = {p3 ↔ ¬p1, p1 → ¬p, p3} and

⋂
Exp′′′ = ¬p1 ∧ p3. In this case,

the prejacent p is compatible with the new expectation set Exp′′′. Figure 3 represents expectation Exp,
which is incompatible with the prejacent p, and the two expectations Exp′ and Exp′′′, compatible with
p. In expectation Exp′, the speaker accepts the relevance of the proposition p3, but does not know if it is
true or false. In expectation Exp′′′, he accepts the relevance of the proposition p3 and its truth. Dark grey
areas in Figure 3 correspond to the intersections

⋂
Exp,

⋂
Exp′ and

⋂
Exp′′′ of the expectation sets.

p ∧ ¬p1

p ∧ p1

¬p ∧ ¬p1

¬p ∧ p1

p ∧ ¬p1

p ∧ p1

¬p ∧ ¬p1

¬p ∧ p1

p ∧ ¬p1

p ∧ p1

¬p ∧ ¬p1

¬p ∧ p1

Figure 3:
⋂
Exp,

⋂
Exp′ and

⋂
Exp′′′

In Figure 3, we see that the new piece of information p3 is able to change the judgment of the speaker
about the truth on some cells of the partition SExp such that the prejacent becomes contingent, i.e. true
or false, in the intersection of the new expectation set Exp′ or Exp′′′. A particular case, not adressed
here, would be one where the prejacent becomes necessarily true in this intersection. Example (7) shows
a particular kind of revision that allows the speaker to move from an initial expectation set Exp to a new
one Exp′. More investigation would be necessary to characterise all the possible revisions. (Gärdenfors,
1992b; Gärdenfors, 1992a) proposes rationality postulates for revisions.

Let us return to the relevance of a proposition with respect to an expectation set Exp = {p1, . . . , pn}.
A new piece of information q will be called relevant with respect to Exp if q changes the judgment of the
speaker. In this way, pi ∧ q or pi ∧ ¬q becomes false for his judgment (whereas pi was true in the initial
judgment) and/or ¬pi∧q or ¬pi∧¬q becomes true for his judgment (whereas ¬pi was false in the initial
judgment), for at least an i in {p1, . . . , pn}. If the new piece of information q is not relevant, then the
new judgment on the cells of SExp[q] is the same as the initial judgment on the cells of SExp, regardless
of whether q is an issue in SExp or not. Then q does not define a new expectation set. If relevant, the new
piece of information gives rise to a new expectation, but not necessarily compatible with the prejacent p.
The expectation set Exp is defined as a set of expectations incompatible with the prejacent p, which is
minimal, in that the speaker is not aware of any additional piece of information q relevant with respect to
Exp. In view of the mismatch between his expectations and the prejacent, the speaker looks for relevant
information able to define a new expectation set compatible with the prejacent. We have focused here on
the specific search triggered by the question with comment rather than a complete system of reasoning.
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3.2 On discourse functions of reason questions with comment

When the speaker utters a reason question with comment, he gives the addressee some information about
his epistemic state regarding the truth of the prejacent, i.e. that the prejacent (either true or not) is
incompatible with his expectations, thus

⋂
(Exp ∪ {p}) = ∅. Moreover, clues such as prosody, lexical

or grammatical elements, give the addressee further information about the epistemic state of the speaker,
that is whether he seeks new information about the situation in order to revise his initial judgment.

Let us start with the case of a reason question with comment used for seeking information. The speaker
seeks information likely to modify Exp so as to make it compatible with p. When the addressee gives
the speaker some new information, the speaker can either accept the truth of it or reject it. If he accepts
the truth of it, then he uses it to revise his initial expectations in a unique way. Note τr the function
from sets of propositions to sets of propositions that takes the initial expectation set of the speaker and
returns the new expectation set revised by the speaker with respect to the new piece of information
r. The speaker seeks some new information r such that τr(Exp) is compatible with the prejacent p,
i.e.

⋂
(τr(Exp) ∪ {p}) 6= ∅. However, although the speaker accepts the truth of the new piece of

information, it does not follow that he definitely adapts his initial expectations into a new expectation set
compatible with the prejacent p. For instance, suppose the speaker accepts the truth of the prejacent p
(Max read Paul’s mail), but has the expectation that Max does not read Paul’s mail because of the nature
of Max (Max is respectful), and because of a deontic reason (if Max is respectful, the speaker expects
him not to read Paul’s mail). When the addressee answers something like Max found out the password of
Paul, in the eye of the speaker, this circumstantial reason may not transform his initial deontic expections
into new expectations compatible with the prejacent p.

Consider next the use of a reason question with comment that does not seek information. This is the
case where the speaker thinks that there is no reason that can make his expectations compatible with the
prejacent. Therefore, he challenges the addressee to find any such reason, i.e. ∀r[

⋂
(τr(Exp) ∪ {p}) =

∅]. Using the question with comment is a way for the speaker to let the addressee know his epistemic
state about his expectations, to put the burden of the proof on the addressee, and eventually to force
him to accept that there is no such reason. Two subcases have to be distinguished where no reason is
able to make the new expectation set compatible with the prejacent. We note f(p) = p if p is true, and
f(p) = ¬p if p is false. In the first subcase the speaker presupposes that the prejacent is true, f(p) = p,
and that this situation is not compatible with his expectations,

⋂
(Exp ∪ {f(p)}) = ∅. In the example

(1c), the epistemic state of the speaker is that the situation where Max reads Paul’s mail (if it is true) is
unacceptable or deontically impossible. Otherwise, and this is the second subcase, the speaker does not
presuppose that the prejacent is true, but that the situation is (/must be) compatible with his expectations,⋂
(Exp ∪ {f(p)}) 6= ∅. Here, the only way to have a situation compatible with the initial expectations

of the speaker is that the prejacent is false, f(p) = ¬p. In either subcase, the speaker endeavours to
communicate this epistemic state about the truth of the prejacent and his expectations, and he does not
seek new information. It may be hard to see the difference between these two subcases for the addressee.
They could both go under the header of rhetorical uses of comment questions. However, despite being
intutively appealing, this qualification is of rather little help because there is no agreement on its content
across linguists, when the content is spelled out. Let’s recall that rhetorical questions i) are viewed as not
interrogative anymore, but rather as assertions of opposite polarity (Sadock, 1971; Han, 2002); ii) are
said to have biased answers that belong in the CG (Caponigro and Sprouse, 2007), or iii) to have obvious
particular answers that imply the bias of an assertion (Rohde, 2006). No matter which option is taken, it
is crucial to work out the details of the cases, which is what we have strived for in this section.

4 Concluding remarks

The working hypothesis developed in this paper is that the main dialogical function of questions with a
sentence initial comment in their reason reading is to channel an attributional search by the speaker.

These questions verbalise the speaker’s attempt to adapt—in the face of failure represented by an
unexpected event—by attributing to someone/something the cause of what happened or is perceived as
impending. They are not about the truth value of its descriptive content (call it prejacent), like yes-no
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questions, nor about an entity, like a partial question. The prejacent conveys topic information, and the
focus is on the reason(s) for the (potential) situation described by the prejacent. The reasoning goes from
a situation to its potential preconditions, rather than to its results.

The expectation of the speaker is a minimal set of propositions that make the prejacent non contingent.
The speaker communicates that his expectation is inconsistent with the truth of the prejacent, and seeks
information for resolving the antagonism. The status of the prejacent is not fixed, it may characterise
actual or potential situations. The speaker’s stance also may vary, as he may accept the truth of the
prejacent or reject it. We go through different cases in the text, including the case where the speaker
shifts on the addressee the burden of the proof, which is reminiscent of wh questions called rhetorical in
the literature.
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Abstract

One of the fundamental requirements for models of semantic processing in dialogue is incre-
mentality: a model must reflect how people interpret and generate language incrementally, and
handle phenomena such as fragments, incomplete and jointly-produced utterances. We show
that the incremental word-by-word parsing process of Dynamic Syntax (DS) can be assigned a
compositional distributional semantics, with the composition operator of DS corresponding to
the general operation of tensor contraction from multilinear algebra. We provide abstract seman-
tic decorations for the nodes of DS trees, in terms of vectors, tensors, and sums thereof; using
the latter to model the underspecified elements crucial to assigning partial representations during
incremental processing. As a working example, we give an instantiation of this theory using
plausibility tensors of compositional distributional semantics, and show how our framework can
incrementally assign a semantic plausibility measure as it parses phrases and sentences.

1 Introduction

An incremental, word-by-word view on language processing is motivated by much empirical evidence
from human-human dialogue. This evidence includes split, interrupted, and corrective utterances, see
e.g. (Howes et al., 2011):

(1) A: Ray destroyed . . .
B: . . . the fuchsia. He never liked it. The roses he spared . . .
A: . . . this time.

In (1), the utterances are either inherently incomplete or potentially complete, with more than one agent
contributing to the unfolding of a sequence, with in principle arbitrary speaker switch points and indef-
inite extendibility. In such cases, speakers and hearers must be processing the structural and semantic
information encoded in each utterance incrementally. A second motivation comes from computational
dialogue systems, where the ability to process incrementally helps speed up systems and provide more
natural interaction (Aist et al., 2007). A third motivation comes from psycholinguistic results, even in in-
dividual language processing, which show that hearers can incrementally disambiguate word senses and
resolve references, before sentences are complete and even using partial words and disfluent material to
do so (Brennan and Schober, 2001). In (2a,b), the ambiguous word dribbled can be resolved to a partic-
ular sense early on, given the (footballer or baby) subject, without waiting for the rest of the sentence. A
fourth comes from cognitive neuroscience and models such as Predictive Processing (Friston and Frith,
2015; Clark, 2015) which focus on agents’ incremental ability to generate expectations and judge the
degree to which they are met by observed input.

(2) a. The footballer dribbled . . . . . . the ball across the pitch.
b. The baby dribbled . . . . . . the milk all over the floor.

This work is licenced under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/

122



We use the framework of Dynamic Syntax (DS) for incremental grammatical and semantic analysis
(Kempson et al., 2001; Cann et al., 2005; Kempson et al., 2016). DS has sufficient expressivity to capture
the dialogue phenomena in (1) and has been used to provide incremental interpretation and generation for
dialogue systems (Purver et al., 2011; Eshghi et al., 2017). Yet incremental disambiguation is currently
beyond its expressive power; and while its framework is broadly predictive, it does not yet provide an
explanation for how specific expectations can be generated or their similarity to observations measured.

DS does not fix a special form of syntax and instead defines grammaticality directly in terms of incre-
mental semantic tree growth. Symbolic methods are employed for labelling the contents of these trees,
via terms either from an epsilon calculus (Kempson et al., 2001) or a suitable type theory with records
(Purver et al., 2010). These symbolic approaches are not able to reflect the non-deterministic content of
natural language forms, nor the way any initially unfixable interpretation, polysemy being rampant, can
be narrowed down during the utterance interpretation process. For the same reason, the assigned term
specifications do not provide a basis for the graded judgements that humans are able to make during pro-
cessing to assess similarity to (or divergence from) expectations (Clark, 2015), to incrementally narrow
down a word’s interpretation, or disambiguate its sense in the emerging context.

Non-determinisms of meaning and gradient similarity judgements are the stronghold of the so-called
distributional or vector space semantics (Schütze, 1998; Lin, 1998; Curran, 2004; Salton et al., 1975).
By modelling word meanings as vectors within a continuous space, such approaches directly express
graded similarity of meaning (e.g. as distance or angle between vectors) and changes in interpretation (via
movements of vectors within a space). Vector space semantics has been extended from words to phrases
and sentences using different grammatical formalisms, e.g. Lambek pregroups, Lambek Calculus, and
the CCG (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013; Coecke et al., 2010; Coecke et al.,
2013). It has, however, not been extended to incremental and dialogue formalisms such as DS.

In this paper, we address the above mentioned problems, by defining an incremental vector space se-
mantic model for DS that can express non-determinism and similarity in word meaning, and yet keep
incremental compositionality over conversational exchanges. As a working example, we instantiate this
model using the plausibility instance of (Clark, 2013b) developed for a type-driven compositional dis-
tributional semantics, and show how it can incrementally assign a semantic plausibility measure as it
performs word-by-word parses of phrases and sentences. We discuss how this ability enables us to
incrementally disambiguate words using their immediate contexts and to model the plausibility of con-
tinuations and thus a hearer’s expectations.

2 Dynamic Syntax and its Semantics

In its original form, Dynamic Syntax (DS) provides a strictly incremental formalism relating word se-
quences to semantic representations. Conventionally, these are seen as trees decorated with semantic
formulae that are terms in a typed lambda calculus (Kempson et al., 2001), chapter 9:

O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

In this paper we will take the operation O to be func-
tion application in a typed lambda calculus, and the
objects of the parsing process [. . . ] will be terms in
this calculus together with some labels; [. . . ]

This allows us to give analyses of the semantic output of the word-by-word parsing process in terms
of partial semantic trees, in which nodes are labelled with type Ty and semantic formula Fo, or with
requirements for future development (e.g. ?Ty. ?Fo), and with a pointer ♢ indicating the node currently
under development. This is shown in Figure 1 for the simple sentence Mary likes John. Phenomena
such as conjunction, apposition and relative clauses are analysed via LINKed trees (corresponding to
semantic conjunction). For reasons of space we do not present an original DS tree here; an example of a
non-restrictive relative clause linked tree labelled with vectors is presented in Figure 3.
The DS formalism is in fact considerably more general. To continue the quotation above:

[. . . ] it is important to keep in mind that the choice of the actual representation language is not
central to the parsing model developed here. [. . . ] For instance, we may take X1, X2, X3 to
be feature structures and the operation O to be unification, or X1, X2, X3 to be lambda terms
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“mary . . . ” “. . . likes . . . ”
?Ty(t)

Ty(e), Fo(mary) ?Ty(⟨e, t⟩),♢

?Ty(t)

Ty(e), Fo(mary) ?Ty(⟨e, t⟩)

?Ty(e),♢ Ty(⟨e, ⟨e, t⟩⟩), Fo(λyλx.like(x, y))“. . . john”
Ty(t), Fo(like(mary, john)),♢

Ty(e), Fo(mary) Ty(⟨e, t⟩), Fo(λx.like(x, john))

Ty(e), Fo(john) Ty(⟨e, ⟨e, t⟩⟩), Fo(λyλx.like(x, y))

Figure 1: DS parsing as semantic tree development, for the simple sentence “mary likes john”.

and O Application, or X1, X2, X3 to be labelled categorial expressions and O Application:
Modus Ponens, or X1, X2, X3 to be DRSs and O Merging.

Indeed, in some variants this generality is exploited; for example, Purver et al. (2010) outline a version
in which the formulae are record types in Type Theory with Records (TTR) (Cooper, 2005); and Hough
and Purver (2012) show how this can confer an extra advantage – the incremental decoration of the root
node, even for partial trees, with a maximally specific formula via type inference, using the TTR merge
operation ⋗ as the composition function. In the latter account, underspecified record types decorate
requirement nodes, containing a type judgement with the relevant type (e.g. [x : e ] at type ?Ty(e)
nodes). Hough and Purver (2017) show that this underspecification can be given a precise semantics
through record type lattices: the dual operation of merge, the minimum common super type (or join) ⋖ is
required to define a (probabilistic) distributive record type lattice bound by ⋗ and ⋖ . The interpretation
process, including reference resolution, then takes the incrementally built top-level formula and checks
it against a type system (corresponding to a world model) defined by a record type lattice. Implicitly,
the record type on each node in a DS-TTR tree can be seen to correspond to a potential set of type
judgements as sub-lattices of this lattice, with the appropriate underspecified record type (e.g. [x : e ])
as their top element, with a probability value for each element in the probabilistic TTR version. In this
paper, we show how equivalent underspecification, and narrowing down of meaning over time — but
with the additional advantages inherent in vector space models, e.g. similarity judgements — can be
defined for vector space representations with analogous operations to ⋗ and ⋖ .

3 Compositional Vector Space Semantics for DS

Vector space semantics are commonly instantiated via lexical co-occurrence, based on the distributional
hypothesis that meanings of words are represented by the distributions of the words around them (and
often described by a quote from Firth, that “you shall know a word by the company it keeps” (Firth,
1957)). This can be implemented by creating a co-occurrence matrix (Rubenstein and Goodenough,
1965), whose columns are labelled by context words and whose rows by target words; the entry of the
matrix at the intersection of a context word c and a target word t is a function (such as TF-IDF or PPMI)
of the number of times t occurred in the context of c (as defined via e.g. a lexical neighbourhood window,
a dependency relation, etc.). The meaning of each target word is represented by its corresponding row
of the matrix. These rows are embedded in a vector space, where the distances between the vectors
represent degrees of semantic similarity between words (Curran, 2004; Lin, 1998; Schütze, 1998).

Distributional semantics has been extended from word level to sentence level, where a compositional
operation acts on the vectors of the words to produce a vector for the sentence. Existing models vary
from using simple additive and multiplicative compositional operations (Mitchell and Lapata, 2010) to
compositional operators based on fully fledged categorial grammar derivations, e.g. pregroup grammars
(Coecke et al., 2010; Clark, 2013b) or CCG (Baroni et al., 2014; Maillard et al., 2014; Krishnamurthy
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and Mitchell, 2013). However, the work done so far has not been directly compatible with incremental
processing: this paper is the first attempt to develop such an incremental semantics, using a framework
not based on a categorial grammar, i.e. one in which a full categorial analysis of the phrase/sentence is
not the obligatory starting point.

Compositional vector space semantic models have a complementary property to DS. Whereas DS is
agnostic to its choice of semantics, compositional vector space models are agnostic to the choice of the
syntactic system. Coecke et al. (2010) show how they provide semantics for sentences based on the
grammatical structures given by Lambek’s pregroup grammars (Lambek, 1997); Coecke et al. (2013)
show how this semantics also works starting from the parse trees of Lambek’s Syntactic Calculus (Lam-
bek, 1958); Wijnholds (2017) shows how the same semantics can be extended to the Lambek-Grishin
Calculus; and (Maillard et al., 2014; Krishnamurthy and Mitchell, 2013; Baroni et al., 2014) show how
it works for Combinatory Categorial Grammar trees. These semantic models homomorphically map the
concatenation and slashes of categorial grammars to tensors and their evaluation/application/composition
operations to tensor contraction.

In DS terms, structures X1, X2, X3 are mapped to general higher order tensors, e.g. as follows:

X1 7→ Ti1i2···in ∈ V1 ⊗ V2 ⊗ · · ·Vn

X2 7→ Tinin+1···in+k
∈ Vn ⊗ Vn+1 ⊗ · · ·Vn+k

X3 7→ Tin+kin+k+1···in+k+m
∈ Vn+k ⊗ Vn+k+1 ⊗ · · ·Vn+k+m

Each Ti1i2···in abbreviates the linear expansion of a tensor, which is normally written as follows:

Ti1i2···in ≡
∑

i1i2···in

Ci1i2···ine1 ⊗ e2 ⊗ · · · ⊗ en

for ei a basis of Vi and Ci1i2···in its corresponding scalar value. The O operations are mapped to contrac-
tions between these tensors, formed as follows:

O(X1, X2) 7→ Ti1i2···inTinin+1···in+k

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · · ⊗ Vn+k

O(X3,O(X1, X2)) 7→ Ti1i2···inTinin+1···in+k
Tin+kin+k+1···in+k+m

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · · ⊗ Vn+k−1 ⊗ Vn+k+1 ⊗ · · · ⊗ Vn+k+m

In their most general form presented above, these formulae are large and the index notation becomes
difficult to read. In special cases, however, it is often enough to work with spaces of rank around 3. For
instance, the application of a transitive verb to its object is mapped to the following contraction:

Ti1i2i3Ti3 = (
∑
i1i2i3

Ci1i2i3e1 ⊗ e2 ⊗ e3)(
∑
i3

Ci3e3) =
∑
i1i2

Ci1i2i3Ci3e1 ⊗ e2

This is the contraction between a cube Ti1i2i3 in X1 ⊗ X2 ⊗ X3 and a vector Ti3 in X3, resulting in a
matrix in Ti1i2 in X1 ⊗X2.

We take the DS propositional type Ty(t) to correspond to a sentence space S, and the entity type
Ty(e) a word space W . Given vectors Tmary

i , T john
k in W and the (cube) tensor T like

ijk in W ⊗ S ⊗W ,
the tensor semantic trees of the DS parsing process of Mary likes John become as in Fig. 2.1

A very similar procedure is applicable to the linked structures, where conjunction can be interpreted
by the µ map of a Frobenius algebra over a vector space, e.g. as in (Kartsaklis, 2015), or as composition
of the interpretations of its two conjuncts, as in (Muskens and Sadrzadeh, 2016). The µ map has also
been used to model relative clauses (Clark et al., 2013; Sadrzadeh et al., 2013; Sadrzadeh et al., 2014).
It combines the information of the two vector spaces into one. Figure 2 shows how it combines the
information of two contracted tensors Tmary

i T sleep
ij and Tmary

i T snore
ij .

1There has been much discussion about whether sentence and word spaces should be the same or separate. In previous
work, we have worked with both cases, i.e. when W ̸= S and when W = S.
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“mary . . . ” “. . . likes . . . ” “. . . john”
?S

W,Tmary
i ?W ⊗ S,♢

?S

W,Tmary
i ?W ⊗ S

?W,♢ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♢

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 2: A DS with Vector Space Semantics parse of ‘Mary likes John’.

DS requirements can now be treated as requirements for tensors of a particular order (e.g. ?W , ?W⊗S
as above). If we can give these suitable vector-space representations, we can then provide an analogue to
Hough and Purver (2012)’s incremental type inference procedure, allowing us to compile a partial tree to
specify its overall semantic representation (at its root node). One alternative would be to interpret them
as picking out an element which is neutral with regards to composition: the unit vector/tensor of the
space they annotate. A more informative alternative would be to interpret them as enumerating all the
possibilities for further development. This can be derived from all the word vector and phrase tensors
of the space under question — i.e. all the word and phrases whose vectors and tensors live in W and
in W ⊗ S in this case — by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.
Summing will give us one vector/tensor, accumulating the information encoded in the vectors/tensors of
each word/phrase; direct summing will give us a tuple, keeping this information separate from each other.
This gives us the equivalent of a sub-lattice of the record type lattices described in (Hough and Purver,
2017), with the appropriate underspecified record type as the top element, and the attendant advantages
for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the semantic information they

“mary, . . . ” “. . . who . . . ”

?S

W,Tmary
i ,♢ ?W ⊗ S

?S

W,Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♢

“. . . sleeps, . . . ”
?S

W,Tmary
i ?W ⊗ S,♢

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“. . . snores . . . ”
S, µ(Tmary

i T sleep
ij , Tmary

i T snore
ij ),♢

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 3: A DS with Vector Space Semantics parse of ‘Mary, who sleeps, snores’.
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contribute. The use of the identity provides no semantic information; the sum gives information about the
“average” vector/tensor expected on the basis of what is known about the language and its use in context
(encoded in the vector space model); the direct sum enumerates the possibilities. In each case, more
semantic information can then arrive later as more words are parsed. The best alternative will depend on
task and implementation: in the next section, we give a working example using the sum operation.

4 Incremental Plausibility: a working example

In order to exemplify the abstract tensors and tensor contraction operations of the model and provide a
proof of concept for its applicability to semantic incrementality, we characterise the incremental disam-
biguation of the The footballer dribbled.... example. This example is worked out in the instance of the
compositional distributional semantics introduced in (Clark, 2013b) and implemented in (Polajnar et al.,
2014), intended to model plausibility. In this instance, S is a two dimensional space with basis vectors
true ⊤ and false ⊥. Sentences that are highly plausible have a vector representation close to the ⊤ basis;
highly implausible sentences have one close to the ⊥ basis. As an illustrative example, we take W to be
the following 4× 4 matrix based on co-occurrence counts:2

infant nappy pitch goal
baby 34 10 0 0
milk 10 1 0 0
footballer 0 0 11 52
ball 0 1 27 49

As an example, consider the row corresponding to baby: this gives us a vector with the linear expansion∑
iC

baby
i ei, for ei ∈ {infant, nappy, pitch, goal} a basis vector of W and Cbaby

i its corresponding
scalar value. The value Cbaby

1 = 3 represents the number of times baby occurred in the same piece of
text as nappy; the value Cbaby

4 = 0 represents the number of times baby occurred in the same excerpt as
goal, e.g. as the subjects of wore nappy or crawled into a goal.

Intransitive verbs v will have matrix representations with linear expansion
∑

ij C
v
ijei ⊗ ej with ei a

basis vector of W and ej a basis vector of S. A high value for v on the basis ⟨ei,⊤⟩ means that it is
highly plausible that v has the property ei; a high value at the ⟨ei,⊥⟩ means that it is highly implausible
that v has property ei. For example, consider the verbs vomit, score, dribble in their intransitive roles:
T score has a high value at ⟨goal,⊤⟩, since it is highly plausible that things that are scored are goals; and
a high entry at ⟨nappy,⊥⟩, since it is highly implausible that things that wear nappies (e.g. babies) score.
T vomit has an opposite plausibility distribution for infant and nappy wearing agents. T dribble is a mixture
of these two, since both nappy wearing and goal scoring agents do it, but in different senses. Here, we
instantiate the matrix purely from text co-occurrence, approximating plausibility from co-occurrence of
verb and entity in the same text excerpt and implausibility from lack thereof, i.e. occurrence of verb
without the entity. Other methods could of course be used, e.g. using dependency parse information
to show verb-agent relations directly; or learning entries via regression (Polajnar et al., 2014). Note
that while this makes our plausibility and implausibility degrees dependent, and the two dimensional S
can therefore be reduced to a one dimensional one, the theory supports spaces of any dimension, so we
present values and computations for both dimensions to illustrate this.

⟨infant,⊤⟩ ⟨infant,⊥⟩ ⟨nappy,⊤⟩ ⟨nappy,⊥⟩ ⟨pitch,⊤⟩ ⟨pitch,⊥⟩ ⟨goal,⊤⟩ ⟨goal,⊥⟩
vomit 10 2 9 3 3 9 0 12
score 1 7 0 8 7 1 8 0
dribble 14 6 15 5 18 2 19 1

The interpretation of an intransitive sentence, such as Babies vomit is calculated as follows:

Tbabies vomit = T babies
i T vomit

ij = (Cbaby
1 Cvomit

11 + Cbaby
2 Cvomit

21 + Cbaby
3 Cvomit

31 + Cbaby
4 Cvomit

41 )⊤+

(Cbaby
1 Cvomit

12 + Cbaby
2 Cvomit

22 + Cbaby
3 Cvomit

32 + Cbaby
4 Cvomit

42 )⊥
= (34× 10 + 10× 9)⊤+ (34× 2 + 10× 3)⊥
= 430⊤+ 98⊥

2For illustrative purposes, the co-occurrence counts are taken from random excerpts of up to 100 sentences, taken from the
BNC; a full implementation would of course use larger datasets.
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Similar calculations provide us with the following sentence representations:

Tbabies score = 34⊤+ 318⊥
Tbabies dribble = 626⊤+ 254⊥

T footballers vomit = 33⊤+ 723⊥
T footballers score = 493⊤+ 11⊥

T footballers dribble = 483⊤+ 74⊥

It follows that Babies vomit is more plausible than Footballers vomit, Footballers score is more plausible
than Babies score, but Babies dribble and Footballers dribble have more or less the same degree of
plausibility.

A transitive verb such as control will have a tensor representation as follows:

T control =
∑
ijk

Ccontrol
ijk ei ⊗ ej ⊗ ek

for ei, ek basis of W and ej either ⊤ or ⊥. Suppose that control has a 1 entry value at pitch and goal
with ej = ⊤ and a low or zero entry everywhere else. It is easy to show that the sentence representation
of Footballers control balls is much more plausible than that of Babies control balls.

T footballers control balls = T footballers
i T control

ijk T balls
k

= Cfootballer
i Cball

k ⟨pitch⟩Ccontrol
ijk (⟨pitch,⊤, pitch⟩+ ⟨pitch,⊤, goal⟩)

+ Cfootballer
i Cball

k ⟨goal⟩Ccontrol
ijk (⟨goal,⊤, pitch⟩+ ⟨goal,⊤, goal⟩)

= 6866⊤
Tbabies control balls = T babies

i T control
ijk T balls

k = 0

In an unfinished utterance, such as babies . . . , parsing will first derive a semantic tree containing the
vector for babies and a tensor for ?W ⊗ S; then we tensor contract the two to obtain a vector in ?S. The
underspecified tensor in W ⊗ S is computed by summing all known elements of W ⊗ S:

T+
ij = T vomit + T score + T dribble + T control baby + T control milk + T control footballer + T control ball

The tensor contraction of this with the vector of babies provides us with the meaning of the utterance:

T babies
i T+

ij

Similar calculations to the previous cases show that plausibility increases when moving from the incom-
plete utterence T babies

i T+
ij to the complete one T babies

i T vomit
ij . Conceptually speaking, the incomplete

phrase will be a dense, high-entropy vector with nearly equal values on ⊤ and ⊥, whereas the complete
phrase (or the more complete phrase), will result in a sparser vector with more differential values on ⊤
and ⊥. Continuation with a less plausible verb, e.g. score would result in a reduction in plausibility;
and different transitive verb phrases would of course have corresponding different effects. We therefore
cautiously view this as an initial step towards a model which can provide the “error signal” feedback
assumed in models of expectation during language interpretation (Clark, 2015).

5 Nondeterminism of Meaning and Incremental Disambiguation

5.1 Incremental Disambiguation
Distributional semantics comes with a straightforward algorithm for acquisition of word meaning, but
when a word is ambiguous its vector representation becomes a mixture of the representations of its dif-
ferent senses. Post processing of these vectors is needed to obtain different representations for each
sense (Schütze, 1998; Kartsaklis and Sadrzadeh, 2013). Given vectors for individual senses, our set-
ting can incrementally disambiguate word meanings as the sentence is processed. For instance, we can
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incrementally determine that in “footballers dribble”, “dribble” means “control the ball”; while in “ba-
bies dribble” it means “drip”. This is done by computing that “babies dribbledrip” is more plausible
than “babies dribblecontrol”, and also that “footballers dribblecontrol” is more plausible than “footballers
dribbledrip”. Note that this disambiguation can be made before the sentence is complete: in “her fingers
tapped on her i-pad”, or “the police tapped his phone”, the combination of subject and verb alone can
(given suitable vectors and tensors) give information about the relative plausibility of the readings of
“tapped” as “knocked” or “intercepted”. This can then be strengthened when the object is parsed (or,
indeed, weakened or even reversed, depending on the object).

The above examples are taken from the disambiguation dataset of (Kartsaklis et al., 2013). Parts of
this dataset has been tested on the plausibility model of (Clark, 2013b) by (Polajnar et al., 2014), where it
has been shown that plausibility implementations of verb tensors do a better job in disambiguating them.
Repeating this task in our model to experimentally validate the incremental disambiguation hypothesis
constitutes work in progress.

5.2 Incremental Expectation

Using our model on examples such as the above, we can also incrementally compute plausibility of pos-
sible continuations. Consider again the “dribble” example: after parsing Footballers dribble, we can
calculate not merely that the verb’s interpretation can be narrowed down in the presence of the subject,
but also that the continuation ball would be very plausible, and the continuation milk very implausible.
A similar computation provides us with the plausible continuations for Police intercept vs Fingers knock.
If we are using the (direct) sum method to assign overall plausibility to the unfinished sentence, the
plausibility values of the possible continuations have already been calculated; here we need only inspect
the particular values of interest. Using this method, we can therefore explain how people assign shift-
ing expectations as parsing proceeds, and make interim probabilistic evaluations on the basis thereof –
giving us a basis for a model embodying the ‘predictive processing’ stance of (Clark, 2013a). Again,
experimentally evaluating this hypothesis is left to future work.

6 Discussion

This model gives us a basis for incremental interpretation via compositional, grammar-driven vector
space semantics. The particular instantiation outlined above assigns sentence representations in only a
two-dimensional plausibility space, but the framework generalises to any vector space. Our intention is
to extend this to more informative spaces, and integrate with the incremental probabilistic approaches to
interpretation (e.g. Hough and Purver (2017)’s approach to reference resolution).

One important step will be to adapt the model for incremental generation. In the original formulation
of DS generation (Purver and Kempson, 2004), generation is defined as a process of DS parsing, along
with a check against a goal tree. At each generation step, every word in the vocabulary is tested to
check if it is parseable from the current parse state; those which can be parsed are tested, with the
resulting DS tree being checked to see if it subsumes the goal tree. If it does subsume it, then the parsed
word can be generated as output; when the current tree and goal tree match, generation is complete
and the process halts. (Hough and Purver, 2012) updated this to use a goal concept as a TTR record
type, with the subsumption check now testing whether a DS-TTR tree’s top-level record type is a proper
supertype of (i.e. subsumes) the current goal record type. Given the equivalence of our proposed model
to (Hough and Purver, 2012)’s parsing process described above, the only additional apparatus required
for generation for DS with Vector Space Semantics is the use of a goal tensor, and a characterisation of
subsumption between two tensors. For the latter, we intend to look into a distributional characterisation of
inclusion (Kartsaklis and Sadrzadeh, 2016), in the spirit of a real-valued measure of relevance proposed
in probabilistic type theory by (Hough and Purver, 2017). Other approaches to this are exploring type
theory and vector space semantics hybrids such as (Asher et al., 2017).
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Abstract
Incrementality is a fundamental feature of language in real world use. To this point, however,
the vast majority of work in automated dialogue processing has focused on language as turn
based. In this paper we explore the challenge of incremental dialogue state tracking through
the development and analysis of a multi-task approach to incremental dialogue state tracking.
We present the design of our incremental dialogue state tracker in detail and provide evaluation
against the well known Dialogue State Tracking Challenge 2 (DSTC2) dataset. In addition to a
standard evaluation of the tracker, we also provide an analysis of the Incrementality phenomenon
in our model’s performance by analyzing how early our models can produce correct predictions
and how stable those predictions are. We find that the Multi-Task Learning-based model achieves
state-of-the-art results for incremental processing.

1 Introduction

In recent years significant progress has been made in Dialogue State Tracking. Early work on rule-based
updates to dialogue state has now widely been replaced with variants on data driven systems. While
probabilistic systems dominated the early work in this area, error-based learning systems such as those
based on Deep Neural Network architectures are now common place. More formally we can think of Dia-
logue Tracking Components as being split between Rule Based, Generative and Discriminative methods.
Discriminative models based on Partially Observable Markov Decision Process (POMDP) are found to
yield very high results. Currently, many architectures yield state-of-the-art type performance including
Structure Discriminative Modelling (Lee, 2013), web-style ranking (Williams, 2014), Recurrent Neural
Networks (RNN) (Henderson et al., 2014b; Mrksic et al., 2015), Convolutional Neural Networks (CNN)
(Shi et al., 2016), attention mechanism (Hori et al., 2016) and hybrid modelling (Dernoncourt et al.,
2016; Vodolan et al., 2017).

While recent progress in Dialogue State Tracking (DST) is considerable, the vast amount of work to
date treats DST, like dialogue management in general, as a turn-based phenomenon. In other words,
systems wait for a user to pass the turn back to the system before attempts are made to update the
dialogue state. Such an approach ignores the fact that a turn can have multiple functional contributions
(Levinson, 1983; Bunt, 2011), and that in fluid natural interactions an interlocutor will often provide
within-turn feedback to their dialogue partner (Schlangen and Skantze, 2009; Hough et al., 2015). Given
the importance of incremental updates and feedback, in our work we are focused on the longer term
problem of incremental (i.e. word by word) dialogue management and dialogue tracking in particular.

In recent years the community has begun to address the problem of incremental dialogue modeling
with the proposal of a number of DST models that include incremental encoders (Jagfeld and Vu, 2017;
Platek et al., 2016; Zilka and Jurcicek, 2015). However, within this subfield of DST research significant
challenges remain to be overcome. Of these challenges we believe the most significant is a common
presumption of independence between target labels for dialogue state. An example of this independence
can be seen in (Zilka and Jurcicek, 2015) where the authors developed a separate model for each DST
subtask. While such an assumption is useful in simplifying the underlying model, it does not correspond
to the reality of modeling user intents where elements of user intent are often inter-related (Williams et
al., 2016; Oraby et al., 2017).
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To consider the challenge of non-independence of goals, it is useful to view DST as a machine learning
task. For our current purposes we can interpret Dialogue States as combinations of slot-value pairs that
in turn can be considered instances of a multi-label classification task. For example, in the flight booking
domain the system always requires certain slots such as departure, destination and date to be filled
before offering suitable options. These pieces of information are often given in just one utterance in
various forms. We see the motivation of a Multi-Task Learning (MTL) (Caruana, 1997) approach in
investigating task relatedness and variable correlation, and also boosting the performance on several
related tasks. The system benefits a lot from tracking multiple dialogue states rather than single dialogue
state.

In our work presented in this paper we explore a Multi-Task Model as a novel approach to solving the
dialogue state tracking problem for incremental analysis. We present our model design including details
on input representations in section 3, before detailing our experiments and validation results in section 4.
In section 5 we provide an evaluation in terms of common metrics as well as an incremental performance
evaluation to help address our main questions around the incrementality phenomenon; specifically, how
early can our model predict correct the useful dialogue state? and what is the quality of those predictions
in Dialogue State Tracking? Following this, in section 6 we discuss several similar approaches to the
DST tasks. Finally, in section 7 we conclude and outline future work. We begin with a brief detailing of
approaches to Multi-Task Learning in the context of dialogue state modeling.

2 Multi-Task Learning

Within the Machine Learning discipline, Multi-Task Learning (MTL) (Caruana, 1997) is a modelling
approach where we use shared useful information between related tasks in order to achieve better per-
formance across these tasks. This is in contrast to the traditional multi-label approach to classification
where we train multiple models for multiple tasks and do not explicitly incorporate useful feedback
across tasks. In MTL, shared parameters and representations allow the model to look at the training pro-
cess of all tasks at the same time and consider the useful signals in order to boost the end performance.
In other words, an MTL approach aims to optimize more than one metric at the same time.

The natural motivation of a Multi-Task Learning approach comes from mimicking human behaviours
as they are always combinations of single actions. On the other hand, from Machine Learning aspects
MTL can be viewed as a form of inductive transfer. It is also related to other areas in ML such as transfer
learning. The significant difference between Transfer Learning and MTL is however that Transfer Learn-
ing aims to use knowledge of related tasks to improve the target task while MTL uses multiple tasks to
help each other. Multi-Task Learning has been applied successfully to many fields of Machine Learning
including Natural Language Processing (NLP) for sequential data (Cheng et al., 2015; Rei, 2017) and
Speech Recognition (Deng et al., 2013).

In the context of slot-filling Dialogue systems, dialogue states are presented as joint sets of slot-value
pairs across domains, or in the case of probabilistic systems, these are probability distributions over slots.
In our current work we make use of the Dialogue State Tracking Challenge 2 (DSTC2) dataset. Within
this a dialogue state is a combination of probability distributions over multiple slots such as food and
price range, and logistic regression over requested slots such as address and phone number. Therefore,
DST tasks can be classified as multi-label learning. This is the case of Multi-Task Supervised Learning
when different tasks share the same training data.

In general the MTL approach enhances the correlation of variables through the shared training signals.
In the DSTC2 restaurant information domain, it is the correlation between the slots and the tasks that we
wish to take advantage of. For example users are more likely to provide the type of food with preferred
price range and area, or tell the system the restaurant’s name before asking for address or phone number.
Keeping this in mind we have a strong motivation to apply an MTL approach to solving incremental
DST.
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3 Dialogue State Tracking Model

3.1 Dataset

In order to explore the particular difficulties of incremental dialogue state processing, we make use of the
second Dialogue State Tracking Challenge (DSTC2) dataset (Henderson et al., 2014a). DSTC2 provides
a common testbed for explicit research on Dialogue State Tracking tasks. The dataset is split into 3
sets of dialogues: 1612 dialogues in a training dataset, 506 in a development (validation) set and 1117
in a test set. A dialogue in DSTC2 contains up to 30 turns consisting of 2 parts: a machine dialogue
act in a semantic representation format, and user input in ASR utterance and preprocessed SLU (Spoken
Language Understanding) format. The DSTC2 required trackers to produce dialogue states for each turn.

Dialogue States of each turn in DSTC2 contain three components, each of which can be thought of as
a grouping of target variables. Joint Goals: the goal constraint captures what users want, such as type
of food and preferred price range. Search Method: captures the manner in which users interact with the
system, e.g. users can issue clear constraints such as ‘korean food’ or request alternative options.
Finally, Requested Slots capture any user request for information from the system.

3.2 Model Architecture

Our underlying approach is based on a Recurrent Neural Network (RNN) architecture. Given our focus
on incremental analysis, we process dialogue content in a word-by-word manner where a set of classifiers
predict class labels after each word in the utterance. Moreover, we evaluate two MTL-based Deep RNN
architectures for the task. Each architecture, visualized in Fig. 1, has 4 layers including an input, an
output and two hidden RNN layers . The model presented in this paper is a significant improvement of
our early work (Trinh et al., 2017).

Figure 1: Multi-Task Learning Deep RNN-based Dialogue State Tracking Models. Goals denotes the
Joint Goals task including 4 informable slot subtasks, Method denotes the Search Method task, and
Requested stands for the Requested Slots task.

At each time step, we preprocess dialogue input into a vector representation (see 3.3 for detail) and
feed this vector into the networks. At this point there are two alternatives to how our MTL-based models
predict the output. One scenario is that model a uses task-specific RNNs and classifiers to predict the
output of the tasks. Another more complex scenario is based on the model b processing mechanism.
At the 1st layer, all RNN cells process the input vector and produce multiple hidden states. Then these
hidden states are concatenated into a joint vector representation, that we hypothesize is the representation
of the whole dialogue until the current time. In this approach model b then uses task-specific RNNs and
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classifiers to produce predictions based on this universal dialogue representation. In practice model b is
a true MTL approach in that individual task learning can influence learning for the related tasks through
the shared layers. Model a while being a multi-task architecture in the broad sense by combining the
training process does not share weights across tasks, and is thus unable to leverage shared modeling at
any layer except initial input encoding layers.

At the output layer all predicted outcomes are combined to form dialogue states. A Joint Loss Function
of all the subtasks is calculated and used to backpropagate through the whole networks. In these models
the network parameters are updated according to the task to which they contribute.

The processing mechanism summary of our trackers is presented in Table 1.

Model a Model b
Output layer ytfood = Pfood(h

t
2,food) ytfood = Pfood(h

t
2,food)

Hidden layer 2 ht2,food = RNNfood(h
t
1,food, s

t−1
2,food) ht2,food = RNNfood(h

t
1, s

t−1
2,food)

Hidden layer 1 ht1,food = RNNfood(x
t, st−11,food) ht1 =

∑⊕
k ht1,k =

∑⊕
k RNNk(x

t, st−11,k )

Input layer xt xt

Table 1: Processing mechanism of the trackers for slot food at the time step t. xt and ytfood denote the
input and output of slot food at time step t. hti and sti are the hidden state and RNN inner memory of
layer i at time t.

∑⊕ denotes concatenation operation on multiple vector representations.

3.3 Input Representations
In our representation approach, the dialogue input of a turn consists of two parts: the machine dialogue
act and the user utterance. In order to process dialogue data incrementally we treat the whole dialogue as
a sequence of words or tokens. Each turn in the dialogue is presented in a sequence starting with token
<mact>, which stands for machine dialogue act, following by the utterance embedded into vectors by
Word2Vec, and ending with token <eos>.

The machine dialogue act is given in the format act(slot = value). We use a similar technique to
Henderson et al. (2014b) to extract features to capture the local semantics of these acts. The result of
this is a machine dialogue act with about 2000 dimensions. We the apply auto-encoder style training
to develop a distributed representation of machine dialogue acts across 300 dimensions. This encoded
vector is concatenated with word embedding vectors at the beginning of each turn. For the rest of the
utterance we use a zero vector in place of the dialogue act vector.

In order to improve the performance of our MTL-based trackers we also investigate a number of tech-
niques to improve the quality of the word embeddings. The three variants considered here are described
below. It should be noted that in each case we assumed a dimensionality of 300 for each word embedding
type.

• Online-trained Word Embeddings We train word embeddings along with the training process of
the whole networks. The motivation for this word embedding approach is a hypothesis that it is
useful for the network to learn all words in the context of dialogues and dialogue states.

• Pre-trained Word Embeddings Due to the nature of the dataset, the vocabulary size is relatively
small. We hypothesize that the pre-trained word embedding from a large corpus such as Wikipedia
or Twitter might give better representations and reduce the training time of the model. We choose
Word2Vec developed by Mikolov et al. (2013) for this purpose.

• Combined Word Embeddings We also investigated the option of combining pre-trained word
embeddings and our model trained word embeddings to give the model the benefit of information
from the dialogue domain as well as general context.

4 Experiments

In this section we provide the details of our experiment methodology.
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4.1 Experiment Setup

In the proposed models we configured all RNNs cells with Long Short-Term Memory units (Hochreiter
and Schmidhuber, 1997) of hidden size 128 and drop out rate for training 0.2. The standard deviation
was set to 0.05 for the truncated normal initializer, and the initial value was set to 0.001 for the constant
initializer. We trained the models with mini-batches of 10. We implement our MTL-based models in
TensorFlow platform1 (Abadi et al., 2015) and trained using the Adam Optimizer (Kingma and Ba,
2015) to minimize a Joint Loss Function. We use the cross-entropy loss function for each individual
subtask.

For development we train our models on the training dataset and used the development dataset to
evaluate and consider the best training parameters for the DSTC2 tasks. To prevent overfitting we used
a number of techniques: drop out training rate, early stopping, and averaging Neural Networks weights
between the multiple tasks. To be noted, our MTL models have shared layers, that have parameters
trained according to all tasks. We validated our model every 100 training steps. Furthermore, we trained
each model 10 times with different initializations and ensembled the output. We subsequently applied
the best training parameters based on ensembled validation results to test set for this paper’s result and
discussion.

Model performance is evaluated using two common feature metrics that are taken as standard for
work on the DSTC2 dataset: Accuracy measures how often a tracker predicts true dialogue states in the
form of the top hypothesis; and L2 norm measures the squared norm l2 between the correct label and
predicted distribution (Henderson et al., 2014a). The better tracker must have higher accuracy and lower
L2 norm in evaluation.

4.2 Embeddings Selection

During the development phase we evaluated a number of options to increase the performance from the
raw test data. This included the evaluation of a number of embedding options (outlined above), and
testing the inclusion of manual transcriptions data alongside ASR results. The result on development
dataset (Table 2) is reported in a grid table of both model architectures with all Word2Vec and Input
options. We also included the best baseline result provided by DSTC2 organizers (Henderson et al.,
2014a) on the development dataset below for reference.

DST Model Input Options Word Embeddings
Online-trained Pre-trained Combined

Model a ASR 0.687 0.687 0.688
ASR + Label 0.694 0.682 0.691

Model b ASR 0.683 0.687 0.675
ASR + Label 0.697 0.688 0.684

Baseline ASR 0.623

Table 2: Performance of our proposed models and the best baseline system on DSTC2 development
dataset during the experiment phase. The performance is reported in Accuracy value for the Joint Goals
task. The DSTC2 baseline system is non-incremental and rule-based.

The comparison of different word embeddings shows that the systems can learn similarly in different
word vector spaces. However, using pre-trained Word2Vec reduces the number of parameters to learn
in the training process, therefore the training time is reduced. On the other hand, both models perform
better when we improve the data quality by including manual transcriptions into the training data. The
best results on the development dataset were achieved by the systems trained on the expanded dataset
with their own custom trained word embeddings. For test evaluation we selected these options and
deployed for testset evaluation.

1Version 1.5, retrieved from https://www.tensorflow.org/
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5 Results and Discussions

We demonstrate the performance of our models against DSTC2 test dataset and compare them with the
state-of-the-art incremental systems that we know of (Table 3). The results are reported on the Joint
Goals, Requested Slots, and Search Method tasks with two evaluation metrics Accuracy and L2. The
reported results are sorted in the order of descending Joint Goals Accuracy. In the bottom of the table we
include the performance of the best turn-based and the best baseline systems to provide a comparison of
Incremental and non-Incremental approaches.

DST Model Joint Goals Requested Slots Search Method
Acc. L2 Acc. L2 Acc. L2

EncDec Framework (Platek et al., 2016) 0.730 – – – – –
MTL Model b (this work) 0.728 0.458 0.980 0.035 0.946 0.093
MTL Model a (this work) 0.720 0.498 0.978 0.037 0.944 0.096
LecTrack (Zilka and Jurcicek, 2015) 0.72 0.64 0.97 0.06 0.93 0.14
CNET Tracker (Jagfeld and Vu, 2017) 0.714 – 0.972 – – –
IJM Tracker (Trinh et al., 2017) 0.707 0.545 0.975 0.047 0.940 0.114
Best turn-based system 0.796 0.338 – – – –
Best baseline system 0.719 0.464 0.879 0.206 0.867 0.210

Table 3: Performance of our proposed models and state-of-the-art incremental systems on DSTC2 test
dataset. The evaluation metrics are Accuracy (Acc.) and L2 norm. The best turn-based system is Hybrid
Tracker (Vodolan et al., 2017). The best baseline system is Focus baseline (Henderson et al., 2014a).

The result on the DSTC2 testset shows that our MTL-based models achieve state-of-the-art level re-
sults among Incremental Dialogue State Trackers. Our trackers are capable of predicting full dialogue
states including all informable slots, requested slots and search methods. To the best of our knowledge
the EncDec Framework (Platek et al., 2016) is the best Incremental Tracker on the DSTC2 dataset. How-
ever, this tracker was implemented to track informable slots only, meaning the full dialogue states are
not reported. Looking at the difference of Joint Goals result between EncDec Framework and our MTL-
based model, the margin is very small, while our model is capable of producing full dialogue states with
state-of-the-art results in Requested Slots and Search Method tasks.

Comparing the two MTL-based models of this work, we see that model b generally performs better
than model a in all tasks. We would argue that the reason of this result lies in the shared hidden RNN layer
of model b. We use multiple RNNs to extract information from dialogue input by multiple channels, that
are separate from each other, and concatenate their output to form a dialogue joint representation. These
RNNs are updated based on backpropagation of the whole Neural Networks according to the errors. We
believe that this particular architecture ensures the control over correlation between slots in the domain,
while still keeping the independence of prediction by using task-specific RNN layer and classifiers. In
our attention, the number of parameters of model a is much bigger than model b, therefore the training
time is also longer.

While neither of our models improve on the EncDec framework, it is notable that the performance
improvement that we observe in Model b over Model a would suggest that the performance of EncDec
may be improved if a Multi-Task approach leveraging Requested Slots and Search Method is taken.

5.1 Incremental Processing Analysis

Incremental dialogue processing requires accuracy as early as possible during an interaction. Given this
we provide an analysis of accuracy over time rather than waiting for the well-defined end of a turn.
Given the Joint Goals task is the most crucial and challenging task in DSTC2, we provide an analysis
specifically for that task. Table 4 provides the results for this analysis where Model a and Model b are
considered. Unfortunately it is not possible to repeat this analysis for the EncDec framework and similar
works since no previous study on these frameworks has considered incremental accuracy. Performance
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is measured in Accuracy of Joint Goals along the length of utterances. As the utterance length varies
from 1 to 24 words, we chose to scale between 0-100% of utterance length.

Length 0 10 20 30 40 50 60 70 80 90 100
Model a 0.468 0.468 0.480 0.494 0.501 0.513 0.522 0.546 0.580 0.623 0.720
Model b 0.471 0.471 0.482 0.496 0.505 0.523 0.536 0.557 0.591 0.634 0.728

Table 4: Incremental performance of MTL-based models. Performance is measured in Accuracy.

These results show that the trackers have the ability to predict the dialogue state at a reasonable rate
long before the utterances is complete. Even with less than 50% of the utterance considered, accuracy
levels are over 50%. Correct dialogue states, even at very early points in the utterance, can be produced.
Empirically we believe this is due to state carried over from previous turns - note that our modeling
approach, like similar works, does not reset at a turn boundary. It is also noteworthy that there is a
considerable jump in accuracy between 90% and 100% of the utterance being consumed.

It is also notable from the results that MTL model b consistently outperfored MTL model a at every
time step. While the performance improvement was slight, we believe this supports the assertion that
a true multi-task learning approach where information is shared at multiple points in the network can
improve overall goal performance.

In Appendix B we present the Incremental performance of our trackers on the dialogues in testset.
We select the dialogues randomly for some specific scenarios where our models perform both well and
badly.

5.2 Error Analysis

In this subsection we provide a more detailed error analysis on the incremental result. As we know that
user utterances give different information at different time. According to the Henderson et al. (2014a)
user intents of slot food change most frequently, up to 40.9% dialogues in the testset, and it is the most
difficult to track. Henderson et al’s analysis was carried on the dialogue level; however, we expect that
user intent can also change on turn and word level.

To quantify this hypothesis, we carried out a small analysis on DSTC2 testset regarding the informable
slots to monitor in detail the performance of our trackers (see Table 5). The analysis shows that in the
DSTC2 testset the total number of turns is 9890, in which there are 1596 (16.14%) turns where users
change the food, 932 (9.42%) turns where the price range value is changed, 1046 (10.58%) turns with
the change in area, and only 9 (0.09%) with regard of slot name.

Informable Slot Food Price Area Name
Turns 9890
Model a 0.847 0.881 0.919 0.995
Model b 0.848 0.893 0.920 0.995
Turns with change 1596 932 1046 9
Model a 0.780 0.767 0.856 0.000
Model b 0.786 0.804 0.870 0.000

Table 5: Detailed performance evaluation of our proposed models on the informable slots. The results
are reported in Accuracy.

We observe that our MTL trackers perform well in tracking three out of four informable slots, that are
food, price range and area, both in general and when the user intentions change. On the other hand, the
trackers overfit in tracking slot name, that can be explained by the lack of training data as we mentioned
above that less than 10% of total turns that users mention the name of restaurants. That being said, our
trained models always assign the value ‘none’ for slot name. We also see that our model b outperforms
model a marginally in detecting the goal change per slot.
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We present our analysis on the Incrementality performance regarding the slot food, the most difficult
slot to track, in the format of graphs in Fig. 2. The graph on the left shows the first moment our trackers
predict correct food value to answer the question “How early can our models pick up the right food
value?”. The one on the right shows the stability of food predictions, that the earliest moment of correct
prediction that can be kept until the end of turns. All the results are reported by counting the number of
turns.

Figure 2: Error Analysis of slot food predictions according to number of turns with correct prediction.

The nearly identical patterns in graphs show that our trackers are capable of tracking food value as
early as reaching the middle of utterance. These predictions are of good quality as they are correct and
kept until the end of utterance to produce the end-of-turn dialogue states.

In detail, the analysis shows that our models are capable of picking up key words in utterances to
predict particular values. This word-based mechanism is similar to the idea to extract ASR features
proposed by Henderson et al. (2014b) . We also realize that user intent in DSTC2 dataset changes on
the turn level, but not on the word level. For example, in one turn the user would say “I’m looking for
Chinese food” rather than “I’m looking for Chinese food, no, wait, Italian food”.

On a related note, the analysis shows the peak of prediction for the food slot at 50%. Looking at the
data, this peak can be explained by the patterns of user utterance. The system’s question for food slot
is set up to “What food do you want?”. Naturally, the user would respond “Italian food”, meaning the
value is predicted exactly in the middle of utterance.

There exist many factors that influence the trackers’ prediction ability such as ASR and SLU errors
(see Appendix B), and many types of errors that the trackers produce. For detailed comparative error
analysis of DSTC2 models, read (Smith, 2014).

6 Related Work

To date, the state-of-the-art results in DST are achieved by non-incremental models (Henderson et al.,
2014b; Vodolan et al., 2017). Both of these models use RNNs to process dialogues on the turn-based
level. The work published by Henderson et al. (2014b) is notable for the novelty and high performance.
Its technique of extracting word features of ASR input has shown the advantages against other feature
extraction techniques. This technique is also adopted in the Hybrid tracker by Vodolan et al. (2017).
While the Word-based tracker using only RNNs by Henderson et al. could achieve the highest perfor-
mance accuracy at the time, the Hybrid tracker by Vodolan et al. used RNNs and a set of hand-crafted
rules to improve the results. These approaches’ results are not yet overcome by Incremental models. We
adopt the feature extraction technique into our model to encode the machine dialogue acts.

The number of Incremental DST models to our knowledge is currently limited to LecTrack (Zilka and
Jurcicek, 2015), EncDec Framework (Platek et al., 2016), and CNET tracker (Jagfeld and Vu, 2017).
Among these trackers, LecTrack and EndDec Framework process dialogues on the word-based level,
that can be compared directly to our work. There are several differences between our MTL models and
Lectrack and EncDec Framework. First of all, we handle machine dialogue acts or response differently.
In our MTL models, we encode these acts into only one token and engage them when it is the machine

139



turn. While the other two models straighten them into sequences of words to make the dialogues con-
tinuous word sequence. Secondly, we apply different mechanism to predict the dialogue states. Zilka
and Jurcicek (2015) developed multiple single models to predict outcomes of each slot, then combine the
predictions into dialogue states. Platek et al. (2016) developed an Encoder-Decoder language model to
predict the slot value in a particular order. Their model is limited to predicting the joint goal state for the
three informable slots only and does not include other two subtasks. Different from these models, our
MTL model is capable of predicting all slots simultaneously.

Currently, we can handle only the best ASR hypothesis in the data, while the prediction might possibly
be improved by processing multiple ASR hypotheses. Jagfeld and Vu (2017) have been able to improve
this limitation by integrating a confusion network into dialogue state tracking. However, confusion
networks generate more errors in ASR of DSTC2 than the live recognizers, therefore they reduce the
accuracy of the outcome. Even though their approach is the only one of its kind, the result is not yet
state-of-the-art.

Apart from approaches mentioned above, there are numerous models introduced to solve DST prob-
lems. Many of those models are also RNN-based with different architectures and techniques (Jang et al.,
2016; Hori et al., 2016; Yoshino et al., 2016). However their results are reported against other tasks, that
we cannot compare to our model directly. On the other hand, there are also various approaches proposed
for DSTC2 tasks that are not based on RNN but achieve notable results (Williams, 2014; Sun et al., 2014;
Kadlec et al., 2014; Yu et al., 2015; Fix and Frezza-Buet, 2015; Lee and Stent, 2016; Mrksic et al., 2017).

7 Conclusion

This paper presents Incremental approaches to Dialogue State Tracking using Multi-Task Learning tech-
niques. To our knowledge our work is the only one applying MTL-based models in DST tasks. The
results suggest that our models achieve state-of-the-art results among incremental trackers. To address
the importance of Incremental phoenomenon in dialogue processing, we also report a detailed error
analysis as the measure of quality on the incremental DST phenomenon. Furthermore, our MTL-based
trackers show that the correlations between in-domain slots in dialogues processing are essential and
should be learned in dialogue.

Our models work well on the Incrementality phenomenon. First, our work predicts the correct values
by recognising key words at the early point of the time sequence (see Appendix B). Second, our pre-
dictions are stable through out the dialogues. However, there is still room to improve our work that we
would like to apply our approach to more complex dialogue data, where user intention is dynamic within
utterances.

To date, the Incrementality of all incremental models is limited to turn-based analysis due to the limit in
dataset. There is no dataset yet for evaluating incremental dialogue state trackers. Therefore to continue
investigating the incremental mechanism for dialogue state tracking, we are considering reannotating the
DSTC2 data into word-level annotated data. In the future we also plan to put more effort in investigating
useful incremental Natural Language features for dialogue modelling.
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Appendix A. State-of-the-art Dialogue State Trackers

Detailed evaluations of various approaches to DSTC2 tasks to our knowledge are reported in the table
below.

DST Model Joint Goals Requested Slots Search Method
Acc. L2 Acc. L2 Acc. L2

Hybrid Tracker (Vodolan et al., 2017) † 0.796 0.338 – – – –
Web-style Ranking (Williams, 2014) 0.784 0.735 0.957 0.068 0.947 0.087
Word-based Tracker (Henderson et al., 2014b) † 0.768 0.346 0.978 0.035 0.940 0.095
CMBP Tracker (Yu et al., 2015) 0.762 0.436 – – – –
YARBUS Tracker (Fix and Frezza-Buet, 2015) 0.759 0.358 – – – –
SJTU System (Sun et al., 2014) 0.750 0.416 0.970 0.056 0.936 0.105
TL-DST (Lee and Stent, 2016) 0.747 0.451 – – – –
Knowledge-based Tracker (Kadlec et al., 2014) 0.737 0.429 – – – –
Neural Belief Tracker (Mrksic et al., 2017) 0.734 – 0.965 – – –
EncDec Framework (Platek et al., 2016) †

√
0.730 – – – – –

MTL Model b (this work) †
√

0.728 0.458 0.980 0.035 0.946 0.093
Generative Model (Lee et al., 2014) 0.726 – – – – –
MTL Model a (this work) †

√
0.720 0.498 0.978 0.037 0.944 0.096

LecTrack (Zilka and Jurcicek, 2015) †
√

0.72 0.64 0.97 0.06 0.93 0.14
Markovian Model (Ren et al., 2014) 0.718 0.461 0.951 0.085 0.871 0.210
CNET Tracker (Jagfeld and Vu, 2017) †

√
0.714 – 0.972 – – –

IJM Tracker (Trinh et al., 2017) †
√

0.707 0.545 0.975 0.047 0.940 0.114
CRF Tracker (Kim and Banchs, 2014) 0.601 0.649 0.960 0.073 0.904 0.155
Best results 0.796 0.338 0.980 0.035 0.947 0.087

Table 6: Performance evaluation of our proposed models and state-of-the-art incremental trackers. Acc.
denotes Accuracy, and L2 denotes the squared norm l2. † means RNN-based Tracker, and

√
means

Incremental Tracker.

Appendix B. Incremental DST output examples

We demonstrate Incremental Prediction examples of our model b on the dialogues in the testset.
In dialogue voip-e8997b10da-20130401 151321 during turn 4 we observe the ASR error that leads to

a wrong prediction output.
In dialogue voip-a617b6827c-20130323 170453 our tracker performs well on a good ASR hypothesis.
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Dialogue ID voip-e8997b10da-20130401 151321
Transcription Turn 4 “okay how about indian food”

Turn 5 “okay how about indian food”
Turn ASR Predicted States Dialogue States

Slot Value Probability Slot Value
3 “<eos>” food mediterranean 0.990 food mediterranean

area south 0.993 area south
method by constraints 0.996 method by constraints

4 “okay” food mediterranean 0.991 food indian
area south 0.998 area south
method by constraints 0.984 method by alternatives

“how” food mediterranean 0.989
area south 0.998
method by constraints 0.833

“much” food mediterranean 0.990
area south 0.999
method by constraints 0.571

by alternatives 0.414
“union” food mediterranean 0.991

area south 0.998
method by alternatives 0.700

“please” food mediterranean 0.990
area south 0.998
method by alternatives 0.815

5 “okay” food mediterranean 0.990 food indian
area south 0.998 area south
method by alternatives 0.606 method by alternatives

“how” food mediterranean 0.987
area south 0.997
method by alternatives 0.637

“about” food mediterranean 0.975
area south 0.994
method by alternatives 0.614

“indian” food mediterranean 0.111
indian 0.480

area south 0.994
method by alternatives 0.880

“food” food indian 0.977
area south 0.995
method by alternatives 0.961

Table 7: Incremental predictions for Dialogue voip-e8997b10da-20130401 151321 in the testset. We use
green/red colours to show right/wrong predictions of our tracker in comparison with labeled Dialogue
States.
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Dialogue ID voip-a617b6827c-20130323 170453
Transcription Turn 0 “im looking for an expensive restaurant in the south part of town”
Turn ASR Predicted States Dialogue States

Slot Value Probability Slot Value
0 “i’m” price – – price expensive

area – – area south
method none 0.980 method by constraints

“looking” price – –
area – –
method none 0.985

“for” price – –
area – –
method none 0.963

“an” price – –
area – –
method none 0.936

“expensive” price expensive 0.856
area – –
method by constraints 0.942

“restaurant” price expensive 0.997
area – –
method by constraints 0.998

“in” price expensive 0.999
area – –
method by constraints 0.999

“the” price expensive 0.999
area – –
method by constraints 0.999

“south” price expensive 0.999
area south 0.846
method by constraints 0.999

“part” price expensive 0.999
area south 0.980
method by constraints 0.999

Table 8: Incremental predictions for Dialogue voip-a617b6827c-20130323 170453 in the testset. The
ASR hypothesis misses two words “of town” from the user utterance.
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Abstract

Current dialogue systems typically do not explicitly manage time. Where attempts are made at
rectifying this, this is often done with a focus on turn-taking, aiming at making the system take
the turn more quickly and naturally. Here we look at another, related phenomenon: what to do
when the turn has been taken, but the expected task-related content cannot yet be produced. We
implemented a system that can produce what we call “time buying” acts whenever it needs to
bridge time until it can present a task-level reply (in our case, flight information). The range of
acts and, crucially, the sequencing of these acts (including their temporal placement) are learned
from an existing corpus in which such situations were created on purpose. We evaluate this
system by letting participants interact with it as well as with two baseline systems: one that
only produces one type of act (namely explicitly asking the user to wait) at regular intervals,
and another one that produces the full range of acts, but sequenced randomly. We find that
participants rate the full system as more human-like than the other systems and that they also
report enjoying interacting with it more. We conclude that “buying time” in a natural fashion is
possible and beneficial for interaction quality, but only if sequencing constraints found in natural
data are reproduced.

1 Introduction

Consider the following interaction between a caller who wants to book an airline ticket and a travel agent:

(1) Caller: I’d like to book a flight from Aachen to Zurich for next Monday. [1]
Agent: Of course. Aachen to Zurich, [2]

[agent inputs information to find possible flights] [3]
uhm... [4]
I’m starting to get some results here [5]
just one more moment [6]
Ok, so there is a flight on Monday at . . . [7]

Here, the agent produces utterances that are not strictly task-relevant, but still seem to fulfill an in-
teraction management function.1 In general, dialogue participants seem to try to avoid longer pauses in
dialogue (Lundholm Fors, 2015; Jefferson, 1989), since delays are often interpreted as signs of a problem
(Levinson, 1983; Kohtz and Niebuhr, 2017). This is especially true if the speakers are not co-located (as
in the example above) and lack information from other modalities such as gaze and facial expression.

Speakers use a variety of resources to bridge time in dialogue, including fillers (e.g. line 4 in (1))
and explicit requests for waiting (e.g., line 6), but also other kinds of utterances such as echoing the
interlocutor’s words (e.g., line 2), committing themselves to the task (line 2) or conveying the state of the
information (e.g. line 5) (Clark and Tree, 2002; López Gambino et al., 2017).

In this paper, we explore modeling this kind of time-buying behavior in a spoken dialogue system, and
we evaluate perceived naturalness and enjoyment when human participants interact with it. The language

1This particular interaction is constructed for clarity, but similar ones are attested for example by López Gambino et al.
(2017); see below.
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SYSTEM: Reiseinformationssystem DSG-Bielefeld.
Danke, dass Sie uns nochmals anrufen. Was
kann ich für Sie tun?

SYSTEM: ‘Travel Information System DSG-Bielefeld.
Thank you for calling us again. How may I help
you?’

CALLER: Hallo. Gibt es einen Flug mit dem Start-
flughafen Frankfurt und dem Zielflughafen Syd-
ney am 3. August vormittags?

CALLER: ‘Hello. Is there a flight with departure airport
Frankfurt and destination airport Sydney on Au-
gust 3, in the morning?’

SYSTEM: Mm-hm, gut. Die Flüge werden noch gesucht.
Nach Sydney (...) einen kleinen Moment, bitte
(...)

SYSTEM: ‘Mm-hm, okay. The search for flights is still in
progress. To Sydney (...) one moment, please
(...)

Ich warte noch auf die Liste, die Flüge kommen
langsam rein (...)

I’m waiting for the list, the flights are appearing
slowly (...)

Ich habe einen passenden Flug gefunden. Ich
sende Ihnen die Daten per Email. Vielen Dank.

I’ve found a matching flight. I’ll send you the
information by email. Thank you very much.’

CALLER: Danke. CALLER: Thank you.
SYSTEM: Auf Wiederhören. SYSTEM: Goodbye.

Table 1: Example interaction between system and participant, from the data collected in the experiment.
Original in German on the left, English translation on the right.

of the system is German. The utterances used to bridge time are inspired by those found in a corpus of
human-human dialogues ((López Gambino et al., 2017), and Section 3.1.3 below), and the system also
considers information on how these utterances are sequenced in human-human data. (See Table 1 for an
example of an interaction with the system.)

To evaluate the system, we had participants interact with it and with two baseline systems. The first
one bridges the gap between the user’s request and presentation of a result by explicitly asking the user
to wait. The second system uses the same utterances as the one based on human behavior but selects
them randomly, without considering any sequencing information. After each dialogue, participants were
asked to rate the system with which they had just interacted. Our system was rated as more human-like
and more enjoyable to interact with than the other systems. Additionally, it was perceived as capable
of finding a result in a more appropriate amount of time than the system which used explicit requests
to wait, although the actual time elapsed before announcing a result was the same for all three systems.
Below we describe the system and the evaluation, after looking at related work.

2 Related work

Previous studies in the field of automatic systems as well as customer satisfaction have focused on com-
paring strategies which can be applied during long waiting periods. Some of the strategies tested are
playing music, or providing information about waiting time, place in the queue, or choice of listening
alternatives (Tom et al., 1997; Antonides et al., 2002; Munichor and Rafaeli, 2007). One reported finding
is that telephone systems which fill long gaps are perceived more positively by humans than those which
remain silent until information can be presented (López Gambino et al., 2018; Tom et al., 1997), which
is not surprising given humans’ dislike of long pauses in dialogue (see Section 1). On the other hand, the
conclusion that subjective perception of elapsed time depends (at least partly) on what the subjects hear
in the meantime (derived from the results presented in 4.1) has been somewhat more contested, since
previous literature presents evidence in its favor (Hirsch et al., 1950; Antonides et al., 2002) as well as
against it (Tom et al., 1997; Munichor and Rafaeli, 2007).

More generally, the work presented here can be seen as part of current efforts on incremental dialogue
processing (Skantze and Hjalmarsson, 2010; Schlangen and Skantze, 2011; Buß and Schlangen, 2010).
This paradigm enables the development of systems which can manage time by strategically planning
(and re-planning) the production of utterances and their timing. Such strategic decisions can depend on
the internal state of the system (e.g. a system which is still in the process of generating an information
utterance and produces a filler to cover the pause) or on external considerations (such as a system which
reformulates an already planned utterance due to a recent change in the environment). One such system
is described in (Skantze and Hjalmarsson, 2010). The system bridges the gap before information presen-
tation either through fillers (e.g. eh) or by playing canned beginnings of utterances such as It costs... or
Here is a..., which the system then completes with content synthesized online. Similarly, Baumann and
Schlangen (2013) tested an incremental system which also uses open-ended utterances that are extended
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Action Category Example
PRODUCE acknowledgment C: I want to fly to Bristol.
GROUNDING A: Okay.
UTTERANCE echoing C: I’m looking for a flight to Izmir at the beginning of August.

A: A flight to Izmir, beginning of August, let me see...
commitment Let’s have a look.

PRODUCE agent/system state The search for flights is still in progress.
INFORMATION temporary non-availability Until now I haven’t found any morning flights.
STATE So far I only see evening flights.
UTTERANCE wait request Please hold on.

availability We have a few choices to offer you.

Table 2: Actions and utterance categories

as new information comes in. In addition, this system introduces hesitations to compensate for long
pauses resulting from overcommitment. Hesitations have also been employed by Betz et al. (2017) as a
means for recovering the user’s attention when it deviates away from the system. Another incremental
system which reacts to events in its surroundings was presented by Buschmeier et al. (2012). The system
reacted to noise interruptions in the environment by pausing its speech and re-generating the interrupted
chunk once the noise had stopped. Stent (1999) presented a system which bridges gaps by inserting fillers
or utterances such as wait a minute. Finally, Tsai et al. (2018) developed a movie recommender dialogue
system which fills the silent time before information presentation by uttering a general statement, such
as I think this movie fits your tastes. To the best our knowledge, the issue of modeling “time-buying”
systematically after human data has not so far been addressed in the literature.

3 The System

Our system can bridge the gap between the user’s request and the moment when it is ready to provide task
information by producing similar utterances to those employed by humans in such situations. It simulates
an automatic telephone system in a travel agency whose function is to receive requests for flights from
customers and look for matching offers. Below is a description of the training process (Section 3.1)
followed by an outline of the system architecture (Section 3.2).

3.1 Training a “Time-Buyer” Selection Strategy
3.1.1 States and Actions
The possible actions for the system were taken from the “time-buying act classification scheme” proposed
by López Gambino et al. (2017). This scheme includes 11 categories of utterances which humans employ
in order to bridge time. However, we included only seven of these categories, due to several reasons.
Utterances corresponding to the categories filler and incomplete were difficult to synthesize with the right
prosody. Including category confirmation/expansion request would have introduced the risk of the user
producing new content which we could not handle within our Wizard-of-Oz setup (see 4). Finally, we
merged category partial match under temporary non-availability, since we did not find enough variety
of non-availability utterances in the corpus and the functions of both categories are relatively similar.

Additionally, in order to further reduce the action and state spaces given the small size of the training
data (see 3.1.3), we grouped these seven categories into two larger classes: grounding and information
state. Table 2 lists the seven categories chosen and shows how they were grouped. On the other hand, we
wanted our system to resemble, to some extent, human speakers’ pausing behavior. Therefore, we ex-
plicitly included pausing in the action space. The resulting space thus consisted of four actions: produce
grounding action and produce information state utterances, as in Table 2; and pause for N seconds,
with N = 2 and N = 4 seconds.2

As for the state space, the state variables were the two last actions produced by the system: at−2, at−1.
Given the four actions available, this resulted in 16 possible states.

2We originally chose 500 and 3000 ms as pause durations, following Jefferson (1989)’s suggestion of one second as the
approximate maximum duration of an unmarked pause in conversation. However, we perceived the resulting production as
sounding too rushed, which is why we extended pause durations to 2000 and 4000 ms.
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3.1.2 Learning a Time-Buying Policy
We used OpenDial (Lison, 2015; Lison and Kennington, 2016) to estimate the probability and the utility
of choosing each one of the available actions in each state.3 OpenDial makes it possible to define a
factored joint distribution (in the form of probabilistic rules), structured as sets of conditions together
with the effects which may take place given those conditions. It is realised as a Partially Observable
Markov Decision Process (POMDP) Bayesian Network model to estimate the distribution over all pos-
sible effects for each possible set of conditions. In our case, however, the model is best described as a
simple Markov Decision Process (MDP), since the states are made up of the last two system actions (as
explained in 3.1.1) and are thus fully observable.

There were 16 possible dialogue states and each state could result in four possible system actions.
Input variables represent the rule conditions, i.e. the values of the state variables, and output variables
represent the rule effects, namely the actions selected by the system (see Fig. 1). This resulted in 16
rules, one for each dialogue state. As an example, the rule corresponding to the state in which the last
actions are produce grounding utterance and produce long pause respectively is structured as follows:

if at−2 == grounding and at−1 == long pause:
decision = grounding (util = theta grounding)
decision = information state (util = theta state)
decision = long pause (util = theta long pause)
decision = short pause (util = theta short pause)

This rule shows the four possible values that the variable decision can take up, followed by the
utilities corresponding to them. The four parameters starting with theta are the utility values which will
be learned. The goal of training the system is to learn the probabilistic mapping from the input of the
rule to its possible output values.

actiont-2 = 
grounding 

actiont-1 = 
long_pause 

parameters

rule decisioninput 
(state variables)

output 
(effect)

Figure 1: Example of Bayesian network connecting a rule with its input and effect

3.1.3 Data
The training data were extracted from the DSG-Travel Corpus (López Gambino et al., 2017). The corpus
consists of 92 human-human dialogues which resulted from a role play activity simulating phone calls
to a travel agency. One of the speakers plays the role of the caller, a customer who wants to buy a flight,
whereas the other one acts as the travel agent who looks through a list for a matching flight to offer the
caller. We only used the speech of the participant playing the travel agent, and specifically the parts of the
dialogues between the customer’s request and the information presentation stage, i.e. the period during
which the travel agent buys time while looking for a matching flight. This resulted in 801 utterances.

OpenDial has provisions for using Wizard-of-Oz derived data for training. We were thus able to
obtain 801 sequences of actions (at−2, at−1, at) representing the speaker’s decision at time t and the two
immediately previous decisions as part of the input state.

3.1.4 Parameter Estimation
The intial prior of the MDP was modeled with a Dirichlet distribution for probability rules and a Gaussian
distribution for utility rules. OpenDial applies Bayesian learning to estimate the posterior distribution

3http://www.opendial-toolkit.net
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Figure 2: System architecture

P (θ|D), where D is the set of state-action pairs in the training data and θ represents the rule parameters.
This distribution can be expressed as below (following Lison (2015)):

P (θ|D) = ηP (θ)
∏

〈Bi,ai〉∈D
P (ai|Bi; θ)

where P (ai|Bi; θ) is the probability of action ai being selected in the state Bi with rule parameters θ, and
η is a normalization factor. Thus, at each iteration, the parameters are updated as follows:

P (θ(i+1)) = ηP (θ(i))P (ai|Bi; θ(i))

3.2 System Architecture
The system was developed using InproTKs (Kennington et al., 2014) and it consists of four modules, as
illustrated in Fig. 2.4

Timeout Module: The Timeout module receives input, checks whether a result can already be pre-
sented or whether it is still too early, and forwards its decision to the Action Selection module. Ideally,
the input received by the Timeout module would be the user’s speech. However, the version for our
current evaluation did not include a speech recognition or language understanding component: Instead,
a confederate entered signals through the keyboard (as explained in Section 4).

Action Selection Module: This module selects one among the possible actions listed in Section 3.1.1.
The selection is based on the learned policy explained in Section 3.1.2. This decision is then forwarded to
the Utterance Selection Module. After the corresponding utterance has been played, the Action Selection
module chooses a new time-buying action, and this process continues until the system can announce a
matching flight.

Utterance Selection Module This module has two main functions. The first one is choosing a time-
buying category based on the decision received from the Action Selection module. For example, if
the decision received is grounding, it will choose between acknowledgment, commitment and echoing;
otherwise, if the decision received is information state, the choice will be between agent/system state,
availability, temporary non-availability and wait request (See Table 2).

In order to make this selection, the module considers the frequency distribution, in the human-human
data, of the available time-buying categories in the corresponding position in the interaction. For in-
stance, if the decision received from the Action Selection module is grounding and the system has al-
ready produced two time-buying utterances, it will consider all the grounding utterances which appear
in the data in the third position of the time-buying phase, together with their respective categories. Since
the distribution for this position is acknowledgment: 0.05, commitment: 0.28, echoing: 0.67, the Utter-
ance Selection module will sample from this distribution in order to select the next category. Due to the
reduced size of the corpus, only the frequencies of the first six positions are considered: Starting from
the seventh utterance, the module alternates between the probabilities for the fifth and sixth slots.

Once a category has been selected, the second task of the Utterance Selection module is to choose
a specific utterance to send to the Utterance Playing module. Four utterances are available for each
category. The decision is simply, out of these four utterances, the first one which has not been used yet
(if all four have been used, the selection starts again at the beginning of the list). Finally, the utterance is
forwarded to the Utterance Playing module, which plays an audio file with the synthesized utterance. On
the other hand, if the decision received from the Action Selection module is not an utterance but a pause,

4InproTKs was taken from https://bitbucket.org/inpro/inprotk.
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Ich würde gerne von Frankfurt nach Sydney fliegen, am 3. August und zwar vormittags.
I'd like to fly from Frankfurt to Sydney, on August 3 in the morning.

Mm-
hm

Mm-
hm vormittags da gucken wir

doch mal

einen kleinen
Moment

Ich habe einen passenden
Flug gefunden... 

okayda haben wir was
im Angebot

PARTICIPANT:

warten Sie bitte noch
einen Augenblick

Sekunde
noch

Augenblick,
bitte

schaue ich gerade
einmal nach

Ich habe einen passenden
Flug gefunden... 

Mm-
hm

einen kleinen
Moment, bitte

nach
Sydney

am 3.
August

Sekunde
noch

ich schaue gerade
mal in meine Liste

Ich habe einen passenden
Flug gefunden... 

SYSTEM (FIXED): 

Mm-
hm

one moment,
please

I have found a matching
flight.

please wait a little
longer

one more
second

one moment,
please

SYSTEM (RANDOM): 

SYSTEM (LEARNED):  

I have found a matching
flight.

Mm-
hm

in the
morning

we have something to
offer you

let's see okay I'm having a look

Mm-
hm

one moment,
please

to Sydney on August 3 one more
second

I'm having a look in my
list

I have found a matching
flight.

Figure 3: Examples of the three time-buying strategies employed by the system (original utterances in
German in bold; English translation provided below). The gray intervals represent pauses.

the task of the Utterance Selection module is simply limited to forwarding this decision to the Utterance
Playing module. Utterances were synthesized with Cereproc’s male voice for German, “Alex”.5

In summary, to make a decision about a particular act at a given point, the system first checks whether
information can already be presented (Timeout module); if not, it selects a high-level act based on the
learned policy (Action Selection module) and, based on that, an actual utterance (Utterance Selection
module), which it then realizes (Utterance Playing module). The division of the decision-making process
between the Action Selection and Utterance Selection modules was due to the reduced size of the training
data: Grouping all utterances into two broad categories in the Action Selection module (grounding and
information state) and refining the decision in the Utterance Selection module made it possible to keep
the state space smaller for learning the parameters of the action selection rules (see 3.1).

4 Evaluation: Comparing Learned, Random, and Rule Based Time-Buying

In order to evaluate generation output without having a full dialogue system, we integrated the system
into a Wizard-of-Oz environment. The Wizard’s task was to press a key whenever she judged that the
participant’s request was complete. The system then acknowledged the request by producing mm-hm
and started to buy time. The Wizard could also trigger clarification requests when the participant forgot
to mention one of the search criteria or the request had not been expressed clearly; examples of these
are Could you please repeat the destination airport? and Do you prefer a specific airline?. Participants
were told that they interacted with a fully automated system. Below we provide more details about the
experimental design and procedure of the evaluation, as well as the participants.

Design: There were three experimental conditions: LEARNED, RANDOM and FIXED. The difference
between the conditions was the strategy used by the system to bridge the gap between the user’s request
and the moment when it announces finding a flight (see Fig. 3 for examples):

FIXED : The system bridges the gap by explicitly asking the user to wait, through utterances such as please wait; one moment,
please; give me a second, etc. The utterances are separated by four-second intervals.

RANDOM : The system bridges the gap by randomly selecting from a set of utterances similar to those found in the DSG-
Corpus (see 3.1.3). In between utterances, the system can also randomly choose to produce a four-second pause, a
two-second pause or no pause at all.

LEARNED : The system employs the learned strategy described in 3.1.2. The utterances are the same as in the RANDOM
strategy.

Participants were presented with each one of these conditions four times, in random order.
5https://www.cereproc.com/
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*** *

**

*** ***

Figure 4: Ratings received by each strategy, by statement: 1) It was pleasant to interact with this system,
2) The system provided an answer within an appropriate amount of time, 3) The system acts the way I
would expect a person to act. iqr stands for interquartile range. (* p<.017, ** p<.003, *** p<.0003)

Procedure Each participant played the role of a secretary at a company, who had been instructed to call
a travel agency to book a number of flights for some of the company executives. Participants were told
that they would be speaking to an automatic system which could understand speech, and they received
a handout with a list of items. Each item contained the criteria defining a flight that the participant
should request, e.g. Frankfurt-Sydney, May 24, Lufthansa. The calls started with the system greeting
the participant. After this greeting, the participant asked for one of the flights on the list. Following this
request, the Wizard pressed a key for the system to produce mm-hm in order to signal having received the
participant’s request and subsequently start buying time. After 20 seconds, the system announced having
found a flight and told the participant that the flight details would be sent to the company by email.6 We
chose 20 seconds as the duration of the time-buying stretch because this is close to the average duration
of the time-buying stretches in the human-human corpus (17.5 seconds). Finally, if the participant said
“goodbye”, the Wizard pressed a key for the system to say “goodbye” as well.

After every call, participants were given some time to rate the system. For each of the statements
below, they chose an option from 1 (completely disagree) to 5 (completely agree):7

• It was pleasant to interact with this system.
• The system provided an answer within an appropriate amount of time.
• The system acts the way I would expect a person to act.

There was also an optional field for further comments. Once the participant had completed the assess-
ment, the next call started, with the system greeting the customer as before.

Each participant completed 14 calls: two test calls for making sure they had understood the instructions
and 12 experiment calls. Participants were instructed to include only one flight per call.

Participants: Thirty participants were involved in the study, 19 female and 11 male, recruited through
flyers left at the University cafeteria, by email or on the Facebook group of the University.

Analysis: We compared the ratings given to each of the strategies (FIXED, RANDOM and LEARNED) for
each of the three statements rated (see 4) and tested significance of differences through Wilcoxon signed-
rank test. We also applied Bonferroni correction due to the multiplicity of statements per stimulus, which
resulted in the following significance levels: 0.05/3 = .017; 0.01/3 = .003; 0.001/3 = .0003.

4.1 Results
No significant differences were found between the FIXED and RANDOM strategies. In contrast, the
LEARNED strategy was rated significantly better than the FIXED strategy for all three statements (Z=356,
p<.0003; Z=475, p<.003 and Z=800, p<.0003). Additionally, LEARNED was rated significantly better
than RANDOM for statements 1 (Z=652, p<.017) and 3 (Z=904, p<.0003). Fig. 4 shows the total sum of
the ratings assigned to each condition in each statement, the median score and the interquartile range.

6We told participants that the system already had the contact details of the company, the latter being a frequent customer
7The questionnaire was adapted from (López Gambino et al., 2018).
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5 Discussion and future work

It has been claimed that systems which bridge time through speech are preferred by humans over those
which wait for the information in silence (Tom et al., 1997; López Gambino et al., 2018). In this exper-
iment, we tested three time-bridging strategies involving speech, with a view to identifying the charac-
teristics that this speech must have in order to render the interaction natural and pleasant for users. In
particular, we focused on two aspects: variety and sequencing. In the FIXED condition, no attention is
paid to either of these aspects, since all utterances realize the same dialogue act, namely requesting extra
time, and they are presented in random order. The RANDOM condition includes a variety of utterances
representing different dialogue acts, but the way in which they are presented is also random. Finally,
the LEARNED condition considers knowledge about both the variety observed in humans’ time-buying
strategies and their distribution with respect to the moves preceding them and to their position in the
time-buying stretch. Therefore, our results suggest that both aspects —variety and sequencing— play a
role in shaping user experience, since our model received higher ratings than the other two strategies.

On the other hand, it is worth mentioning that the LEARNED system was rated as capable of finding
a result in a more appropriate amount of time than the FIXED system, even though waiting time was 20
seconds for every dialogue, regardless of the strategy employed. What is yet more interesting is that
this difference was not found between the LEARNED and RANDOM conditions. A possible hypothesis is
that repetition of the same dialogue act in the FIXED condition might have led to users’ annoyance and,
consequently, to a perception of waiting time as longer, something which did not happen in the other two
conditions, in which moves were more varied and potentially more “entertaining”.

It must be noted that, although we trained an MDP model, the probability function resulting from the
learning process was near-uniform and the system’s choices were thus controlled by the utility function.
Therefore, the model actually learned resembles a trigram model, since the system always selects the
action with the highest utility given the two previous actions. An MDP model might prove useful in
future work in which other variables —such as the user’s speech— are considered.

A further consideration worth addressing is the issue of human-likeness. The importance of human-
likeness for dialogue systems has been discussed at length (Turing, 1950; Reichman, 1985; Dahlbäck et
al., 1993; Larsson, 2005; Edlund et al., 2008; Baumann and Schlangen, 2013; Traum, 2018). Although
it seems clear that there are aspects deserving a higher priority —such as clarity— in our results, human-
likeness of the strategy used correlates with reported pleasantness of interaction, suggesting that users
are not impervious to this characteristic.

In addition, an aspect which is not addressed in this study but certainly deserves further research is
the relation between time bridging and estimated time until task content is available or, in other words,
whether the characteristics of the speech used to buy time are somehow influenced by the predicted
length of the information delay.

In the future, we want to endow the system with the ability to interact with the user while buying
time, making it more conversational and responsive. We would also like the system to be able to make
incremental decisions based on both user speech and the amount and quality of the task information
available to it, so that it can leverage this information while buying time. This would, for example, result
in behavior such as Unfortunately I can’t see any flights in the morning, I only have... oh, one second, I
just found one flight in the mor-, actually two flights in the morning.... Finally, it would be interesting to
analyze the characteristics of time-buying in corpora corresponding to other domains, and also perhaps
in other languages.
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Abstract

The notion of conversational genre/type is a crucial one for various tasks in dialogue. These
include the planning of the subject matter of initiating utterances, the form/content of domain-
specific moves, and the resolution of non-sentential utterances. In this paper, we discuss experi-
ments whose aim is to come up with metrics over the class of conversational types. We compare
two main methods: using n-grams (n=1,2) and using the distribution of non-sentential utterances.
We show that both methods yield promising results, though the method involving non-sentential
utterance distributions is ultimately more effective. We consider the implications that this has for
modelling conversational types.

1 Introduction

The notion of a language game (Wittgenstein, 1953) or a speech genre (Bakhtin, 1986) is one of the
most fundamental in research on dialogue. We will use the term conversational type, henceforth. There
has been intermittent work on this notion in the pragmatics literature: Hymes (1972) suggests that a
conversational type can be characterized by eight parameters SPEAKING – Scene, Participants, Ends,
Act sequence, Key, Instrumentalities, Norms and Genre; Levinson (1979) takes such a notion to ‘refer
to a fuzzy category whose focal members are goal-defined, socially constituted, bounded events’, and
proposes three dimensions according to which activity types vary: scriptedness (the degree to which the
activity is routinized), verbalness (the degree to which talk is an internal part of the activity) and formal-
ity (the degree to which the activity is formal or informal). For instance, teaching is much more verbal
than a football game, and a jural interrogation is both much more formal and scripted than a dinner party.
Allwood (1995) proposes that such a notion can be further characterized by four parameters: purpose of
the activity, roles performed by participants, instruments used, and other physical environment. Schank
and Abelson (1977) argue that most of human understanding is script-based. A script is a way of rep-
resenting what they call “specific knowledge,” that is, detailed knowledge about a situation or event that
“we have been through many times.” (p.37) A script consists of various slots to be filled by different ele-
ments according to that particular script. The general idea underlying this notion, then, relates to what an
agent needs to learn in order to participate successfully in a given conversational type. From a concrete
point of view of dialogue modelling, the role played by conversational types as the basis for explaining
domain specificity includes at least three aspects we exemplify here with constructed examples:

1. Special forms usable at particular points and their non-sentential meanings, e.g., with respect to
opening/closing interaction:

(1) a. A: Hi. B: Hi. (A and B go their separate ways).
b. The court is now in session. . . . This session is now closed.
c. A: Welcome to today’s auction. . . . That brings us to the end of today’s auction.

(2) a. Initially: Umpire: player X to serve, love all.
b. During game: Umpire: X-Y (=Server has X points, receiver has Y points)
c. At end of game: Umpire: game Z (=Player Z has won the game)

2. Non-locally determined relevance:

(3) a. (First utterance in a bakery:) A: Two croissants.
b. Initial stage of informal chat between A and B: A: How are you? How is the family?
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3. Conversational completeness: when can a conversation be considered to have achieved its goals
which allows the participants to terminate it.

Building on earlier AI work on planning (e.g., (Cohen and Perrault, 1979; Litman and Allen, 1987)),
Larsson (2002) models plans as sequences of questions; domains are distinguished by the sets of ques-
tions whose resolution is required. This provides the basis for the family of systems following Godis
(Larsson and Berman, 2016). Within the framework of KoS, Ginzburg (2012) proposes to model a
conversational type in terms of a type that characterizes the information state of a participant that has
completed a conversation of that kind. On this view, a conversational type directly specifies information
about the participants (including potentially relationships that hold between them), the subject matter
(via the field QNUD (questions no longer under discussion)), and certain moves:

(4)


participants :


person1 : Ind
cperson1 : cp1(person1)
person2 : Ind
cperson2 : cp2(person2)


qnud : poset(question)
moves : list(utterance-type)


There is, thus, conceptual and formal work on conversational types, some of which has been imple-

mented. However, due to its symbolic nature, basic topological notions relating the closeness/similarity
between types have not hitherto be considered. Nor have there been attempts at characterizing the global
structure of the space of conversational types. This is presumably an open class, but by analogy with
the lexicon, plausibly possesses internal structure—, say, a subclass of types that allow for relatively free
interaction or ones where some participants are essentially silent etc.

In this paper, we describe experiments whose aim is to develop basic topological notions on a given
ensemble of conversational types. Our aim is to develop computational techniques that enable us to
diagnose automatically for a new conversational type its location in relation to other conversational types.
We do this by defining a metric between types on the basis of several distinct probability distributions:

(5) A metric on a set X is a function (called the distance function) d : X ×X 7→ R+ (where R+is
the set of non-negative real numbers) that satisfies (i) symmetry: d(a, b) = d(b, a), (ii) identity:
d(a, b) = 0 if and only if a = b, (iii) non-negativity: d(a, b) ≥ 0, and (iv) the triangle inequality:
d(a, c) ≤ d(a, b) + d(b, c).

We use the Jensen-Shannon divergence (JSD), which is a metric created from the Kullback-Leibler
(KL) divergence measure. In (6) P and Q are two given probability distributions:1

(6) a. KL divergence D(P ||Q) =def Σip(i) log p(i)/q(i)

b. JSD(P |Q) = .5D(P ||M) + .5D(Q||M) with M = .5(P + Q)

As a set of conversational types we take the BNC (British National Corpus) taxonomy (Burnard, 2000).
We consider two main approaches: in section 2, we use n-grams (n = 1, 2), the intuition being that this
involves clustering on the basis of ‘subject matter’; in section 3, we use the distribution of non-sentential
utterances, the intuition being that this involves clustering on the basis of ‘interactional structure’, as
we explain below. In section 4, we offer a comparative evaluation of the two approaches, the impact of
which is discussed in section 5. Finally, in section 6 we draw some conclusions and suggest future work.

2 Metrics using unigrams and bigrams

2.1 Experimental details for unigrams
We obtained the 23 unigram frequency files, one for each of the 23 (classified) BNC spoken genres from
the BNCweb (CQP-Edition)2, restricting the POS-tags to any verb and any noun. (For the names and
descriptions of these 23 BNC spoken genres, see Table 1).

1In fact, JSD as defined here is the square of a metric Fuglede and Topsoe (2004).
2http://bncweb.lancs.ac.uk/
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Genre Description Genre Description
1 Broadcast Discussion (Discn) TV or radio discussions 13 Lecture Natural Science (Nat sc) lectures on the natural sciences
2 Broadcast Discussion (Doc) TV documents 14 Lecture Politics Law Education (P law) lectures on politics, law or education
3 Broadcast News (News) TV or radio news broadcasts 15 Lecture Social Science (Soc sc) lectures on the social sciences
4 Classroom (Class) non-tertiary classroom discourse 16 Meeting (Meet) business or committee meetings
5 Consultation (Cons) mainly medical consultations 17 Parliament (Prlmnt) parliamentary speeches
6 Conversation (Conv) face-to-face spontaneous conversations 18 Public Debate (P deb) public debates and discussions
7 Courtroom (Court) legal presentations or debates 19 Semon (Sermn) religious sermons
8 Demonstration (Demo) ’live’ demonstrations 20 Speech Scripted (Sp s) planned speeches
9 Interview (Intv) job interviews and other types 21 Speech unscripted (Sp us) uplanned speeches
10 Interview Oral History (Hist) oral history interviews 22 Sportslive (Sport) ’live’ sports commentaries and discussions
11 Lecture Commerce (Comm) lectures on commerce 23 Tutorial (Tut) university-level tutorials
12 Lecture Humanities Arts (H arts) lectures on humanities and arts subjects

Table 1: BNC spoken genres (Hoffmann et al., 2008) p. 276

Following common practice in text categorization, stop words (functions words and other uninforma-
tive words) were then filtered out from these files. The set of stop words we used was the one provided by
the free statistical software R (R-Core-Team, 2013) (174 in total) as shown in Table 13 in the Appendix,
plus the following 20: ’ve, ’s, ’re, ’m, ’ll, ’d, d’, sha, wo, can, ca, will, must, may, might, shall, shalt,
used, need, dare. Note that there is no universal set of stop words and researchers have used different
sets of stop words (Manning and Schütze, 1999), usually tailor-made to their specific tasks. The size of
the set of stop words we used (194) is minimal as compared to those of the others (e.g., 527 in Weka
(Witten et al., 2016)). We believe that a minimal set of stop words is likely to be more appropriate to
our present study as there are 23 different spoken genres and stop words in some genres may not be
stop words in the other genres.3 From each of the 23 filtered unigram files, we selected its top 100 most
frequent unigrams, and then obtained the union set of these 2,300 unigrams by amalgamating these and
deleting duplicates. The resulting union set contained just 821 unigrams in total, whose 50 most frequent
members are shown in Table 2.

From the perspective of vector space models (Clark, 2015), these 821 selected unigrams result in an
821-dimensional vector space with each selected unigram representing one dimension. Each of the 23
genres is represented by a point (or vector) in this higher dimensional vector space. The position of each
genre-point is determined by the probability distribution of the 821 selected unigrams in the genre in
the following way: the magnitude along the dimension represented by the selected unigram is given by
the value of the probability of occurrence of that selected unigram among the 821 selected bigrams in
the genre. The latter is the ratio of the normalized frequency of that unigram in the genre to the total
normalized frequency of the 821 selected unigrams in the genre.The distance between each and every
pair of genre-points is then measured using Jensen-Shannon Divergence (JSD), as defined in section 1.
Figure 1 displays this data using a force-directed graph (FDG) (Bannister et al., 2012). The distance
matrix for this metric sorted by closest neighbour is displayed in full in Table 10 in the Appendix.

Rank Unigram Rank Unigram Rank Unigram Rank Unigram Rank Unigram
1 know 11 mean 21 take 31 done 41 day
2 think 12 way 22 thing 32 fact 42 number
3 got 13 said 23 bit 33 mr 43 saying
4 get 14 want 24 point 34 year 44 god
5 people 15 come 25 work 35 use 45 end
6 say 16 sort 26 course 36 says 46 thought
7 see 17 put 27 lot 37 gonna 47 went
8 go 18 things 28 give 38 find 48 case
9 going 19 look 29 years 39 made 49 tell
10 time 20 make 30 like 40 government 50 week

Table 2: 50 most frequent unigrams in the union set

2.2 Experimental details for bigrams

There are different ways to extract bigrams in the literature (e.g., (Tan et al., 2002)). We used the
software AntConc (Anthony, 2017) to extract bigrams from the text files of the 23 BNC spoken genres.

3In fact, stop words are not always used in experiments in other fields, such as register variation in applied linguistics (see,
e.g., Biber and Egbert (2016)). In order to investigate the effects of using stop words on our results, we repeated our experiments
without using stop words. We obtained no significantly different results. Due to space constraints, we report herein only the
results of experiments that used stop words.

158



Following common practice, we filtered cases where either component of the bigram is a stop word
from the extracted bigrams, using the same set of stop words we used for unigrams above. As with the
unigrams, we selected from each of the 23 filtered bigram files its 100 most frequent bigrams, and then
obtained the union set of these 2,300 bigrams by amalgamation and deletion of duplicates. The resulting
union set contained 1410 bigrams in total, whose 50 most frequent members are shown in Table 3. The
same procedure was then followed to generate the JSD metric of the bigram distributions of the 23 BNC
spoken genres. Figure 2 displays this data using an FDG. The distance matrix for this metric sorted by
closest neighbour is displayed in full in Table 11 in the Appendix.

Rank Bigram Rank Bigram Rank Bigram Rank Bigram Rank Bigram
1 er er 11 oh yes 21 twenty five 31 yeah erm 41 first time
2 yeah yeah 12 right now 22 two hundred 32 three hundred 42 one thing
3 yes yes 13 come back 23 united states 33 oh right 43 two thousand
4 little bit 14 five percent 24 yeah well 34 right erm 44 er well
5 erm er 15 last year 25 greater york 35 erm well 45 one point
6 something like 16 go back 26 new settlement 36 right yeah 46 thought
7 right okay 17 years ago 27 next week 37 thousand pounds 47 jesus christ
8 nineteen eighty 18 things like 28 o clock 38 say well 48 one hundred
9 county council 19 mm mm 29 oh yeah 39 labour party 49 long time
10 nineteen ninety 20 make sure 30 last week 40 nineteen forty 50 er erm

Table 3: 50 most frequent bigrams in the union set

3 A Metric based on NSU distributions

Corpus studies of non-sentential utterances (NSUs), a characterizing feature of dialogue—fragments
which express a complete meaning—show that ‘sentential’ fragments can be reliably classified using a
small, semantically-based taxonomy (Fernández and Ginzburg, 2002; Schlangen, 2003). In the taxonomy
of Fernández and Ginzburg (2002), for instance, which attains high coverage of a large random sample
of the BNC (98.9%), there are 15 classes of NSUs, covering various kinds of acknowledgments (plain
acknowledgement, repeated acknowledgement), queries (clarification ellipsis, sluice, check question),
answers (short answer, plain affirmative answer, repeated affirmative answer, propositional modifier,
plain rejection, helpful rejection), and extensions (factual modifier, bare modifier phrase, conjunction +
fragment, filler); see Table 4 for examples. The taxonomy has been extended with minor modifications
to Chinese (Wong and Ginzburg, 2013), French (Guida, 2013), Spanish (Garcia-Marchena, 2015), and
Twitter (citation suppressed). Moreover, this taxonomy can be learnt using supervised (Fernández et al.,
2007) and semi-supervised (Dragone and Lison, 2015) methods. Given that NSUs represent a wide

NSU Class Example NSU Class Example
1 Plain Acknowledgement (Ack) A: ... B: mmh. 9 Propositional Modifier (PropMod) A: Did Bo leave? B: Maybe.
2 Repeated Acknowledgement (RepAck) A: Did Bo leave? B: Bo, hmm. 10 Rejection (Reject) A: Did Bo leave? B: No.
3 Clarification Ellipsis (CE) A: Did Bo leave? B: Bo? 11 Helpful Rejection (HelpReject) A: Did Bo leave? B: No, Max.
4 Sluice (Sluice) A: Someone left. B: Who? 12 Factive Modifier (FactMod) A: Bo left. B: Great!
5 Check Question (CheckQ) A: Bo isn’t here. Okay? 13 Bare Modifier Phrase (BareModPh) A: Max left. B: Yesterday.
6 Short Answer (ShortAns) A: Who left? B: Bo. 14 Conjunction + Fragment (Conj+Frag) A: Bo left. B: And Max.
7 Affirmative Answer (AffAns) A: Did Bo leave? B: Yes. 15 Filler (Filler) A: Did Bo ... B: leave?
8 Repeated Affirmative Answer (RepAffAns) A: Did Bo leave? B: Bo, yes.

Table 4: A Taxonomy for non-sentential utterances (NSUs)

variety of move types, one can hypothesize that NSU distributions yield an “interactional profile” of
a given conversational type.

As a starting point for the current work, we investigated the frequency distribution of NSUs across the
23 BNC spoken genres. Files of total size in the range of 15,000-19,999 words were randomly selected
from each genre, resulting in a sub-corpus consisting of 69 files, totalling 383,979 words. Annotation
was manual, using the taxonomy of Fernández and Ginzburg (2002), the reliability of which is discussed
in Fernández (2006). Table 5 shows the frequency distribution of NSUs across the 23 BNC spoken
genres we obtained in that study, normalized here to 10,000 sentence units. As might be expected,
those genres which are more interactive in nature (e.g., interview, medical consultation, classroom, and
conversation) have high frequencies of NSUs, whereas those genres which are not interactive in nature
(e.g., broadcast news, parliament, and sermon) have low frequencies of NSUs. On the basis of the data in
Table 5, we calculated the probability distribution of the 15 NSU classes in each genre. The probability
of occurrence of NSUs in a NSU class in a genre is the ratio of the normalized frequency of that NSU
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Figure 1: JSD metric of BNC spoken genres using unigrams

class in the genre by the total normalized frequency of the 15 NSU classes in the genre. These figures
were used to generate the JSD metric among conversational types. Figure 3 displays this data using an
FDG. The distance matrix for this metric sorted by closest neighbour is displayed in full in Table 12 in
the Appendix.

Genre Ack RepAck CE Sluice CheckQ ShortAns AffAns RepAffAns PropMod Reject HelpReject FactMod BareModPh Conj+Frag Filler Total
1 Discn 1529 90 72 45 18 162 144 18 36 90 0 0 18 9 9 2240
2 Doc 62 10 41 21 0 21 10 0 0 21 0 10 0 0 0 196
3 News 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 Class 1488 262 53 27 102 404 169 18 9 71 18 44 0 4 53 2722
5 Cons 1893 69 110 8 57 57 297 46 11 126 27 27 8 0 42 2778
6 Conv 1070 79 360 67 40 171 454 18 15 171 24 82 6 3 12 2572
7 Court 1010 57 38 0 0 114 133 19 38 105 10 19 0 0 0 1543
8 Demo 941 112 11 22 56 549 258 45 11 146 0 22 0 11 90 2274
9 Intv 2053 77 55 0 133 11 144 11 44 28 0 55 0 11 33 2655
10 Hist 2552 183 67 0 18 79 183 37 6 67 24 37 24 37 49 3363
11 Comm 74 25 0 0 0 0 25 0 0 0 0 0 0 0 0 124
12 H arts 1058 50 40 10 0 40 190 0 20 20 20 0 0 0 0 1448
13 Nat sc 157 14 29 0 157 143 86 0 0 0 0 14 0 0 0 600
14 P law 78 155 58 0 0 388 19 19 0 0 19 78 0 0 0 814
15 Soc sc 233 78 13 13 0 39 65 0 0 26 13 13 0 0 13 506
16 Meet 1024 70 42 7 49 63 181 14 28 42 0 14 0 7 42 1583
17 Prlmnt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 P deb 888 9 28 0 0 28 227 19 28 57 9 19 0 0 19 1331
19 Sermn 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 Sp s 313 84 42 0 0 21 94 0 0 31 10 0 0 10 0 605
21 Sp us 519 161 66 0 22 278 95 22 22 51 0 44 22 0 15 1317
22 Sport 78 34 0 0 0 9 0 9 0 9 9 0 9 9 9 175
23 Tut 916 44 71 0 0 62 169 53 9 44 9 36 0 0 18 1431

Table 5: Frequency distribution of NSUs across BNC spoken genres

4 Evaluation

How to compare the different metrics on the space of conversational types? We will do so by inspecting
the neighbourhoods (k-nearest neighbours) of a given conversational type and consider the plausibility
and robustness of the assigned neighbourhoods. A priori the situation is somewhat tricky—we have no
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Figure 2: JSD metric of BNC spoken genres using bigrams

Figure 3: JSD metric of BNC spoken genres using NSUs
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inconvertible gold standard to guide us. Nonetheless, we can propose some basic constraints, which
allow us to compare the different metrics which take into account notions of interactivity and subject
matter.
No-Interaction types Examining the class of conversational types, we can recognize three where (es-
sentially) no interaction takes place: the classes concerned are Broadcast News(3), Parliament(17), and
Sermon(19). The defining principle of such types that can be summarized for an agent who needs to be
taught how to participate is that the agent is in such cases an overhearer (Goffman, 1981), who does not
speak. (“Don’t speak back to the tv or during a sermon/speech.”) The lack of interactivity is captured
well by their null NSU distributions. This means that the NSU-based metric isolates these types as a
cluster. On the other hand, the uni/bi-gram-based methods do not capture this requirement, yielding the
following neighbourhoods (extracted from Tables 10, 11, 12 in the Appendix):4

Genre Nearest Neighbours Method Genre Nearest Neigbhours Method
3 1,16,[2,21],10,20 Unigram 19 [6,1],[21,10],4,[15,16,12, 5,9],3 Unigram

1,16,21,10,20 Bigram [21,10,1],16,6,4,[9,15] Bigram
17,19 NSU 3,17 NSU

17 16,3,1,20,[7,21,2] Unigram
16,3,1,21,7 Bigram
3,19 NSU

Table 6: Nearest 5 neighbours for non-interactive types

Types with similar subject matter: difference As we noted in the introduction, the guiding principle
of current formal models for conversational types is largely driven by subject matter. Thus, a fixed set
of questions (via domain issues, QNUD etc) is essentially a defining characteristic of a conversational
type. This is problematic in two ways. For a start, types in principle can share subject matter but
differ because of distinct interactional organization. In the BNC collection of types this is exemplified
by types Parliament(17) and Public Debate(18). The NSU metric isolates these two types from each
other and, intuitively, places Public Debate(18) closest to various ‘uncontrolled interaction types’ such
as Meeting(16), Consultation(5), and Interview(9); the uni/bi-gram metrics, not surprisingly place the
two types among their closest neighbours.

Genre Nearest Neighbours Method Genre Nearest Neigbhours Method
17 16,3,1,20,[7,21,2],14,9,23,18 Unigram 18 16,1,[3,21],17,7,23,[2,20,9],14,[4,15] Unigram

16,3,1,21,7,20,[10,2],18,9 Bigram 16,7,1,21,[3,10],[6,4],23,[9,17],5 Bigram
3,19 NSU [23,5],[7,12,16],10,1,9,6,20,[15,4],8 NSU

Table 7: Nearest 9 neighbours for types concerning parliament

Complex subject matter structure: Sportslive Another problem for methods based on a simple char-
acterization of subject matter is a type like Sportslive(22) (commentary), which involves a main commen-
tator exchanging impressions on an ongoing sports event with an additional (expert/side) commentator.
This type has low but non-zero NSU frequency (Ack: 78, Repack: 34, ShortAns: 9, RepAffAns: 9,
Reject: 9, HelpReject: 9, BareModPh: 9, Conj+Frag: 9, Filler: 9) and essentially involves a repeated
question: what’s going on now? (along with issues raised by answers to the different tokens of this ques-
tion). The NSU-based method, as with the type Public Debate(18) discussed above, places Sportslive(22)
(commentary) closest to various ‘uncontrolled interaction types’; the uni/bi-gram-based methods do, on
the whole, well on this type too, locating it next to types such as Classroom(4) and (medical) Consulta-
tion(5). However, they also place it next to the non-interactive type Broadcast News(3):

Genre Nearest Neighbours Method
22 1,6,21,[5,10],4,[16,3] Unigram

1,21,[16,3,6],10,4,[5,9] Bigram
10,[15,4],[20,21],1,7,[23,16,5,8] NSU

Table 8: Nearest 6 neighbours for the Sportslive(22) (commentary) type

4The notation [a,b,. . . ] means that the types a,b,. . . all have the same distance from the given type.
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Types with similar subject matter: similarity among the lecture types The NSU-based metric cap-
tures the apparent generalization that (apart from lecture type Lecture Natural Science(13), which by
all methods seems to be somewhat distinct) all the lecture types, including Lecture Commerce(11), Lec-
ture Humanities Arts(12), Lecture Natural Science(13), Lecture Politics Law Education(14), and Lecture
Social Science(15), are close neighbours better than the uni/bi-gram-based metrics:

Genre Nearest Neighbours Method Genre Nearest Neigbhours Method
11 23,21,4,16,15,9 Unigram 14 1,[21,16],[3,23],[12,17],2,[15,9] Unigram

4,21,23,[10,16],9,[1,15] Bigram 21,1,16,10,3,[23,15] Bigram
20,12,[10,15],16,[18,5,23,9],7 NSU 21,[4,8],13,[15,2],6,20 NSU

12 15,1,23,21,[10,16],9 Unigram 15 21,1,12,[4,9],[16,23,5],6 Unigram
10,23,[21,15],1,16,[6,9] Bigram 21,5,[10,6,16],9,4,1 Bigram
[18,7,5],[1,23,16,10],20,9,[15,4,11],6 NSU [4,20],[23,6,7],[16,21,5,1],[8,12,10],18,11 NSU

13 4,21,15,23,1,16 Unigram
21,4,16,1,10,[23,15,6] Bigram
4,[8,21],6,16,[15,5,1,23,7],9 NSU

Table 9: Nearest 6 neighbours for lecture types
5 Discussion

Section 4 shows that for a variety of cases a metric based on NSU distributions imposes a more convinc-
ing topological structure on the class of conversational types than a metric based on uni/bi-grams.

This confirms our hypothesis from section 3 that this distribution constitutes an “interactional profile”
of a conversational type. It provides us with a potential operational criterion when encountering a novel
conversational domain—situating it within the class of conversational types can be achieved by sampling
its NSUs and evaluating the emergent distribution relative to existing NSU distributions.

This has a significant implication for existing models of conversational types. These place the burden
of variation among types in terms of subject matter and moves, while assuming that the conversational
principles (e.g., the potential for either a grounding move or a clarification move as a follow up to any
given move) are general. However, metrics based on such notions, as exemplified by uni/bi-gram-based
metrics, are intrinsically too coarse. The consequence is that the specification of conversational types
must also include the specification of distinct neighbourhoods, collections of similar types, governed
by conversational principles that apply specifically to them (e.g., one class of types enables clarification
interaction to be triggered at turn exchange junctures, whereas in others such a potential does not exist.).

6 Conclusions and Future Work

The notion of a conversational type (aka language game, speech/conversational genre) originates in
philosophy of language and pragmatics. It is one of the fundamental notions of dialogue, embodying
those aspects that serve to characterize domain specific aspects of interaction, both in terms of relevance
and choice of forms. There exist theoretical models of this notion, but attempts at global characterization
of the space of types and specifically defining (distance) metrics for the entire space has not, as far as we
are aware, been attempted before.

We use both uni/bi-gram-based metrics and a metric based on the distribution of non-sentential utter-
ances (NSUs). We argue for the superiority of metrics based on non-sentential utterance distributions,
though the uni/bi-gram-based metrics also yield plausible results.

Although we have related given ‘atomic’ types, based on the BNC taxonomy, our method does not
depend on this and we could in future work apply this approach to a corpus without predefining partitions.
We have used the BNC, given the wide range of types it contains. But it is of course important to
investigate such metrics using balanced corpora in other languages (e.g., the Swedish Gothenburg corpus
(Allwood, 1999) and the Polish National Corpus (Przepiórkowski et al., 2008).). We also plan to refine
the NSU-based metric to include additional interactional features such as disfluencies or laughter, which
vary significantly across conversational types (Hough et al., 2016).

From a theoretical point of view, we have argued that the results of our experiments force one to
rethink the notion of conversational type to incorporate aspects that go beyond subject matter and form,
by incorporating, for instance, parameters that relate to turn control and participant autonomy.
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Table 10: Nearest neighbours among BNC spoken genres using unigrams

Table 11: Nearest neighbours among BNC spoken genres using bigrams
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Table 12: Nearest neighbours among BNC spoken genres using NSUs

i me my myself we our won’t wouldn’t shan’t shouldn’t can’t cannot
ours ourselves you your yours yourself couldn’t mustn’t let’s that’s who’s what’s
yourselves he him his himself she here’s there’s when’s where’s why’s how’s
her hers herself it its itself a an the and but if
they them their theirs themselves what or because as until while of
which who whom this that these at by for with about against
those am is are was were between into through during before after
be been being have has had above below to from up down
having do does did doing would in out on off over under
should could ought i’m you’re he’s again further then once here there
she’s it’s we’re they’re i’ve you’ve when where why how all any
we’ve they’ve i’d you’d he’d she’d both each few more most other
we’d they’d i’ll you’ll he’ll she’ll some such no nor not only
we’ll they’ll isn’t aren’t wasn’t weren’t own same so than too very
hasn’t haven’t hadn’t doesn’t don’t didn’t

Table 13: Stop words used in the experiments
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Abstract
With the move towards more natural human-machine interfaces, recent spoken dialog systems
are expected to understand all utterances that are associated with a specific semantic meaning.
However, hard criteria which would define this set of utterances are lacking. In this paper, we
address this point by contributing a set of language-independent criteria which can be used for
quantifying the degree of natural language variability in a data set. We validate the suitability of
the criteria with a real-world data set from the automotive domain.

1 Introduction

Recent R&D in spoken dialog systems (SDS) aims at achieving more intuitive and human-like user
experience. New systems are now expected to understand a natural input style. This development can be
observed both in academia and in the commerical sector (see McTear et al. (2016) for an overview).

A natural way of speaking presupposes that as system input, all natural language expressions which are
associated with the specific semantic meaning of the user intent are allowed, such that users no longer
have to speak predefined commands. With this approach, the amount of possible user input becomes
possibly indefinite. This is a challenge for the spoken language understanding (SLU) module of SDS
that has the task to map the user’s spoken utterance to a representation of the meaning of that utterance,
as described, e.g., by Henderson and Jurcicek (2012). In order to meet the expectation of a natural input,
developers have turned to statistical data-driven models which allow systems to deal also with user input
that is previously unseen (McTear et al., 2016; Bellegarda and Monz, 2016). The results of such models
strongly depend on the quality of training and test data, i.e. the kind of utterances the data sets are
composed of. As pointed out by Henderson and Jurcicek (2012), the data needs to cover both the range
of variability in the semantics and the range of variability in the natural language expressions that convey
that semantics.

However, there is a lack of works addressing the question what kind of utterances actually constitute
the range of natural language expressions for a given semantic meaning. In fact, it currently seems to
depend on the developers’ opinions which kind of utterances SLU modules must be able to understand.
The result is that evaluation scores of SLU performances are not meaningful and not comparable if they
depend on subjective test data.

Motivated by this situation, we make two contributions in this paper. First, we define a set of language-
independent criteria which allow for quantifying to what extent natural language variability is covered
by a data set. The criteria can be used to evaluate SDS with regard to their capability of understanding
the range of variability that natural language offers for task-oriented requests. This evaluation in turn
can be used to model conversational human-machine interfaces accordingly. The criteria we propose
are derived from existing cross-lingual works and from a study we conducted. Second, we contribute a
method to check test sets with regard to their distribution of realistic utterances for a specific semantic
meaning. In order to achieve this, we describe the linguistic elements that correspond with the criteria
by means of a decision tree and we analyze the distribution of the criteria within our study data. This
decision tree can also serve as a guideline for annotators.

The remainder of the paper is structured as follows. In Section 2 we review previous literature which
aims to characterize naturally spoken user input. Next, in Section 3 we introduce the data our results are
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based on. In Section 4 we first explain the theoretical considerations and second, the findings of existing
works. In Section 5 we present the patterns that occur in our data set. Their distribution is presented in
Section 6. Section 7 serves as the coda of the article.

2 Related Work

Within the research field of conversational human-machine interfaces, many works make use of dialog
act categorization in order to describe phenomena of human conversation behavior, e.g., Pareti and Lando
(2018). Some authors focus on specific domains or situations, e.g., Sinclair et al. (2017), and others take
multi-party conversation into account, e.g., Marzuki et al. (2017). However, works that quantify the
variability of how certain dialog acts can be realized, are lacking.

Nevertheless, there are several approaches that try to characterize the different kinds of linguistic
elements that speakers might use to express a specific semantic meaning. These can be split into two
groups which are briefly described in the following.

One group describes spoken user input by means of differentiating between a command-like and a
natural way of speaking (Hofmann et al., 2012; Pang and Kumar, 2011; Berg, 2012; White et al., 2014).
Commands are characterized by an incomplete sentence structure. A natural way of speaking is equated
with human-directed speech which consists of full sentences, filler words and civility (Hofmann et al.,
2012; Berg, 2012). The linguistic strategies that indicate civility are not explained further.

The second group of works linguistically investigates spoken user input. Large et al. (2017), e.g.,
describe different linguistic phenomena that occur when drivers interact with a natural language digital
assistant. They identify back-channelling strategies, fillers and hesitation, vague language, ways of mit-
igating requests, politeness and praise. The range of variability within these phenomena is not explored
further. Winter et al. (2010) examine their study data with regard to the degree of context information
the utterances contain. The authors do not take other linguistic phenomena into account. Braunger et al.
(2016) and Braunger et al. (2017) define sentence structures such as imperative, declarative or infinitive
sentences. Braunger et al. (2017) additionally characterize freely spoken input with the help of measures
commonly used in order to describe and compare corpora, e.g., type-token ratio, content-function word
ratio, syntactic complexity, POS tag frequencies.

Most of the few characterization approaches applied by the literature so far are either too abstract,
such as type-token ratio, or too specific, such as the sentence structures which are only related to a
certain language. In addition, recent works do not combine different criteria to obtain a unified and
quantifiable scheme which is suitable for system design and evaluation.

Therefore, we choose a language-independent approach which combines different linguistic phenom-
ena to quantify the variability of expressing task-oriented requests. In advance, we explain the theoretical
considerations that lead to the criteria we propose. Finally, we show the distribution of those criteria for
a data set consisting of natural language requests directed at a human interlocutor. The data is introduced
in the following section.

3 Data Set

Since interpersonal interaction is the most natural way of interaction, it is often taken as a baseline for
the development of a natural and intuitive human-machine communication, cf. Bonin et al. (2015).
Therefore, our work relies on 540 German requests directed at a human interlocutor. The utterances are
acquired by a previous study, see Braunger et al. (2017). This study has aimed to examine how users
would voice-control specific functions of an in-vehicle infotainment system in a natural and intuitive
way. The experimental setup is briefly described in the following.

The functions the participants were to operate and the information they were to request were described
graphically. This method was chosen in order to not bias the participants by putting words into their
mouths. The pictures they were shown describe the following twelve tasks.
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1. Listen to radio station SWR3

2. Play Michael Jackson Greatest Hits

3. Navigate to Stieglitzweg 23 in Berlin

4. Call Barack Obama on his mobile phone

5. Set temperature to 23 degrees

6. Send a text message to brother

7. Weather in Berlin today

8. Date of the European football championship fi-
nal game

9. Population of Berlin

10. Score FC Bayern against VfB Stuttgart

11. Cinema program in Berlin today

12. Next Shell gas station

For our work, we divide the tasks into six action requests (1-6) and six information seeking requests
(7-12). The study was split into two sessions. For every scenario described here, the participants’ task
was: How would you communicate this request to your passenger and how would you communicate
this request to an in-car SDS? As for the passenger session, the participants were told that the passenger
provided the information requested or activated the appropriate function with help of a tablet. Each
participant took part in both sessions and solved all tasks. The tasks and the sessions were randomized.
In this paper, we rely on the passenger session utterances.

In total, 45 subjects participated in the study. 46% of them were female and 54% were male. The
average age was 39.5 years with a standard deviation of 13.5. 55.6% were aged between 20 and 39
years, 26.6% were 40 to 59 years old and 17.8% were older than 60 years.

The data was manually transcribed in such a way that the transcription exactly matched the spoken
utterance. Afterwards, the data was annotated manually.

4 Towards Categorizing Natural Language Requests

In this paper, we aim to propose criteria which are applicable in different languages. The theoretical
considerations of such a speech act driven approach are described in Section 4.1. Afterwards, in Section
4.2, we present the findings of existing works in that field.

4.1 Theoretical Considerations

Natural language offers various possibilities in order to verbalize user intents. As an example, the
following utterances show the possibilities of expressing that someone has to turn the music down
(borrowed from Meibauer et al. (2007)).

1. Turn the music down!

2. Could you please turn the music down?

3. How about turning the music down a bit?

4. The music is too loud!

According to the politeness theory of Brown et al. (1987) it depends on politeness strategies
which option one decides for. Their theory is based on the assumption that everybody has a face.
The face can be considered as the positive public image one seeks to establish in social interactions
(Goffman, 1955). This consists of two components: on the one hand there is the desire that the
self-image be appreciated and approved of (so called positive face) (cf. Brown et al. (1987)); on the
other hand there is the need for freedom of action (so called negative face). Since the user intents that
we are interested in aim to get the hearer (the system) to do something, those requests challenge the face
the interlocutor wants to have. Those requests are by definition so called face-threatening acts. Hence,
politeness is defined as the strategy to save faces. According to Brown et al. (1987), speakers either
decide for a strategy that saves the positive or the negative face.

4.2 Pragmatic Scheme of Request Realizations

Based on these considerations Blum-Kulka et al. (1989) define cross-lingual1 coding schemes for the
realization of requests. Their proposed schemes are adjusted by Siebold (2010) for a contrastive analysis
of Spanish and German requests. The findings of both works are considered in the following.

1The coding scheme is based on data of eight languages or varieties: Australian English, American English, British English,
Canadian French, Danish, German, Hebrew, Russian.
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Strategy Example

1. Hedged
performative

I would like you to give
your lecture a week
earlier.

2. Explicit
performative

I ask you to clean up this
mess.

3. Scope stating I really wish you’d stop
bothering me.

4. Strong hint You’ve left this kitchen in
a right mess.

Table 1: Strategy dimension, cf. Blum-Kulka et al.
(1989).

Perspective Example

1. Hearer oriented Could you tidy up the
kitchen soon?

2. Speaker oriented Do you think I could
borrow your notes?

3. Speaker and
hearer oriented

So, could we please
clean up?

4. Impersonal So it might be not be a
bad idea to get it cleaned
up.

Table 2: Perspective dimension, cf. Blum-Kulka et
al. (1989).

The coding scheme of Blum-Kulka et al. (1989) is mainly divided into address term(s), head act and
adjunct(s) to head act. As an example, the following utterance can be divided into three segments, cf.
Blum-Kulka et al. (1989).

Danny, could you lend me $100 for a week. I’ve run into problems with the rent for my apartment.

a) Danny: Address term
b) could you lend me $100 for a week: Head act
c) I’ve run into problems with the rent for my apartment: Adjunct

Address terms are optional elements previous to the head act. Another example for an address term is
the attention getter ”Pardon me”. The head act is the nucleus of the speech act, i.e. that part which serves
to realize the intent. Adjuncts are optional supplementary elements such as grounders which indicate the
reasons for the request.

Within the head act part Blum-Kulka et al. (1989) identify nine strategies of such request realizations,
ranging from a direct, explicit level over a conventionally indirect level to a non-conventional indirect
level. Table 1 exemplarily shows some of the strategies that are mentioned by Blum-Kulka et al. (1989).

In order to mitigate a face-threatening act Blum-Kulka et al. (1989) and Siebold (2010) additionally
identify syntactic as well as lexical modifications such as understaters that minimize parts of the proposi-
tion (e.g., a bit), or intensifiers (e.g., Clean up this mess, it’s disgusting). These modifications are internal
since they operate within the head act.

Furthermore, speakers have the chance to avoid naming the addressee in order to soften the impact of
the imposition, cf. Blum-Kulka et al. (1989). They distinguish between four request perspectives. The
patterns for the perspective dimension and examples are given in Table 2.

To sum up, Blum-Kulka et al. (1989) propose five dimensions: Address term, strategy, modification,
perspective, adjunct. Each dimension consists of different patterns and the patterns are realized by
language-specific elements.

Based on these considerations we investigate our data set in terms of the patterns the participants used
for expressing task-oriented requests whereby we focus on the dimensions within the head act. The
results are presented in the next sections.

5 Criteria for Natural Language Variability in Data for SDS

In this section, we propose a set of criteria which allow to quantify to what extent data sets cover the
variability of natural language expressions. The criteria are derived from the scheme previously described
and from the findings of our study.

Within our work, we mainly focus on the variation patterns of the head act. However, we want to men-
tion that our data includes many uses of address terms such as the attention getters Ähm, Ach, Mensch,
Sag mal (eng. ”Um, Oh, Gosh, Tell me”) (28.7%). Adjuncts do not occur within our data set.
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Head act

Strategy Modification Perspective

Syntactic Lexical

1. Mood derivable
Write a text message to my
brother.

1. Subjunctive
Could you...

1. Politeness marker
please
(bitte)

1. Hearer oriented
you

2. Direct question
Where is the next Shell gas
station?

2. Negation
Wouldn’t you...

2. Understater
a bit
(einmal, mal,
schnell, kurz)

2. Speaker oriented
I

3. Wish
I would like to have 23
degrees.

3. Past tense
I wanted to ask...

3. Downtoner
perhaps
(vielleicht)

3. Speaker and
hearer oriented
we

4. Reference to preparatory
conditions (RPC)
Could you call Barack
Obama?

4. Impersonal

5. Locution derivable
We’ll have to write a text
message to my brother.
6. Suggestion
How about calling Barack
Obama on his mobile
phone?
7. Keywords
Radio SWR3.
8. Hint
I need some fuel.

Table 3: Criteria for natural language variability in data for task-oriented SDS.

Out of the nine strategies defined by Blum-Kulka et al. (1989) five strategies appear in our data.
The four strategies which do not occur are described in Table 1. In addition, we identify two strategies
defined by Siebold (2010) (wish and direct question) and one strategy that has not been mentioned so far
(keywords). Table 3 shows the strategies that appear in our data.

The first strategy, mood derivable, refers to German and English imperative constructions. The gram-
matical mood of the verb marks the utterance as a request. With the second strategy, direct question,
speakers pose direct questions, as the name already says. The third strategy, wish, expresses the speaker’s
desire. Utterances of the fourth strategy, reference to preparatory conditions (RPC), contain reference
to preparatory conditions, i.e. the ability or willingness. With the fifth strategy, locution derivable, it is
directly derivable from the semantic meaning of the locution what has to be done. Utterances of the sixth
strategy, suggestion, contain a suggestion to do something. The seventh strategy, keywords, consists of
keywords that represent the minimal information needed and does not contain a finite verb. Utterances
of the eighth strategy, hint, contain reference to elements needed for the implementation of the act.

The decision tree in Figure 1 presents the distinguishing features of the strategies based on what our
data analysis has revealed. An implementation of the decision tree helps to automatically categorize most
of the utterances in a German data set. The suitability of this method has been validated with our data.

The modifications we detect in our data can be divided into lexical elements and syntactic variations,
see Table 3. The modifications the participants used are also mentioned by Siebold (2010). The syntactic
modifications that occur include subjunctive, negation and past tense and the lexical elements include

171



Figure 1: Decision tree for strategy categorization in German.

Figure 2: Strategies distribution.

politeness markers, understaters and downtoners. There is no use of so called upgraders that increase
the compelling force of the speech act as reported by Blum-Kulka et al. (1989). The elements with which
to detect the lexical modification criteria are given in Table 3 enclosed in brackets.

The analysis of the request perspectives reveals that all perspectives mentioned by Blum-Kulka et al.
(1989) appear in our data.

We have shown that task-oriented requests are mainly realized in eight different ways. The study par-
ticipants often mitigated such a face-threatening act by making use of six different modification patterns
- lexical and syntactic ones. In addition, the study shows that people make use of all four perspectives
when expressing a request. We conclude that the proposed criteria (cf. Table 3) are the most important
for task-oriented requests towards SDS since they occurred within our actual utterances. Data sets that
conversational task-oriented SDS have to deal with should at least cover these patterns.

6 Criteria Distribution

In this section, we analyze the frequency of occurrence of the criteria.
Figure 2 shows the distribution of strategies the participants used when speaking to the passenger.

Since the tasks the participants had to fulfill consist of two main kinds of tasks we show the distribution
broken down by information seeking tasks and action request tasks.

Figure 2 shows that most of the participants posed direct questions when they seek for information
(45.6%). Many speakers also used the strategy with reference to preparatory conditions (29.3%). A few
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Figure 3: Modifications distribution. Figure 4: Perspectives distribution.

information seeking requests (2.6%) consist of a sequence of keywords. This might be an effect of being
biased by the system interaction session that preceded the passenger session for half of the participants.
Only 2.2% of the information seeking utterances consist of hints and 1.1% are of the locution strategy.

When requesting the passenger to perform an action, the participants mostly refer to preparatory con-
ditions (31.9%). Expressing a desire is ranked second with over 15% and an imperative occurred in
20.7% of the action requests. 3.5% of the action requests are suggestions, 1.9% hints and 1.5% are
classified as locution strategy.

We additionally found that 3.9% of all utterances consist of two strategies. The distribution between
information seeking requests and action requests is nearly balanced. The first strategy of these utterances
mostly expresses a desire or poses a direct question and the second strategy mostly refers to preparatory
conditions or contains an imperative. An example is given in the follwing.

Wie hat eigentlich der VfB gespielt? Kannst du das mal gucken?
”How was the game of VfB Stuttgart? Could you check that?”

The first part in the example is a direct question and the second part contains reference to preparatory
conditions.

The presented strategies can be internally modified by lexical and syntactic elements. The elements
we identified are part of Table 3. The occurrence of these modifications is shown in Figure 3. Nearly one
third of the utterances contain the politeness marker please. The politeness marker occured significantly
(p<0.05) more often with action requests. Understaters occurred also very often - 27.9% of all utter-
ances contain understaters. The most frequently used understater was the German mal. We found more
understaters within the action requests (31.9%) than within the information seeking requests (24.1%).
Downtoners, such as vielleicht (eng. ”perhaps”), occurred only a few times. A subjunctive construction
was also often used (23.7% of all utterances) but was less used with information seeking requests (only
18.5%) than with action requests (28.9%). Past tense was used two times. Negation was only used once,
see the following utterance.

Kannst du nicht mal das Album rein tun von Michael Jackson?
”Couldn’t you play the album of Michael Jackson?”

Sometimes, lexical elements are combined within an utterance. 8% of the human-directed utterances
contain the politeness marker please in combination with an understater. In addition, we identified a
combination of understater and downtoner, and downtoner and politeness marker each two times. 13%
of the utterances contain a lexical element and a subjunctive. 44% of the utterances do not contain any
modification elements.

Figure 4 displays the perspectives distribution. Most of the utterances are of a hearer oriented perspec-
tive (50.6%). 28% of the utterances are impersonal, i.e. there is no perspective explicitly marked. About
15% of the utterances are speaker oriented. Only 5% of the utterances tried to create a team feeling us-
ing a speaker and hearer oriented perspective. There are quite striking differences between information
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Criteria combination Occurrence

Direct question 44.4%
RPC - Understater 12.2%
RPC 7.0%
Wish 4.8%
RPC - Subjunctive - Understater 4.4%

Table 4: Combinations - Information seeking tasks.

Criteria combination Occurrence

Wish 10.7%
RPC - Subjunctive - Politeness 7.8%
Wish - Subjunctive 5.6%
Imperative 5.2%
RPC - Politeness 4.8%

Table 5: Combinations - Action request tasks.

seeking requests and action requests. As for action requests, speakers tend to prefer a hearer oriented
perspective (59.6%) whereas with information seeking requests they prefer an impersonal perspective
(47%). A speaker oriented perspective occurred much more frequently with action requests (24.1%)
than with information seeking requests (8.9%).

The perspective and the strategy a speaker chooses to realize a request are strongly interdepended. An
imperative strategy, e.g., can not be realized without addressing the hearer. Also, a wish, e.g., is always
formulated either in a speaker’s or speaker and hearer’s point of view. Therefore, the perspective dimen-
sion is disregarded in the analysis of the criteria combinations. Table 4 shows the five most frequent
combinations for both, information seeking requests and action requests. The five most frequent combi-
nation patterns over all tasks represent 41.1% of the utterances. The most frequent combination pattern
within the information seeking requests is the direct question strategy without any modification. This is
followed by the RPC strategy combined with an understater. 7% of the information seeking requests are
of an RPC strategy and 4.8% express wishes without any modification. RPC, subjunctive and understater
is the fifth frequent combination pattern.

The most frequent combination pattern within the action request tasks was the wish strategy without
any mitigating element (10.7%). 7.8% of the action requests are realized by an RPC strategy combined
with a subjunctive and a politeness marker. This pattern is followed by the combination of the wish
strategy and a subjunctive, then by an imperative and fifth, the combination of RPC and politeness
marker.

7 Conclusion

In this paper, we have contributed criteria which can be used for quantifying the degree of natural lan-
guage variability in a data set for SDS.

The criteria we have proposed are based on an existing speech act driven, language independent ap-
proach. The criteria we derived from the approach are composed of a strategy dimension, modification
dimension and perspective dimension. We have presented the kind of strategies, modifications and per-
spectives our study participants used. The analysis of our study data has revealed that the most frequent
strategies are direct questions, mood derivable, keywords, wish and reference to preparatory conditions.
These strategies are modified by politeness marker, downtoners, understaters, subjunctive, past tense and
negation. The perspectives we have identified include a hearer oriented, a speaker oriented, a hearer and
speaker oriented, and an impersonal perspective.

We suggest these patterns to serve as criteria for the variability of natural language expressions which
a task-oriented SDS must be able to understand. With the help of the criteria, their distinguishing features
and the reference distribution within a real-world data set, developers are able to check the completeness
as well as the representativeness of data sets for task-oriented SDS.

Our further goal is to take other languages into account. We have already collected a large amount
of utterances for 150 task-oriented requests in twelve languages, european and non-european. We will
examine the data with regard to the proposed criteria. This will be subject of future work.
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Abstract

In this paper, we present the aim and architecture of our dialogue modeling project. We focus on
producing logical representations of questions and answers in dialogue. Our view is to narrow the
problem of identifying incomprehension in dialogue to the one of finding logical incoherences in
speech acts combinations.

1 Introduction

One of the ways to identify, as a human being, incomprehension in dialogue is to see it as a moment
when speech acts follow each other in a usual way but their combination doesn’t make any sense.

Example 1
A1 Do you want coffee or tea?
B2 Yes

In Example 1, A1 is a question and B2 an assertion that could be an answer to A1, but here doesn’t
fit. B2 is in most cases followed by a clarification move A3 such as ‘So you want coffee?’. The final
aim of our project is to be able to quantify this type of phenomena in dialogue. We want to automatically
identify moments when speakers don’t understand each other throughout a conversation. Among possible
applications of our study, one can think in particular about chatbot programming, as our method would
allow to generate more fluid automatic answers. When it comes to human-human interaction, we envision
further study of specific human dialogues such as ones involving children or psychiatry patients. More
generally, incomprehension points in dialogues are singularities where the most complicated human
interactions happen, so being able to identify them can lead to improvement of algorithms such as neural
networks based ones by focusing the training on these difficult cases.

The following presents our ongoing project. We aim to build a compositional logical model for dia-
logue, in order to be able to quantify the amount of logical inconsistencies inside a dialogue. Our first
approach to dialogue is through question and answer relationship; we can consider that if an answer
does not correspond to the question that has been asked, then there has been an incomprehension phe-
nomenon. Yet, it is quite difficult to define the non-correspondence of an answer to a question, especially
in an automated way; where does the answer start? what is its span? We chose in our project to bypass
those difficulties by restricting the definition of incomprehension to one of its expressions: we only con-
sider here logical incoherence produced by the combination of logical representations of speech acts. Of
course, further work on this subject will have to hugely enlarge this definition.

We present the main architecture of our project along with questions and answers mechanisms. We fol-
low by some data consideration by presenting the corpora we work with; finally, we propose to compare
our work with other dialogue models.

2 Architecture

The following section first introduces the context and current status of our study, and then presents
the focus of our future work. We are currently able to produce a logical representation of sentences
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Figure 1: Architecture of the process. The upper process has been implemented, our current work focuses
on the part inside the dashed-line box.

in natural language following Type Theoretical Dynamic Logic (TTDL) model (de Groote, 2006) and
using the Abstract Categorial Grammar toolkit (Pogodalla, 2016); see upper process in Figure 1. Our
current goal is to be able to do the same with speech acts. The parsing in the lower process is similar to
upper one, as methods developed for general discourse can be applied to dialogue here. Yet, producing
logical representations for speech acts is not as straightforward (see Section 3 for further discussion). For
now, we simplify the problem by subdivising dialogues in different parts called negotiation phases. The
result intuitively corresponds to a division of the dialogue in self-contained sub-dialogues according to
the discussed topic. The core of our current work lies in the logical modeling of questions and answers.

3 Questions and Answers in Dialogue

The question-answer relationship is proper to dialogue. Our goal is to produce a logical model for
questions and corresponding answers in a compositional way. Several different approaches to logical
discourse modeling can be accounted for, starting from Montague (1973) and ending, in our case, with
TTDL. Those models are rooted in classical logic, therefore assigning truth values to all sentences. It is
thus very difficult to model questions using these methods: ‘I want white tea’ might be true or false, but
what to say about ‘What type of tea do you want?’?

Questions have then been treated extensively, see in particular Ginzburg and Sag (2000) overview.
Among logical models proposed to account for questions, Ciardelli et al. (2012) presents a new, Inquisi-
tive Logic that is able to model interrogative exclusive ‘or’ in questions such as Example 2.

Example 2
A1 Do you want sugar or stevia in your coffee?
B2 Neither.
B′

2 *Both.

We suppose here that the answer B′
2 is not acceptable, whereas B2 is. Inquisitive Logic gives us

a handy framework to control how well answers fit the questions. Yet, for now, no systematic way of
representing natural language utterances in terms of Inquisitive Logic has been provided. Moreover, as
Inquisitive Logic and in particular Inquisitive Semantics has not been particularly developed for Natural
Language usage, it is not inherently compositional. Compositionality is central to our project as we want
to be able to combine (compose) speech acts logical representations. Therefore, one of the goals of our
project is to implement a compositional mapping from Natural Language to Inquisitive Logic.

4 Corpora

We are currently working with a toy handmade corpus in English and French, the Unicorn Corpus (UniC).
UniC is composed of 18 sentences in each langage, 9 questions (1 polar + 8, one per wh-word) and 9
corresponding assertions (see Example 3 and Appendices).
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Example 3

Where-question Where is the unicorn?
Où est la licorne ?

Where-answer The unicorn is at home.
La licorne est à la maison.

We use UniC in order to elaborate our theoretical dialogue model. Our mapping is currently being tested
on the toy corpus. We intend to run it on a corpus of simple non-controlled human dialogues. To this
end, we are currently collecting real-life dialogues among french-speaking players of Settlers of Catan,
called Dialogues in Games (DinG). Settlers of Catan is a board game where bargaining over ressources
is a major part of the gameplay. Therefore, dialogues during each game are mostly centred on the game,
with a small variety of topics. Additionally, studies of online strategic conversations in Settlers of Catan
have already been conducted by Afantenos et al. (2015) and it is interesting to compare the observed
phenomena.

Testing our model on DinG will allow us to validate structures created for UniC, observe new
incomprehension-related phenomena and integrate them into the model. Furthermore, our project can
be extended with developments for French grammars and lexicons (Guillaume, 2018).

5 Comparison with Ongoing Projects

When DinG will be constituted, we would like to compare our approach with the one of KoS (see (Aloni
and Dekker, 2016) for an extensive presentation), based on Type Theory with Records (Cooper, 2008) and
Questions Under Discussion (Ginzburg, 2012). Type Theory with Records (TTR) allows to keep track
of the dialogue structure. Using a game board representation, TTR grants a visual way of following the
dialogue moves of the participants. However, as TTR is a concept representation (Cooper and Ginzburg,
2015), it directly comes with a higher level of representation than the one we want to work at for now.
TTR allocates types to situations as abstractions independent from the descriptions’ formulations.

Questions Under Discussion (QUD), Ginzburg (2012), makes direct use of linguistic formulations.
QUD brings us insight in the linguistic articulation of mechanisms of question and answer combination.
In particular, QUD offers a way to differentiate questions that are currently being discussed, at some
point in the dialogue, from those that have been introduced before.

6 Conclusion

We focus our work on the question-answer relationship in dialogue as we think it will give us an entering
point for our studies on incomprehension in dialogue. In the previous sections, we presented the core of
our project: we work on incomprehension in dialogue towards a method that will allow us to quantify this
type of phenomena in conversations. We articulate several logical frameworks in order to fit our task, and
we test our models on different corpora. We are now entering the dashed box on Figure 1, and in order
to test our model on real-life data, we started collecting the DinG corpus. Working on the DinG corpus
will allow us not only to test our model but also to compare our observations with the results obtained by
Afantenos et al. (2015). While working on the integration of Inquisitive Logic inside TTDL, we are also
considering improving the process of subdivision of the dialogues by adding Dynamic Epistemic Logic
mechanisms (Van Ditmarsch et al., 2007).
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Appendices

WH-WORD QUESTION (ENGLISH) ASSERTION (ENGLISH)
∅ Is Charly a unicorn? Charly is a unicorn.
What What colour is the unicorn? The unicorn is blue.
When When will the unicorn grow? The unicorn will grow soon.
Where Where is the unicorn? The unicorn is at home.
Who Who is Charly? Charly is a unicorn.
Whom Whom is the unicorn talking to? The unicorn is talking to Charly.
Which Which type of unicorn is Charly? Charly is a blue unicorn.
Whose Whose unicorn is Charly? Charly is a free unicorn.
Why Why is Charly a unicorn? Because unicorns are great.
How How big is the unicorn? The unicorn is small?

Table 1: UniC – English

WH-WORD (ENGLISH) QUESTION (FRENCH) ASSERTION (FRENCH)
∅ Est-ce que Charlie est une licorne ? Charlie est une licorne.
What De quelle couleur est la licorne ? La licorne est bleue.
When Quand la licorne grandira-t-elle ? La licorne grandira bientôt.
Where Où est la licorne ? La licorne est à la maison.
Who Qui est Charlie ? Charlie est une licorne.
Whom À qui parle la licorne ? La licorne parle à Charlie.
Which Quel type de licorne est Charlie ? Charlie est une licorne bleue.
Whose À qui est cette licorne ? Charlie est une licorne libre.
Why Pourquoi Charlie est une licorne ? Parce que les licornes sont

géniales.
How De quelle taille est la licorne ? La licorne est petite.

Table 2: UniC – French
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In recent years we have seen an increased interest in combining sociolinguistic theory and method
with insights and techniques from formal pragmatics and dialogue modelling. This is characteristic of
the third wave of sociolinguistics, as discussed in Eckert (2012), where focus is not only on variation in
a population, but also on social meaning, that is how sociolinguistic variation interacts with individual
language users’ creation and projection of identity in particular situations. One example of this line
of research is Burnett’s (fthc) work on social meaning using game theory, which relates personae to
sociophonetic variation.

The method proposed by Burnett provides a way to account for choice in non-deterministic dialogue
games, as demonstrated in Breitholtz and Cooper (2018) where games are used to predict which type of
argument an agent involved in interaction would choose in a particular context.

In this paper we suggest that a persona can be modelled in terms of the topoi (Ducrot, 1988) associated
with that persona. This enables us to extend the account in Breitholtz and Cooper (2018) so that the use or
acceptance of an argument underpinned by a particular topos in argumentative dialogue affects not only
the likelihood of similar arguments being employed or accepted in the continuation of the discourse,
but also the probability of dialogue participants projecting a particular persona. The perceived persona
in turn affects the perceived probability of a language user employing or accepting/rejecting topoi that
are not necessarily related to the original discussion. Connecting personae and topoi also allows us to
provide an extended account of dogwhistles (Henderson and McCready, 2018) that ties in with existing
work in formal pragmatics and rhetoric drawing on topoi.

The idea of coordination of linguistic action as a kind of game is well established in the philosophy
of language and psycholinguistics (Austin, 1962; Lewis, 1969; Clark, 1996). Burnett (fthc) employs
signalling games (Lewis, 1969) to model how use of one of two speech varieties varies over contexts,
depending on the persona the speaker wishes to project. On Burnett’s account, contextually relevant
properties make up personae which may be more or less advantageous for a speaker to project in a par-
ticular situation. For example, the use of the variant -in’ of the verbal -ING morpheme in English is
associated with friendliness, but also with incompetence. The allomorph -ing, on the other hand, is as-
sociated with competence, but also with aloofness. Combinations of these properties make up personae.
The speaker chooses a message (in this case a variant of -ING) in order to increase the likelihood that the
listener will associate the speaker with a particular persona.

Burnett’s model provides a mechanism for deciding which strategy to choose in a number of dialogue
situations where several strategies are possible. This technique may be employed in any kind of non-
deterministic update of a discourse model. We suggest combining this kind of game with interaction
games in TTR, a type theory with records (Cooper, 2014; Breitholtz, 2014; Cooper, in prep). Thus, For
each non-deterministic transition in a TTR game there is a signalling game in the style of Burnett to
help you make the choice. That is, if you have more than one update function defined for the current
state of the interaction game, you need a signalling game to choose between them. The probabilities
associated with the different options are computed by a game referring to the mental states of the speaker
and addressee.

When arguing in relation to some goal, a speaker presents arguments. These arguments are usually
enthymematic, that is, they rely on the addressee to supply additional information. Enthymemes are
underpinned by topoi, commonly accepted ways of reasoning. For example, if a speaker suggests a
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restaurant she might also supply a reason for suggesting it that ties in with topoi acknowledged and
accepted by the addressee. When choosing what topos to base her argument on, the speaker estimates
the attitudes of the addressee. This involves, among other things, estimating prior likelihood of the
addressee being convinced by arguments drawing on that topos.

We think of a persona as a collection of topoi intuitively associated with a certain type of person
such as a “hippie radical” or an “investment banker”. We then calculate the estimated utility of using
a particular topos as underpinning for an enthymematic argument on the speaker’s perception of the
audience’s persona (that is, whether it includes the topos or not).

Henderson and McCready (2018) draw on Burnett’s account of personae to model dogwhistles, words
or phrases that carries one meaning available to all participants of the target group, and an additional
social meaning which is only available to a subgroup. Dogwhistles are often used in political discourse
to communicate a controversial message which is well liked by a part of the audience but which does
not appeal to the majority of the target group. For example, if someone is an evangelical Christian,
they might associate a word such as miracle with christianity, and thus respond positively to it, while a
non-religious person might not think of this word as religious and thus not react negatively to it.

On Henderson and McCready’s account personae are associated with properties which decide to what
degree a dogwhistle will be recognised by someone projecting a particular persona. If we instead think
of personae as associated with topoi, we explain directly why different members of the audience of an
utterance may draw different conclusions on the basis of that utterance.
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Principles In formal semantics the meaning of a sentence is usually defined as the
situations in which the sentence is true and usually formalised with possible worlds
semantics. Let us twist this classical view into a dialogical one:

The meaning of a sentence A asserted by speaker P is defined as the set of all possible
justifications of A, which are argumentative dialogues starting with A won by speaker
P.

where:
An argumentative dialogue is a sequence of what we call utterances, namely asser-
tions (!-mode prefixed sentences) or as questions (?-mode prefixed sentences). More
precisely an argumentative dialogue for a sentence A is a finite alternate sequence
SO =!A,S1, . . .SN , where even utterances (including the initial utterance !A that is the
assertion of the initial sentence) are told by the proponent (P) and odd utterances are
told by the opponent (O).

There are answering rules often referred to as attack and defence rules defining
how O (resp. P) may answer an utterance U2p by P (resp. an utterance U2p+1 by O)
according to the mode, assertion or question, and the logical structure of the answered
utterance.

An argumentative dialogue is won by P if and only it the last utterance is an asser-
tion made by P, in which all question asked by O have been successfully answered by
P, and O cannot reply anymore according to the answering rules. The argumentative
dialogue is won by O otherwise.

Readers accustomed with dialogical logic [6] will recognise that our informal defi-
nition has a dialogical logic flavour. Here are two examples of answering rules:

C: Conditional Rule When a conditional (if A then B) is asserted by a speaker the
other one questions it by asserting A and asking for a justification of B. In other
words ?(if A then B) is the same as !A, ?B.

At: Atomic Rule P may affirm an atomic proposition q only if q was already affirmed
by O earlier in the dialogue.

(every logical connective has answering rules, they are not included for lack of space)

Argumentative dialogues can be recursively enumerated. Indeed, argumentative
dialogues are among the alternate sequences of sentences (which can be enumerated),
and argumentative dialogues are the alternate sequences matching the answering rules.

Observe that such a view of meaning is internal to linguistic activity: both sentences
and dialogues are natural language objects.

1
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Here is an example of an argumentative dialogue:

0. P: ! (S1 → S2)→ (S2 → S3 → (S1 → S3))

1. O: ! S1 → S2, ? S2 → S3 → (S1 → S3)

2. P: ! S2 → S3 → (S1 → S3)

3. O: ! S2 → S3, ? S1 → S3

4. P: ! S1 → S3
where:

S1: John kills Mary,.
S2: John will go to jail.
S3: John will pay for his crime.

5. O: ! S1, S3

6. P: ! S1, ?S2

7. O: ! S2

8. P: ! S2, ?S3

9. O: !S3

10. P: !S3

This argumentative dialogue is won by P.

Formalisation and computability Could this view be formalised and implemented?
Are there lexicons, grammars and algorithms computing the argumentative dialogues
associated with a sentence? As usual in formal and computational linguistics, feasi-
bility depends on knowledge representation and existing linguistic resources, hence on
the context. Below are two extreme cases:

When the considered language fragment is natural logic [10] the correctness of an ar-
gumentative dialogue is easily checked, and it is even possible to effectively compute
all the argumentative dialogues starting with a given sentence S; this set is, according
to the view of the present paper, the semantics of the sentence. Indeed, in natural logic,
sentences can be mapped, automatically and unambiguously, to formulas of a decidable
fragment of (an extension of) first order logic (similar to description logic). Natural
logic also provides completely formalised answering rules. Hence in natural logic, the
argumentative dialogues starting with A and won by P correspond to the dialogues of
dialogical logic [6] starting with A, and they are easily computed. A difference is that
the ultimate defences of P may consist in axioms which are hitherto unknown — they
are learnt that way.
In ordinary conversation a complete and computable formalisation is much more prob-
lematic. There does exist wide scale syntactic and semantic analysis systems (e.g. [9])
that map sentences to logical formulas (using compositionality and λ -DRT [11], and
DRT anaphora resolution). In order to verify and enumerate the possible argumentative
dialogues justifying a sentence, the systems needs at least to know the axioms encoding
lexical meanings, as well as the axioms describing the situation under discussion and
the proponent beliefs. In general the later resources are not available, hence argumen-
tative dialogues are hard to check or enumerate automatically. But, when resources are
available, the set of argumentative dialogues, i.e. the semantics, can be computed.

2
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Relation to inferentialism Our dialogical view of semantics is clearly related to the
inferentialist view of meaning [5, 1] which has already been developed, but not much,
in formal semantics [3, 12, 8, 7].

A positive consequence is that our proposal for semantics is computabl, because
inference rules and proofs or dialogues are finite and enumerable. Argumentative dia-
logues can be checked and even enumerated from some limited and partial knowledge
of the situation. This is clearly a cognitive and computational improvement over the
hardly enumerable infinity of possible worlds – furthermore, a finite description of a
given possible world is itself hardly computable.

But, for our proposal to be part of inferentialism we should respect the main re-
quirement of a Theory of Meaning as described in [5, 4]:

The knowledge of the sense of a sentence or expression must be — in prin-
ciple — completely observable and publicly testable.

Thus, the speaker’s knowledge must be observable in the interactions between the pro-
tagonists and any speakers’ disagreement regarding the meaning of an expression must
emerge under some circumstances. This is indeed the case in argumentative dialogues:
such a disagreement on the interpretation of an expression A will result in incompati-
ble arguments for justifying A, and such conflicts are observable. As an example, let
us consider the following simplistic argumentative dialogue:

0. P: John is not a murderer

1. O: John is a murderer, he killed Mary

2. P: I grant that he killed Mary but it was by accident

The opponent consider thatx killed y entails that x is murderer while the proponent re-
futes this claim by pointing out that x killed y by accident. When the meaning of an
expression consists in the arguments justifying it, then we can observe that the respec-
tive interpretations by the opponent and by the proponent of x is a murderer differ. The
above dialogue shows that the axioms representing the meaning of the atomic predi-
cate murderer(x) for each of the two speakers are visibly different — according to P
murderer includes a notion of deliberateness.

Future prospects We are presently willing to explore the formal properties of argu-
mentative dialogues but also willing to establish their empirical relevance. For instance
do argumentative dialogues bring a finer grained notion of semantics? Do they tell apart
expressions that usually gets the same semantic representation?

As the last section suggests, we plan to to characterise manifestability, that is to
find hypotheses that would guarantee the emergence in an argumentative of any pos-
sible disagreement about word meaning. If the emergence of the disagreement can
be triggered, then computing a dialogue exhibiting a disagreement can be viewed as a
machine-learning procedure for ”axioms”.

Unsurprisingly, the practical development of natural language processing tools us-
ing such ideas can only be achieved if a very precise topic has been delimited. Indeed,
before being developed, tested, improved and evaluated, a prototype would require
sophisticated linguistic resources (lexicons, knowledge representation) .

3
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Disfluencies and Teaching Strategies in Social Interactions Between a 
Pedagogical Agent and a Student: Background and Challenges 

Abstract 

This paper i) Presents the related work and the challenges regarding the integration of disflu-
encies in human-agent interactions and, ii) Positions the context and motivations behind our 
project. 

1. Introduction 

Disfluencies are breaks, irregularities or non-lexical vocables that occur within the flow of otherwise 
fluent speech. There are different types of disfluencies, such as word or sound repetitions, fillers/filled 
pauses (e.g. ‘er’,‘um’ or ‘uh’ in English), repairs and so on. They are frequent in spoken language, as 
spoken language is rarely fluent. An example of their significance in speech can be observed with sys-
tems such as Google Duplex: an AI system for accomplishing real world tasks over the phone. A key 
component to the naturalness of the system was in the incorporation of disfluencies (such as fillers and 
auto-corrections) in the TTS responses during human-agent interaction (Leviathan et al. 2018). Disflu-
ency has been well studied in cross-linguistic fields and psychology, with a consensus that it is an im-
portant tool of speech. They inform us about the linguistic structure of the utterance: such as in the 
(difficulties of) selection of appropriate vocabulary while circumventing interruption, lexical planning, 
to build syntactically valid sentences, and to maintain the speaker turn in dialogue. They are linked to 
deeper meanings of a speaker’s emotions, such as fillers and repetitions as an indicator of uncertainty 
or hesitation (Mifflin, 2000), and to the speaker’s Feeling of Knowledge (FOK): i.e the speaker’s per-
ception of how knowledgeable they are about a particular topic (Smith and Clark, 1993). Disfluency is 
also studied as an important tool of communication (Mills, 2014). In speech and language processing, 
automatic disfluency detection in ASR is typically done with the intent of removing disfluencies from 
the transcribed text, as subsequent NLP models achieve highest accuracy on syntactically correct ut-
terances. Cleaning speech of disfluency removes the naturalness of speech as well as important infor-
mation on the cognitive and emotional state of the speaker.  

The aim of this project is to study disfluencies in a pedagogical environment in the context of inter-
actions between humans and agents (virtual characters or robots). This project is part of ANIMATAS 
(Advancing intuitive human-machine interaction with human-like social capabilities for education in 
schools), an H2020 Marie Sklodowska Curie European Training Network ! . In this project, we investi-
gate the role of disfluencies in such a context and we will focus on the triangular interaction between 
the student, teacher and agent, where the agent will learn from both the student and the teacher. An 
agent could detect and analyse the student’s disfluencies, and respond appropriately with (dis)fluent 
utterances. With the agent’s analysis of disfluencies and active use of disfluencies in the student-agent-
teacher context, we aim to develop a computational model that will formalise teaching strategies and 
social interaction based on disfluency, and when to trigger these strategies to help a student in his/her 
learning phase. Outside of the pedagogical environment, we believe that our work will contribute to 
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dialogue analysis, such as in the agent detecting verbal conflict and measuring the quality of dialogue 
among interlocutors, as well as in empathetic listening by the agent. 

We thus address two research questions in this paper. The first research question is ‘What can the 
agent learn from the user’s disfluencies in a learning task?’. For example, disfluency can be an indica-
tor of:  i) Uncertainty and feelings of frustration exhibited by the student towards a subject and; ii) The 
quality of dialogue between the student and teacher and how coordination among them develops. The 
second research question is ‘What are the advantages of the agent’s use of disfluencies in speech, 
where the student is the listener?'. For example, if the agent exhibits uncertainty about a topic through 
the use of disfluencies, this could help the student to develop important verbal skills by encouraging 
him/her to respond with better clarity of thought, and participate in topics in which they are not confi-
dent. The related work and the challenges pertaining to these two research questions are presented in 
the two following sections. 

2. User’s disfluencies in Human-Agent Interactions 

In this section, we look at relevant work in cross-linguistics on the functions and factors of disfluency 
from the user’s perspective, and computational studies on the use of disfluencies in speech processing. 
The research question is the following: How can the agent utilise the user’s disfluencies? 

There are two main theoretical positions behind the production of disfluencies. One is that disfluen-
cies are accidentally caused in speech due to cognitive burden of the speaker (Bard et al. 2001). Other 
works study disfluencies as an important communicative function used in dialogue, where conver-
gence on a task is achieved faster due to disfluencies. This is because disfluencies such as clarification 
requests highlight possible miscommunication that interlocutors may have been unaware of otherwise 
(Mills, 2014). Often studies will look at both of these positions, by analysing the individual disfluen-
cies of a speaker as well as the collective disfluencies produced by interlocutors. These studies are typ-
ically conducted in the context of a task-oriented dialogue between two participants. An unrestrained 
conversational style dialogue is not usual for this type of study, due to the manual annotation required 
of the speaker’s transcripts. Also, frequency of repairs in dialogue are almost double in task oriented 
dialogues than in ordinary conversations (Colman and Healey, 2011). Monologues are used to study 
disfluencies in speakers, but less commonly, because studies have found that speakers are more disflu-
ent in dialogues (Oviatt, 1995). Oviatt (1995) also found that speakers are more disfluent in human-
human conversations than human-machine conversations. However, dialogue between human and 
agent was less sophisticated at the time that the work was published. 

Some studies measure disfluency by the frequency of their distribution in dialogue in a particular 
context. For example, Colman and Healey (2011) show that disfluencies are affected by dialogue role 
and domain, but not by familiarity or modality (face-to-face versus no eye contact). Measuring speak-
er intent based on disfluencies is also done by the type of disfluency that occurs in the dialogue. For 
example, Yoshida and Lickley (2010) studied the effects that disfluencies have on turn taking in estab-
lishing common referring expressions between interlocutors, by using a modified HCRC Map task 
(Brown et al. 1984, Anderson et al. 1991). This task was unlabelled (i.e. landmarks were pictorially 
represented) to encourage interlocutors to form their own identifying expressions for images, and in 
doing so produce more disfluencies. They found that fillers frequently occur at the start of discourse, 
signalling that the subsequent utterance could contain new or unfamiliar information, indicating pro-
duction difficulties. They also found that self-repairs and speaker modifications tend to occur at the 
middle of the utterance, indicating a desire for better achievement of the task, showing their commu-
nicative function. This shows that the occurrence of different types of disfluencies indicates different 
speaker intents. Studies also look at the correlation between different factors affecting disfluencies. 
For example, Branigan et al. (1999) study the non-linguistic factors that affect the rate of disfluency, 
considering gender, conversational role, ability to see the addressee and practice at the task. Results 
show that these non-linguistic factors do not steadily affect disfluencies, however they do observe that 
studying these factors in isolation is an oversimplification: for example repetitions were found to be 
higher in speakers that cannot see their addressee, though this did not affect the overall disfluency rate. 

In emotion detection, Moore et al. (2014) found that disfluency features achieve higher accuracy for 
emotion detection than lexical or acoustic features. Tian et al. (2015) investigate the usefulness of dis-
fluencies and non-verbal behaviour (DIS-NV) in emotion detection. One finding was that using disflu-
ency features is dependent on the corpus, as the corpus they used contained a mixture of scripted and 
unscripted data (IEMOCAP database (Busso et al. (2008)); which has fewer examples of disfluencies 
than the corpus (AVEC2012 database (Schuller et al. 2012)) of spontaneous speech used in Moore et 
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al. (2014). They conclude that disfluencies could possibly capture high level features in emotion detec-
tion that lexical/ acoustic features might omit. 

We anticipate challenges in using the above referenced work as a basis to study disfluencies from 
the user’s (student, teacher, or both) perspective in the context of human-agent interaction. We see that 
different types of disfluencies indicate different cognitive processes of the speaker. However, the rate 
of different disfluencies is not equal, and hence some types of disfluencies are sparse in data (Moore et 
al. 2014). Cross-linguistic studies are also conducted on smaller datasets, due to the manual annotation 
and curation that is required. Apart from insufficient data, there is a question of whether the results of 
these studies will scale well.  

3. Perception and Generation of the Agent’s Disfluencies 

Many studies focus on the comprehension of disfluent speech, i.e. taking into account the listener’s 
understanding of disfluent speech uttered by the speaker (Corley and Stewart, 2008). This section 
looks at disfluencies from a listener’s perspective. The research question is the following: What are the 
advantages in the agent’s use of disfluencies in speech, where the student is the listener? 

Corley et al. (2007) studied the effect of hesitation (‘um’) on the listener’s comprehension using the 
N400 function of an Event-related potential (ERP), which they establish in predictable versus unpre-
dictable words. The N400 effect can be observed during language comprehension, typically occurring 
400 ms after the word onset; and exhibits a negative charge recorded at the scalp consequent to hear-
ing an unpredictable word. In using hesitations preceding the unpredictable word, the N400 effect in 
listeners was visibly reduced. In a subsequent memory test on the listener, words preceded by hesita-
tion were more likely to be remembered. One drawback however is the processing time hypothesis, 
i.e. do listeners remember disfluent speech better simply because disfluencies add time to the speech? 

Fraundorf and Watson (2011) examined this in a study on how fillers affect the memory of the lis-
teners; by comparing fillers versus coughs of equal duration spliced into fluent speech. Fillers facili-
tated recall, and coughs negatively hampered recall accuracy. Disfluent speech is hence more likely to 
be remembered by the listener, and this is not solely based on the additional time of the utterance. 
They also study comprehension by manipulating the location of the fillers in speech. Fillers typically 
occur at discourse boundaries, to signal new or upcoming information (Swerts, 1998). However, the 
authors found that fillers benefit listener’s recall accuracy regardless of it’s typical or atypical location.  

Wollermann et al. (2013) explore the listener’s perception of disfluencies using TTS. This is based 
on the listener’s evaluation of how uncertain they think the speaker is regarding a topic, or Feeling of 
Another’s Knowing (FOAK) (Brennan and Williams, 1995). They had the system exhibit ‘uncertain’ 
behaviour through disfluent TTS responses in a question-answering context. They found that disfluen-
cies in combination (eg. delays + fillers) increased a listener’s perception of uncertainty towards the 
system’s answers. Pfeifer and Bickmore (2009), evaluate an agent that uses fillers ‘uh’ and ‘um’ in 
speech. The motivation behind this was to improve the naturalness of speech in an ECA, as ECAs of-
ten try to emulate humans in gestures and facial expressions, yet speak in fluent sentences. Results are 
mixed, with some participants saying that fillers enhanced the naturalness of the conversation, while 
others expected that an agent should speak fluently, and fillers were deemed inappropriate. However, 
further investigation is required, particularly concentrating on the social factors of participants. For 
example a participants’ level of exposure to interacting with an agent could make a difference in their 
attitude towards the social presence and naturalness of an agent (Goble and Edwards, 2018). 

Our goal is for the agent to utilise disfluencies for learning tasks, but also as a response mechanism 
in human-agent dialogue. For example, when the agent detects a student’s possible frustration with a 
task, responding with similar uncertainty using disfluencies, hence displaying empathy. Although 
Fraundorf and Watson (2011) extend disfluency studies to a discourse level, these works are not con-
ducted in an active dialogue. The benefits of the agent utilising disfluencies for learning tasks could be 
dependent on following this format, constraining the student-agent interaction. 

4. Conclusion 

This paper i) Presented the related work and the challenges regarding the integration of disfluencies in 
human-agent interactions and, ii) Positioned the context (that is to study disfluencies in a pedagogical 
environment in the interactions between humans and agents) and motivations behind our project.  
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Abstract

We describe an extension of a corpus of dialogues over perceptual scenes with the annotation
of conversational games in which particular interactive strategies are adopted by conversational
partners which result in regularities of dialogue features. We hope these will be useful for com-
putational modelling of perceptual dialogue.

1 Introduction

An annotation and classification of dialogue in dialogue games is useful for building conversational
agents as human free dialogue can be segmented into manageable units where certain features of con-
versation could be identified. The aim of this paper is to propose, annotate and evaluate a classification
scheme for dialogue games for the Cups corpus of situated dialogue (Dobnik et al., 2015; Dobnik et al.,
2016). The Cups corpus has been used in previous research to study the way conversational participants
assign, align and negotiate spatial perspective or the origin of the FoR that is required for directionals.
However, it could also be used to study other aspects of situated dialogue, for example resolution of ref-
erence to objects. The experimental design shows resemblance to the Map Task (Anderson et al., 1991),
except that the roles of conversation leader versus follower change dynamically throughout the task. The
corpus consists of both Swedish (985 turns) and English (598 turns) dialogues.

2 Conversational games in the cups dataset

The use of conversational games as a method for discourse analysis allows segmentation of conversation
by its underlying non-linguistic goal or project (Grosz and Sidner, 1986; Kowtko et al., 1992; Bangerter
and Clark, 2003). Games therefore consist of all utterances necessary to fulfil the intentions leading to a
conversational goal (Kowtko et al., 1992). Our annotation of the Swedish part of the corpus is performed
in two steps: (i) game segmentation (Section 2.1), and (ii) assigning the segmented games a game type.

2.1 Game segmentation
The first step of annotation of dialogue games is identifying their scope. Turns that share the same
related goal that is fulfilled in conversation in the sense that a mutual agreement has been achieved or the
goal has been abandoned are annotated with the same game ID. This is an integer starting at 1 for each
dialogue. This allows us to identify easily threaded games and embedded games.

2.2 Game type coding scheme
In the second stage the previously segmented games were grouped by considering their conversational
goals. The annotation categories are meant to be free of linguistic features. We identify two main
categories: (i) games related to managing interaction (commonly found in conversations), and (ii) games
related to the specific task the participants are performing which in this case is finding the missing objects.

2.2.1 Games related to interaction (Meta-games)
Clarify (Clar) games are intended to reduce uncertainty in the common ground and repair some type
of miscommunication but not to request new information, e.g. with a starting utterance “So it’s three red
cups?”. As such they are mostly used as nested games.
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Task management (TaMa) The goal of these games is aligning and negotiating tactics how to ap-
proach solving a task.

Establishing Perspective (EsPe) These games are used to establish explicitly a common ground in
respect to the spatial perspective or frame of reference for the following dialogue. Note that descriptions
of spatial perspective may be present in several turns but are not identified as a apart of this game because
they are not part of an explicit negotiation.

Miscellaneous (Misc) include other games that relate to managing interaction such as social chatter,
greetings or other conversational glue. They facilitate the task on a social level by establishing familiarity
or provide motivation.

2.2.2 Games related to describing objects (Task-games)
Descriptive (Desc) In this game one conversational partner acts as a describer of the scene as they per-
ceive it while the other acts as a follower who is looking for any inconsistencies between the description
and the scene as they see it. In contrast to the next game this game involves a systematic investigation of
objects in the scene, e.g. row by row.

Specification (Spec) In this game the participants establish a common focus on a specific object or a
part of the scene. In the game the location or the identity of an object or a region is discussed.

Global (Glob) involves finding and describing objects on a global level (i.e. the table) without a focus
on a specific part of the scene, e.g. counting the number of objects of a particular kind.

3 Evaluation

The game segmentation task was performed by a single coder and was evaluated by inter-test reliability.
The same coder segmented the dialogue by game ids again after a month. The intra-coder agreement was
78% N = 794. In 85% of the games that were coded differently, the latter annotations were favourable
upon review which shows that the accuracy of coding evolves with experience. The game identification
task was evaluated by an inter-coder test where a novice coder with no background in linguistics or
language technology annotated a part of the corpus which gave us an agreement κ = 0.74(N = 67). The
most common mismatches involve Spec- and Desc-games (4) and Spec- and Clar-games (4). This is
expected as these games share some of their features.

4 Discussion and conclusions

Our work demonstrates that even in a free dialogue (as opposed to task-oriented dialogue) conversations
are broken down into smaller units in which the conversational participants focus towards a particular
goal: (i) thematically associated with the overarching task that the participants are performing, (ii) func-
tionally related to interactional dynamics that facilitate linguistic and non-linguistic interaction. Our
classification is not exhaustive but may be augmented as new domains and data are analysed, both in
terms of the different types of games and their hierarchical organisation. From the linguistic perspective
we demonstrate that what is communicated in dialogue is not only thematic information in the mean-
ings of utterances and their relation to the world but also meta information how to functionally structure
our interaction. In comparison to other coding schemes, e.g. HRC MapTask and DAMSL (Kowtko et
al., 1992; Jurafsky et al., 1997) our coding scheme may appear simplistic but this is because our main
goal is not discourse analysis but (shallow) segmentation of dialogue into units where features, linguis-
tic reflections of these games, would become identifiable for machine learning approaches. Identifying
different dialogue games is also useful for dialogue systems as these can be used as a basis for templates
for dialogue rules, both domain specific and general.

In our forthcoming work we will further examine the generality of the coding scheme by testing it on
the English part of the cups corpus, as well as different but related corpora involving spatial tasks such as
those in the SCARE corpus (Stoia et al., 2008). Recording more information about participants such as
their familiarity would allow us to make stronger conclusions about their conversational dynamics which
may be relevant for Meta-games.
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Barbara J Grosz and Candace L Sidner. 1986. Attention, intentions, and the structure of discourse. Computational
linguistics, 12(3):175–204.

Dan Jurafsky, Elizabeth Shriberg, and Debra Biasca. 1997. Switchboard SWBD-DAMSL shallow-discourse-
function annotation coders manual, draft 13. Technical report, Institute of Cognitive Science Technical Report,
University of Colorado at Boulder and SRI International, August 1.

Jacqueline C Kowtko, Stephen D Isard, and Gwyneth M Doherty. 1992. Conversational games within dialogue.
HCRC research paper RP-31, University of Edinburgh. http://www.hcrc.ed.ac.uk/publications/rp-31.ps.gz.

Laura Stoia, Darla Magdalena Shockley, Donna K. Byron, and Eric Fosler-Lussier. 2008. Scare: a situated corpus
with annotated referring expressions. In Nicoletta Calzolari, Khalid Choukri, Bente Maegaard, Joseph Mariani,
Jan Odijk, Stelios Piperidis, and Daniel Tapias, editors, Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08), pages 650–653, Marrakech, Morocco, 28–30 May. European
Language Resources Association (ELRA).

194



An exploratory study on how the use of general lexical and linguistics
information helps to predict the dynamic of speech rate in dyadic

conversations
Simone Fuscone

Aix-Marseille Université
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1 Introduction

Understanding how linguistics features, produced by speakers in a dyadic conversation, evolve is a chal-
lenging task due to the not well-known relation between the conversants. As known from the literature,
speakers tend to change their speech style during conversations. In particular, Giles and Coupland (1991)
explains that people could accommodate their speech style with respect to their interlocutors at different
levels (lexical and syntactic) according to the Accomodation Theory. Street and Giles (1982), Giles and
Powesland (1975), Giles and Howard (1980) have proposed that conversation participants respond to
one another’s speech, including speech rate. Such a dynamics is potentially affected by many parameters
making its study a difficult task. Previous works presented models to explain how speakers adapt and
change their style, focusing mainly on the analysis of one feature. In this exploratory work we attempted
to answer whether it is possible to predict the changes of speakers speech rate in the second part of the
conversation, using features like extra linguistics variables associated to each participant and averaged
features extracted from time-aligned transcripts from the first part. The choice of use speech rate as target
variable is due to the proof of previous studies that underline a correlation between the speech rate and
some properties of the speech style. As argued by Hannah and Murachver (1999), Kendall (2009)) and
Babel (2012) speech rate could be influenced by the sex and age of the speakers, or by the topic of the
conversation. As Goldman-Eisler (1956) outlined the number of pauses and the duration of each partici-
pant influence the production of speech rate. Newman and Smit (1989) studied the effect of turn latencies
on the speech rate in Children-adult conversations, finding that the change of the time latency affects the
speech rate in children. Yang (2003) in his study asses the strict correlation within the speech rate and the
internal pause of the speakers. More globally there is a tension between the intuition that conversational
dynamics, or adaptation of some kind, largely unconscious, to the interlocutor speaking and interacting
style, as supported by various experimental studies (Babel, 2012), and the difficulty of actually finding
strong effects of such phenomena in corpora as exemplified for example from recent negative results of
(Weise and Levitan, 2018). Our objective is to more systematically scrutinize the variables involved in
characterizing speaking and interacting style on large corpora and decipher their cross-speaker dynamics
thanks to advanced machine learning techniques. As a first step, we focus on one variable, using speech
rate as target variable. We tried to determine whether the use of linguistics features of both speakers led
to a better performance than use features of just one speaker. No acoustic, prosodic or phonetic features
were used at this stage. We present two precursory tasks in the study of the dynamic: (i) predict the
speech rate evolution (decrease / increase / no change) of one speaker in the second half
of the conversation; and (ii) the difference of speech rate of the two speakers respectively increase, de-
crease or remains stable also in the second half of the conversation. For this purpose, we used transcripts
data from the Switchboard corpus, splitting each conversation in two halves. To predict the behavior of
speech rate, after experimenting with different learning methods and parameters we settled in using a
Random Forest algorithm testing different subsets of input variables. Finally a bootstrap approximation
method was applied to asses if there is a difference within the different subsets of variables we used in
prediction task.
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Figure 1: The picture shows
the distribution of the differ-
ence speech rate δSP1 for all
the speakers of the corpus. The
red lines delimit the three zones
that correspond to the three
target classes D (speech rate
Decreases), I (speech rate In-
creases) and S (speech rate re-
mains Stable).

2 Methods

We used the definition provided in the work of Cohen Priva et al. (2017) to compute speech rate, as
the ratio between utterance duration and utterance expected duration. We split each conversation in
two halves and take the average speech rate in the first and second half, denoted as SR

′
1, SR

′′
1 for one

speaker (that we call speaker 1) and respectively SR
′
2, SR

′′
2 for the other speaker, (called speaker 2). We

analyzed two types of target variables based on the previous definition of speech rate:

• difference speech rate of one speaker in the second and first half of the conversation, called δSR1 =
SR

′′
1 − SR

′
1

• difference of the two speakers speech rate in the second half of the conversation, ∆SR
′′
12 = SR

′′
1 −

SR
′′
2

We labeled the two target variables into three classes called I (increases), D (decreases), S
(remains stable) as stated by the following:

Class D if δSR1 < −ε
Class I if δSR1 > +ε

Class S if −ε ≤ δSR1 ≤ ε

where ε is a threshold, that is chosen in order to obtain a comparable number of example for the 3 classes.
We repeated the same process for the variable ∆SR

′′
12.

The distribution of δSR1 is shown in Figure 1.
For the input variables, as described by Bell (1984) we could divide the factors of the speech variation

in two groups: Linguistics features and Extra-Linguistics features. In our study, linguistics features are
all the variables linked to the speech style of the speakers or that describe the reciprocal interaction,
extracted just from time-aligned transcripts since acoustic features haven’t been taken into account at
this stage. For extra-Linguistics features (ELF) we refer about information of the speakers like Age,
Sex, Level of study, Geographical place and in addition the topic of the conversation. Cross-speaker
Linguistic Features (CLF) take into account the relation between the speakers: Cosine Similarity of
discourse markers ( It is the distribution of discourse markers produced by the two speakers in the first
half of the conversation. We use a short list of items for this purpose, selected for their frequency :
[′hm′,′ oh′,′ right′,′ uh′,′ um′,′ yeah′]. We use Laplace Smoothing to avoid zero count for an item.),
Total Overlap time of the conversation (it is the duration during which the speech of the two speakers
overlaps.), Difference of Speech Rate (Difference of speech rate within the speakers, in the first part
of the conversation, ∆SR

′
12). Linguistics Features (LF) refer to the linguistics style of one speaker:

Percentage of token (it is computed as the ratio between the number of token produced by the speaker
divided by the total number of token in the first half of conversation. It captures floor dominance);
Lexical Density (As Johansson (2009) described, lexical density is the proportion of content words to
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the total number of tokens); % Stop Words (the ratio between the Stop Words produced by the speaker
and the total words produced in the first part); Average Time duration of utterance (it is the averaged
time of the utterance of the speaker, dropping out silence, noise and laughter); Number of significant
turns (is the total count of turns for each speaker that have a minimum duration of 2s and contains at
least 3 content words); Turn Latency (it is the total time of the latency response. Street (1984) defined
it as the pause between two consecutive turns belonged to different speakers. Basically is the time that
a speaker occurs for answering to the turn of the other speaker); Overlap time (it is the duration during
which a speaker overlaps his turn to the turn of the other speaker divided by the speaking duration of
that speaker); Discourse markers (For each discourse markers like ’hm’,’oh’, ’right’, ’uh’, ’um’, ’yeah’
we computed the total count produced by the speakers and use their relative frequencies as a singular
variables).

We used transcripts from the Switchboard corpus (Godfrey et al., 1992), formed by participants that
took part in multiple telephonic conversations. There are 543 speakers in the corpus, with about 2400
conversations. The averaged duration is 6 minutes. We dropped out conversation that were too short to
compute the input and output variables. So after pre-processing we obtain 4864 ”conversation sides”.
To predict the class (D, I or S) of the variables in the two tasks, we used a Random Forest classifier
implemented in the Scikit Learn package (Buitinck et al., 2013). We tested different sets of features
grouping the input variables described 1 as listed in Table 1.

Table 1: The table represents the Accu-
racy scores for the different sets of vari-
ables in the case of the target variable
δSR1.

Sets of Features Acc. Test Acc. Validation
CLF + LF1 + ELF?

1 0.5068 0.4922 ± 0.0085
LF12 0.5041 0.4913 ± 0.0078

LF12 + ELF1 0.4959 0.4937 ± 0.0100
LF1 + ELF ?

2 0.4931 0.4937 ± 0.0092
LF1 + ELF ?

1 0.4931 0.4932 ± 0.0110
LF1 0.4904 0.4905 ± 0.0043

ELF12 0.4904 0.4884 ± 0.0112
CLF + LF12 0.4890 0.4869 ± 0.0067
LF2 + ELF ?

2 0.4863 0.4913 ± 0.0170
LF2 + ELF ?

1 0.4863 0.4922 ± 0.0171
CLF + ELF ?

1 0.4835 0.4843 ± 0.0116
LF2 0.4822 0.4925 ± 0.0152
CLF 0.4808 0.4736 ± 0.0099

LF12 + ELF12 0.4794 0.4940 ± 0.0096
ELF2 0.4781 0.4763 ± 0.0083
ELF ?

1 0.4740 0.4697 ± 0.0123
ELF1 0.4712 0.4804 ± 0.016

SR
′
1 0.4452 0.4591 ± 0.0018

Table 2: The table represents the Accu-
racy scores for the different sets of vari-
ables in the case of the target variable
∆SR

′′
12

Set of Features Acc. Test Acc. Validation
LF2 + ELF?

1 0.5425 0.4961 ± 0.0068
LF2 + ELF ?

2 0.5342 0.4930 ± 0.0074
ELF2 0.5301 0.4883 ± 0.0165

CLF + LF12 0.5287 0.4988 ± 0.0142
ELF12 0.5246 0.4912 ± 0.0123

LF1 + ELF ?
2 0.5232 0.4963 ± 0.0134

LF12 0.5205 0.4980 ± 0.0069
LF12 + ELF1 0.5205 0.5060 ± 0.0101
LF1 + ELF ?

1 0.5205 0.4949 ± 0.0162
LF2 0.5192 0.4932 ± 0.0056

CLF + LF1 + ELF ?
1 0.5178 0.4997 ± 0.0109

LF12 + ELF12 0.5109 0.4833 ± 0.0099
CLF 0.5096 0.4627 ± 0.0079
LF1 0.5082 0.4976 ± 0.0075

CLF + ELF ?
1 0.5081 0.4840 ± 0.0044

ELF ?
1 0.5000 0.4862 ± 0.0064

ELF1 0.4972 0.4934 ± 0.0119

∆SR
′
12 0.4698 0.4681 ± 0.0078

For the first task, each subset contains the variable SP
′
1. The Extra Linguistics subsets marked by ?,

contain just the age and sex information. We divided the data in a Training, Validation and Test set.
We performed a K-Fold approach (K = 3) testing different parameters choosing that ones which best
performed on the Validation set.

As the parameters were fixed, we computed the accuracy score on the Test set. The Accuracy value
of the Baseline is 0.41 (corresponding to the majority class). As noted regarding Table 1 the score for
each group of subset is greater than the Accuracy Baseline. The lower score corresponds to the set in
which we just use the speech rate of one speaker. It suggests that the use of more information helps to
slightly increase the score. In particular, the ELF (Extra Linguistics Features) don’t change significantly
if we use the information of speaker 1 and speaker 2 separately. Using just Linguistics Feature (LF)

1We use the subscript (1), (2), (12) to indicate respectively if the variable refers to speaker 1, speaker 2 or both speaker 1
and speaker 2 (e.g.; LF12 = LF1 + LF2)
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we can note that the best score is obtained using the linguistics features of both the speakers, and that
LF1 > LF2. In general, the highest Accuracy score is obtained using the LF of speaker 1 in addition
of ELF and CLF. In order to compare the results, we performed a Bootstrap significance Test using
the Random Approximation method as described by Yeh (2000). We computed the Significance Test
on the Accuracy using couple-match approach. All the variable (except for ELF1, ELF ?

1 ) sets result
to be significantly different (with a p value p < 0.05) from the set SR1. This result suggests that the
use of LF and both LF and ELF improve the performance of the classification. Moreover, the set of
features CLF +LF1 +ELF ?

1 , LF12 are significantly different compared to the sets formed by just ELF.
This indicates that the speech style influences the speech rate of the speaker than the age and sex of the
singular speakers.

For the second task, predicting how the variable ∆SR12 changes, we applied the same procedure as
we described previously, assigning one of the three classes (D, I or S) to the target variable. In this case,
the set CLF contains just the Similarity Score of the Discourse Markers and Total Overlap because we
have already taken into account the variable ∆SR

′
12 for all the sets of features. The baseline Accuracy

value on the Test set is 0.38 (by selecting the majority class).
In Table 2 the accuracy scores for the different sets are reported. As the previous case, all the sets of

features have a better accuracy compared to the use of just ∆SR
′
12. In particular, the use of features of

the speaker 2 improves the performance on the Accuracy.
Applying the bootstrap significance test, described in the previous task, it comes out that all the vari-

ables (except for ELF1, ELF ?
1 ) set result to be significantly different from the set ∆SR

′
12. This result

suggests that the use of LF and in addition of ELF improve the performance of the classification but the
only ELF of the singular speakers don’t help to predict the speech rate difference of the conversation.
Moreover, the set of features LF2 + ELF ?

1 , result to be significantly different from the others variables
except from LF2, ELF2, CLF12, ELF12 and LF1 + ELF ∗2 .

3 Discussion

In this exploratory work, we presented two experiments as an approach to test whether is possible pre-
dict the changes of the speech rate using various linguistic and extra-linguistic parameters, as averaged
values produced by the speakers in the first part of the conversation. We tested different sets of features
showing that the use of these sets of variables gives an improvement on the Accuracy score compared
with the baseline (majority class) in both the experiments. We are especially interested in assess the
difference among the different sets of variables in order to investigate a possible relation between the
speech style and the speech rate production during the conversation. The accuracy scores among these
sets of features are compared through a robust Significance test, a Bootstrap approach, due to the use of
the Switchboard corpus that contains a large number of conversations. In the first experiment (predict-
ing speech rate of one speaker) the use of Linguistics features, and both Linguistics features and extra
linguistics information of the profile of the speakers perform significantly better than just use sex, age
information. Instead, extra linguistics features of the speaker are not significantly better compared to the
simple speech rate. As regards the second experiment, also in this case all the sets of features perform
better than use just ∆SR

′
12. Moreover, the significance test shows that the use of linguistics features of

speaker 2 and extra linguistics information of the speaker 1 performs significantly better compared with
the the linguistics features of both speakers, cross-speaker features and the extra linguistics information
of the speaker 1. This could indicate that the speech rate and his dynamic depend by the whole speech
style of both speakers, and the dynamic cant be explained just knowing extra linguistics information of
the speaker. Anyway, these results should be interpreted as a starting point to study how the speech style
of the speakers could influence the dynamic of speech style using this approach. Indeed, it is necessary
to deepen some aspects. At first the accuracy scores reached at best 54%. This value seems quite low and
should be justified considering the complexity of the phenomenon and the rough nature of the method.
A better result maybe derive including acoustic features that are an important cues of the speech pro-
duction. Additional experiments are also necessary to better specify what are the features that mainly
influence the speech rate and the relation between the speakers.
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Abstract

We present an immersive multi-person game developed for testing models of non-verbal be-
haviour in conversation. People interact in a virtual environment using avatars that are driven,
by default, by their real-time head and hand movements. However, on the press of a button each
participant’s real movements can be substituted by ‘fake’ avatar movements generated by algo-
rithms. The object of the game is to score points in two ways a) by faking without being detected
and b) by detecting when others are faking. This enables what amounts to a non-verbal Turing
test in which the effectiveness of different algorithms for controlling non-verbal behaviour can
be directly tested and evaluated in live interaction.

1 Introduction

Experimental studies of conversation have primarily focused on verbal exchange, though it is now widely
recognised that non-verbal communication is important for successful interaction. For example, listeners
gesture to demonstrate attention to a speaker (Goffman, 1955) and their readiness to take the floor (Hadar
et al., 1985); mutual eye-gaze, or its absence, affects speech fluency (Goodwin, 1979) and when listeners
fail to provide timely and appropriate concurrent feedback, a speaker’s performance is disrupted (Bavelas
et al., 2000). Currently there is a paucity of experimental approaches for studying these processes.

Recently, research using virtual reality (VR) technologies has begun to address this need. VR can
eliminate the need for confederates that are otherwise common in studies of social interaction, and are
known to be problematic (Kuhlen and Brennan, 2013). It can also be used to test scenarios that are hard
(e.g. physical danger) or impossible (e.g. body transfer) to recreate in the lab (Pan and Hamilton, 2018).
VR studies are also increasingly easy to reproduce. They often rely on commonly available hardware,
and standard software components can support most, if not all, of the basic experimental procedures and
are easy to share. In addition, the VR application can log all movement information directly for further
analysis (Fox et al., 2009).

One issue, common to many experimental studies of interaction, is the strategy of restricting the con-
versation to obtain greater experimental control; for example assigning the speaker and listener roles
in advance or using restricted tasks (Bailenson and Yee, 2005; Gratch et al., 2007; Hale and Hamilton,
2016). This strategy makes it easier to isolate the effects of a manipulation and can provide simple out-
come measures. A second issue is the measures of the effects of manipulating avatar behaviours are
typically indirect. For example, asking participants to retrospectively rate the friendliness or persuasive-
ness of an agent on a Likert scale. One difficulty here is that there are known dissociations between what
people say about their own (and other’s) behaviour and the factors influencing those behaviours (Nisbett
and Wilson, 1977; Haidt, 2001).

This paper describes a method and associated software platform that can more effectively leverage the
potential of VR for testing models of non-verbal interaction. Building on previous work on intervening
manipulations of live text-based dialogue (Healey et al., 2003) and live graphical interaction (Healey

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/
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Figure 1: A view of the virtual environment.

et al., 2002), this approach involves free interaction but still provides a high level of control over the
experimental manipulation. Importantly, a game element is introduced that ensures continual real-time
testing of the effectiveness of each manipulation of non-verbal behaviour.

2 The System

The system is inspired by standard social VR applications (Wallis, 2016). It allows groups of remote
users to interact in the same virtual environment. However, users can also press a button that initiates
automatic algorithmic control over their avatar’s movements. This behaviour is presented to the users
as “faking attention”. During faking users can engage in other activities, while their avatar continues
to present socially appropriate responses. Importantly, participants are encouraged to detect when other
people faking and, if they accuse them correctly are awarded points. This creates a situation in which
we can make direct experimental tests of different models of non-verbal behaviours, implemented as
alternative algorithms for controlling the avatars.

The system is implemented on standard commercial hardware (HTC Vive1) which combines a head
mounted display and two hand-held controllers. These components are tracked in 3-dimensional space
to recreate live head and hand movement in the virtual environment. The microphone and headphones’
connection on the headset are used for a voice chat between the users. The system animates mouth
movement directly from speech to compensate for the lack of actual tracking and to help players to
identify the current speaker. The main application, consisting of a server and game clients, is developed
in Unity3D,2 a game engine commonly used to create VR experiences.3

A game context is used to incentivise participants through a scoring mechanism. Participants see their
own score in a floating message in front of them. When they fake attention a ‘Snake’ game4 pops up
above the floating message. Collecting a snake’s food pellet increases the player’s score by one point.
Another way to get points is by accusing other players for faking. A correct accusation is worth one
point, but an incorrect accusation loses a point. The specific moments when points are accumulated
provide a fine-grained assessment of how effective each faking period is.

Players start faking by pressing and holding a button on the left hand-held controller with their index
finger. While faking a model of non-verbal listening behaviour takes control over the player’s avatar,
making player’s real behaviour invisible to the rest of the group. Fakers are also muted from the chat so
they hear everything but are cannot take part in the conversation. While faking, the joystick like button
for the left thumb is used to control the snake game. Players accuse each other of faking by looking at
them and using a button on the right hand-held controller. Note that there is no need to point at players

1https://www.vive.com/uk/
2https://unity3d.com/
3The source code for the system is open and available online at https://github.com/Nagasaki45/UnsocialVR.

A video demonstrating the environment can be found at https://youtu.be/OOp1pARFM8I.
4https://en.wikipedia.org/wiki/Snake_(video_game_genre)
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to accuse them, as this “pointing and shooting” gesture might interfere with the social dynamics.
Figure 1 shows the avatars design. They are cartoon-ish gender-neutral head and hands figures, similar

to those use in commercial social VR products like Facebook Spaces (Tauziet, 2017).5

3 Possible Applications

This system enables new experimental approaches to a variety of questions in non-verbal interaction.
For example, backchannel responses, the concurrent head nods and “uh-huh” utterances produced by
listeners during speaker turns (Yngve, 1970), have been modelled in different theories. Some models
use a single feature, like speech prosody, and a set of simple rules to predict backchannels (Ward and
Tsukahara, 2000). Others combine more features, including the speaker’s head movement (Gratch et
al., 2007), speaker-listener eye contact, or even the speaker’s smile (Huang et al., 2011). Most of these
studies, however, evaluate their models on corpus data. The approach we introduce here enables direct
causal tests of the relative effectiveness of each model.

Similarly, there are a number of different predictions about where side-participants should look in
multi-party conversation. Some studies suggest a side-participant is equally likely to look at the speaker
as to look at the addressee (Healey et al., 2013); others suggest that side-participants usually gaze towards
the speaker (Fujie et al., 2009). Another possibility is that side-participants follow the speaker gaze.
These alternative hypotheses can be directly tested using the approach described here.

4 Discussion

While this method opens up new possibilities, it also has limitations. First, social interaction in VR might
be significantly different from face-to-face conversations. This is essentially an empirical question and
the answer will change as the capabilities of the technology change. We note however that social VR is an
increasingly important mode of communication in its own right (Wallis, 2016). Studying communication
in social VR might help us understand and build better virtual agents and environments even if it does
not reliably generalise to the physical world.

A contingent limitation of the current system is that it uses data from specific hardware with specific
capabilities: tracking a head mounted display and two hand-held controllers in 3-dimensional space.
This implies that only behaviours that are tracked by the system can be generated by the models and
checked for their credibility. For example, facial expressions, eye gaze, fine fingers movement, and torso
pose, are not tracked by the system, and cannot be tested. More advanced sensing hardware, however,
might improve this in the future.

Finally, we found that theories are often underspecified. Implementing computational models for
these introduce subtle complications. For example, studies of backchannel responses often concentrate
on triggering the response in the correct timing but doesn’t describe the response itself. Subtle differences
in head nods, for example, might have different interactional functions (Hadar et al., 1985).

5 Conclusion

We have presented a system for comparing models of non-verbal behaviour, suggested example applica-
tions and highlighted some limitations. This system provides several benefits compared to existing meth-
ods and practices in the field of multi-modal communication research. It can be used to test non-verbal
models of communication in natural social interaction, without restricting the conversation. The credi-
bility of the models is assessed by the participants during the interaction (as opposed to post-experiment
questionnaires), based on direct perceived-plausibility ratings. Lastly, it provides easy means to compare
competing models.
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1 Introduction

The past few years have seen an increasing interest in developing computational agents for visually-
grounded dialogue, the task of using natural language interaction to communicate about visual content.
Current challenges include posing and answering questions about a visual scene (Das et al., 2017a; Das et
al., 2017b) or about specific objects in it (De Vries et al., 2017). While these tasks and associated datasets
provide a useful starting point to develop multimodal dialogue agents, they have several shortcomings
regarding their dialogical properties: (i) the interaction consists of questions followed by answers, which
makes the exchanges closer to visual question-answering (Antol et al., 2015) than to dialogue proper,
where different dialogues acts can take place; (ii) the tasks are asymmetric: each agent has a predefined
role (e.g., questioner or answerer), which determines their contribution in the conversation; and (iii)
there are limited opportunities to model how agents accumulate shared information (common ground
(Stalnaker, 1978; Clark, 1996)) about the visual content they discuss. We present ongoing work on a
novel symmetric dialogue setting, the PhotoBook Task, which elicits dialogues that provide rich data for
investigating and learning common ground and partner-specific dialogue features in visual environments.

2 The PhotoBook Task

The setup of the PhotoBook Task takes inspiration from experimental paradigms that have been exten-
sively tested within the psycholinguistics literature to investigate partner-specific effects (see (Brown-
Schmidt et al., 2015) for an overview). This seminal research has shown that when speakers interact,
they typically develop shared ways of referring to entities, which become shorter and more opaque to
others over time (Clark and Wilkes-Gibbs, 1986). The key component for eliciting partner-specific ef-
fects of this kind is to set up the data collection in such a way that each participant performs a task
multiple times with the same partner, building up shared common ground as a result of their interaction
history. We incorporate this component in the design of the task to crowdsource the collection of the first
large-scale dataset with these features.

In the PhotoBook Task two participants are paired for a conversation game consisting of five rounds.
In each round, the participants are shown a set of six similar images, resembling a page of a photo
book (see Figure 1). They are then asked to determine which of three highlighted images are shown
to both of them by communicating through a text-only chat interface. When all indicated images are
marked as either common or different, the participants are shown a feedback screen and proceed to the
next round. During later rounds of the game, a selection of previously displayed images will be visible
again, prompting participants to refer to those images based on their visual context as well as previously
established referring expressions. Dialogue data collected through the PhotoBook task therefore allows
for tracking the evolving common ground between participants.

3 The PhotoBook Dataset

The PhotoBook Task was implemented in the Facebook ParlAI dialogue agent framework (Miller et
al., 2017). Up to date, we recorded more than 2,500 games containing 5 dialogue rounds each, stem-
ming from over 1,500 unique participants on crowdsourcing platform Amazon Mechanical Turk. The
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Figure 1: Screenshot of the AMT user interface of the PhotoBook Task.

resulting data contains a total of over 160k utterances, 130k actions, spans a vocabulary of close to 12k
unique tokens, and exhibits a diversity of dialogue acts. A preliminary analysis also shows that the data
displays features similar to those observed by (Krauss and Weinheimer, 1966) and (Clark and Wilkes-
Gibbs, 1986) for small-scale experiments run in the lab. Participants become more efficient as the game
progresses, as evidenced by a significant decrease in completion times and number of words used across
rounds while their task success increases. We also observe a simplification in the image descriptions,
resulting in an increase in the relative frequency of nouns, while pronouns, determiners, and verbs are
likely to be omitted in later rounds. Consider, for example, the following descriptions used to refer to the
bottom right image in Figure 1 over different rounds of a game by participants A and B:

B: Last is a girl with long hair looking at a laptop A: Yes, I have that one
B: The girl with long hair looking at laptop A: Nope
A: Girl with long hair? B: No, not this time
A: Long hair girl? B: I don’t have the girl

The PhotoBook Task thus provides a means to collect a large-scale dataset focused on central aspects of
goal-oriented dialogue. We believe that this dataset can be a rich new repository for developing artificial
agents with more consistent, efficient, and natural dialogue abilities in visual environments.
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Abstract

It has been claimed that natural dialogue is an especially repetitive form of language use. Com-
parison of dialogues and monologues in a corpus of naturally occurring speech (the DCPSE)
suggests the reverse; monologue is substantially more repetitive than dialogue. We dub this the
bore effect: the more people talk the more they repeat themselves. Dialogue, it appears, may
provide an important means of escape from our cognitive and communicative ruts.

1 Repetition and Interaction

Work in psycholinguistics has sometimes characterised dialogue as an especially repetitive form of lan-
guage use (Tannen, 2007; Pickering and Garrod, 2004; Pickering and Ferreira, 2008). However, previous
research has indicated that, in free dialogue at least, repetition is rare. People repeat only 3% more of
each other’s words than would be expected by chance and systematically diverge from each other in their
syntactic choices (Howes et al., 2010; Healey et al., 2014). This is compatible with a view of dialogue
as constructive engagement in which participants respond to one another by actively building on, e.g.:
modifying, adapting or elaborating each other’s contributions rather than repeating them (Healey et al.,
2014; Healey et al., 2018).

The principal evidence against repetition in natural conversation comes from the analysis of other-
repetition (Howes et al., 2010; Healey et al., 2014). Spoken monologues, such as one-sided conver-
sations or speeches, provide an interesting alternative test case that allows us to examine patterns of
self-repetition. Do people repeat themselves more in monologues or dialogues? A constructive engage-
ment view would predict that dialogue should reduce self-repetition, as people actively respond to each
other’s contributions. This contrasts with priming models that claim that repetition in dialogue is typi-
cally either equivalent to or stronger than in monologue (Pickering and Garrod, 2004; Pickering and
Ferreira, 2008).

2 Method

The Diachronic Corpus of Present-Day Spoken English (DCPSE) includes samples ranging from face-to-
face conversations to prepared speeches. The monologue collection used here was created by selecting all
DCPSE files in which only one person spoke; this includes data from genres including radio broadcasts,
sports commentary, sermons and lectures. The dialogue collection includes all dyadic conversations; this
includes not only informal conversation but academic interviews, broadcast interviews and multi-party
sports commentary. For the dialogue samples, we follow Healey et al. (2014), calculating lexical and
syntactic similarity scores between each speaker turn and the preceding five turns by the same partic-
ipant. For the monologue sample, the same calculations are made, but between sentences rather than
speaker turns (the notion of speaker turn being irrelevant in monologue); we use sentence boundaries
as annotated in the DCPSE. This produces 254 dialogue samples with an average of 45 turns and 736
words per speaker, and 106 monologue samples with an average of 74 sentences and 1097 words per
speaker. Average turn length in the dialogues is 16.3 words, average sentence length in the monologues
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14.7 words. Note that distances between dialogue speaker turns are greater than the distances between
monologue sentences, because of the interleaving turns of the interlocutor.

The similarity calculation is based on the number of matches between candidate turns/sentences, using
a standard kernel normalisation for length of sentence (see (Moschitti, 2006)):

NAB/
√
NAA ×NBB

Here, NAB represents the number of matching elements between turn/sentence A and turn/sentence B
(words for lexical similarity; syntactic production rule subtrees for syntactic similarity), and NAA the
number of matches when A is matched against itself (see (Healey et al., 2014)).

3 Results

The basic pattern of results is illustrated in Figure 1 (the statistical analysis of these patterns are given
below). The most obvious difference between the two graphs is that levels of syntactic repetition are
higher than levels of lexical repetition. This is because there are substantially fewer possible syntactic
constructions than there are possible lexical items. This difference is also reflected in the chance levels
of repetition calculated by randomly re-ordering all of each person’s sentences/turns respectively and
calculating the lexical and syntactic match in the same way as for the real samples. Chance repetition is
higher for syntax (0.41 for monologue and 0.30 for dialogue) than for words (0.14 for monologue and
0.12 for dialogue).

Syntactic Repetition Lexical Repetition

Monologue

Dialogue
Monologue

Dialogue

Figure 1: Patterns of Repetition Across Turns

Comparison of the patterns of self-repetition for monologue and dialogue indicates that there is more
lexical repetition overall in monologue but this effect only reliably emerges at larger turn/sentence dis-
tances. In contrast to this syntactic repetition shows a more marked difference and is consistently higher
in monologue at all sentence distances. This is highlighted by the observation that even after five inter-
vening sentences people are still substantially more likely to repeat the syntax of their original sentence
in monologue than they are after only one intervening turn in dialogue. In addition the graphs indicate
a general tendency in both monologue and dialogue for likelihood of repetition (lexical or syntactic) to
reduce with distance.

Two Generalized Linear Mixed Model (GLMM) analyses described below provide statistical tests of
these effects. They also include a factor not captured in Figure 1: the amount people speak, measured
here as total number of words produced. The GLMM analyses include Mode (Dialogue vs. Monologue),
Distance (1-5 Sentences/Turns) and Words (total produced each speaker) are included as fixed factors,
plus the Words × Mode and Words × Distance interactions, and Speaker as a random intercept.

Lexical repetition there is no simple main effect of Mode (F(1,1759) = 3.65, p = 0.06) and no
Words × Mode interaction (F(1,1759) = 2.77, p < 0.09) but there are main effects of Distance
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(F(1,1759) = 42.6, p < 0.00) and Words (F(1,1759) = 42.6, p < 0.00) and a Mode × Distance inter-
action (F(1,1759) = 4.95, p < 0.00). The interaction shows that the difference in lexical repetition in
dialogue is only statistically significant at distances of greater than 3 turns/sentences.

Syntactic repetition shows simple main effects of Mode (F(1,1759) = 59.2, p < 0.00), Distance
(F(1,1759) = 12.8, p < 0.00) and Words (F(1,1759) = 49.8, p < 0.00); there are also Mode × Distance
(F(1,1759) = 2.68, p = 0.03) and Mode × Words (F(1,1759) = 8.16, p = p < 0.00) interactions. The first
interaction indicates that distance has a stronger effect on reducing syntactic repetition in dialogue. The
second interaction indicates that the effect of talking more has a stronger effect on promoting repetition
in dialogue.

3.1 Conclusion
Monologue, not dialogue, appears to be the more repetitive form of language use. The more people talk
the more they repeat the words and syntax of their preceding turns. It seems natural to gloss this as the
bore effect. The results seem clear but there are several possible explanations for them.

The effect might be due, in part, to genre: the monologue and dialogue collections here do not cover
identical genres of conversation (although they both cover a range of genres, see above). There is an
intuition that, for example, repetition for rhetorical effect might be an important characteristic of some
forms of monologue such as sermons and lectures. Nonetheless, this doesn’t account for the observation
that as people talk more (total words) they are more likely to repeat themselves. This effect is found in
both the monologue and dialogue samples and therefore does not appear to be explainable in terms of
genre differences. Talking more in a conversation or speaking longer in a lecture both lead to signifi-
cantly more repetition. Another simple possibility is that the delays between turns at speaking caused
by other people’s turns in dialogue cause decay or forgetting that leads to reduced repetition whereas
in monologue there is no delay between successive turns. This does not easily explain the difference in
syntactic repetition which remains marked at all distances including comparison of a turn distance of 1
with a sentence difference of five. More importantly, this explanation treats intervening turns as delays
and ignores what they are doing as part of the dialogue.

Our interpretation is that monologues are more repetitive because without the stimulus of contributions
from others we are more likely to slip into our habitual linguistic routines. Effective conversation depends
on responding constructively to each other by building on what our conversational partners say and this
helps to overcome our regressive tendency to bore.
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Abstract

‘Concern Alignment in Conversations’ project aims to establish a theoretical and descriptive
framework to capture both discourse structures and underlying rational and affective processes
in human-human joint consensus-building interactions through empirical examinations of real-
life conversations. Concern alignment model has been developed to address the problem of elu-
cidating high-level dialogue structures manifested in human-human negotiations for consensus-
building. The central idea is to conceptualize a dialogue interaction as an exchange of concerns
and proposals.

1 Concern alignment

Figure 1: A concern alignment model
for consensus-building.

Concern align model (Katagiri et al., 2013; Katagiri et al.,
2015) conceptualizes a consensus decision-making process
between a group of people and its accompanying dialogue
as consisting of two interaction processes: concern alignment
and proposal exchange (Figure 1).

A group of people, engaging in a conversation to pursue a
joint course of actions among themselves, have certain objec-
tives (issues) to attain through agreement. Before they try to
settle on the kinds of actions to be pursued jointly, they would
start by expressing what they deem relevant on the properties
and criteria for the actions to be settled on (concerns). When
they find that sufficient level of alignment of their concerns
is attained, they proceed to propose and negotiate on concrete
choice of actions (proposals) for a joint action plan.

A set of dialogue acts (Bunt, 2006) are stipulated at the
levels of both concern alignment and proposal exchange, in
terms of its functions a discourse segment performs within the progression of consensus-building (Table
1). Specification of dialogue acts have been undergoing refinement through the practices of annotating
real conversational data and the development of annotation standards.

2 Data Table 1: Discourse acts in concern alignment
Concern alignment
C-solicit solicit relevant concerns from partner
C-introduce introduce your concern
C-eval/positive positive evaluation to introduced concern
C-eval/negative negative evaluation to introduced concern
C-elaborate elaborate on the concern introduced
Proposal exchange
P-solicit provide relevant proposal from partner
P-introduce introduce your proposal
P-accept provide affirmation to introduced proposal
P-reject indicate rejection to introduced proposal
P-elaborate modify the proposal introduced

We have collected real-life dialogues exchanged
in joint decision making situations in medical
and business domains. Data set 1 consist of di-
alogues between patients and nurses in obesity
counseling sessions. People diagnosed as obese
(metabolic syndrome) visit a hospital for coun-
sel from expert nurses on their daily life man-
agement. A total of 9 sessions, about 5 hours of
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B-A: P-introduce: propose a web-based commu-
nity which bundles small ser-
vices provided by community
members and makes value as-
sessment for each of them

A-B: C-introduce: method of assessment
B-A: P-introduce: assessment based on evaluation

feedbacks by small service re-
cipients

· · ·
A-B: C-introduce: aim for a market place to pro-

mote exchange of small ser-
vices between members through
matching their skills and needs

(or)
A-B: C-introduce: aim for a mutual support com-

munity for promote social inter-
actions among members

B-A: C-eval/positive: community for social interac-
tion

· · ·
A-B: C-introduce: assessment based on monetary

value
A-B: C-eval/negative: not suitable for promoting so-

cial interactions
(a) A proposal generates new concerns

C-A: P-introduce: propose a tentative business
plan for setting up a computer-
ized cognitive behavior therapy
site for people with depression

· · ·
A-C: C-introduce: Maybe you should emphasize

and stick to certain policies, like
’to restrict comminication be-
tween patients to avoid prolifer-
ation of negativity.’

A-C: C-introduce: Or ’to provide patients with
sense of accomplishment with
success experiences, even if
they are small.’

· · ·
A-C: It is better to decide on the posi-

tions on these points. They will
become the guide when you go
into thinkg about detailed levels
of service. When faced with de-
cisions, you can easily pick an
alternative based on your for-
mulated values.

· · ·
C-A: Yes, yes, I agree. I think so, too.

(b) Generated concerns constrain proposals

Figure 2: Examples of dialogue organization in joint inquiry in concerns and proposals.

dialogues on video have been collected. Data set 2 consist of dialogues exchanged between prospective
venture business entrepreneurs and business consultants. Business hopefuls, who sign up for a venture
business competition, receive consultations for idea brush up. A total of 9 sessions about 9 hours of
dialogues on video have been collected.

3 Joint inquiry in concern/proposal spaces

Real-world dialogues do not necessarily proceed so orderly that they are amenable to be captured by
template patterns. Dialogues often go back and forth between concerns and proposals, indicating the
exploratory nature of identifying a relevant set of concerns to put together a successful proposal that can
be agreed upon to everyone’s satisfaction. Proposals generate new concerns, and concerns generate new
proposals (Figure 2).

A proposal provides people with a reference point, on which they reflect on their preferences through
their appraisal of it, to come up with a new set of concerns. Concerns are not only employed to support or
to criticize proposals, but they can also be employed to direct the course of further developing proposals.
Newly introduced concerns provide enrichment to the structures of potential space of concerns, and invite
participants to jointly advance toward successful and concrete proposals.

With the notion of Concern Alignment, we aim to capture the dynamics of this open-ended inquiry in
concern/proposal space taking place in consensus-building dialogues
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Abstract. Serious games often employ pre-scripted dialogues and inter-
actions with a player; in contrast to free user input that enables deeper
immersion. In this paper we explore possibilities for interactive natural
language dialogue in a serious game by combining Natural Language Pro-
cessing (NLP) techniques with dialogue management. Our game learn-
ing environment has a communication scenario editor in which a domain
expert develops a structured, scripted scenario as a sequence of poten-
tial interactions. A communication scenario is context-specific and often
follows a protocol - for instance, delivering bad news to a patient. Cur-
rently, a player navigates through a simulation and converses with a
virtual character by choosing a statement option from one of the pre-
scripted player statements, at each step in the simulation. We develop a
scenario-specific corpus method (SSCM) to process open responses (i.e.
natural language inputs) in our learning environment. We conduct an
experiment to collect data for comparing SSCM against multiple NLP
methods, and another experiment to investigate if framing can improve
processing open-text input using SSCM in a communication simulation.

1 Introduction

Many universities and vocational programs train students in communication
skills. Communication skills are best learned through practice, in role-play or
with a simulated patient [1]. In a digital learning environment for training
communication skills, a student often performs a conversation with a virtual
character, and the learning environment assesses the performance of each stu-
dent against the conversation’s learning goals. Serious games often employ pre-
scripted dialogues and interactions with a player; in contrast to free user inputs
that enable deeper immersion.

Our game learning environment Communicate [5] provides a communication
scenario editor in which a domain expert develops a structured, scripted scenario
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as a sequence of potential interactions. A scenario is context-specific and often
follows a communication protocol - for instance, delivering bad news to a patient.
Communicate provides expressive features to a scenario author and decouples
scenario development from the implementation of a communication simulation.
An author typically encodes a learning goal for a scenario e.g. assertiveness as a
parameter. A player statement usually has an incremental value on a parameter
and triggers an emotional effect e.g. ‘Happy’ in a VC. A structured scenario
represents the expert knowledge of a communication skills teacher for a particular
protocol in a domain.

A scenario simulation in Communicate [5] presents statement choices to a
player at a step of a scenario. A player navigates through a simulation and
converses with a virtual character by choosing a statement option from one
of the pre-scripted player statements, at each step in the simulation. In this
respect, a scenario currently resembles a sequence of multiple choice questions.
Communicate has a good take-up; more than twenty teachers/teaching assistants
use it as part of communication skills education at different faculties (medicine,
veterinary science, pharmacy, psychology etc.) of Utrecht University. Other users
include the city-municipality, some social services organisations, a few hospitals
and a national-level government organisation.

2 Research questions and experiments

Martinez [6] describes how test item formats vary in cognitive load and in the
range of sampled cognition processes. Multiple-choice items often elicit low-
level cognitive processing, whereas constructed-response items more often re-
quire complex thinking. Test item formats pose trade-offs in the dimensions of
cognitive features, psychometric characteristics, and costs of administration and
scoring. However, there is no format appropriate for all purposes and for all
occasions.

Hammer et al. [4] assert that the most appropriate value assigned to a word
in the sentiment lexicon depends on the domain. They advocate that a sentiment
lexicon needs to be specialised for each particular domain.

We explore possibilities for interactive natural language dialogue in a seri-
ous game by combining Natural Language Processing (NLP) techniques with
scripted dialogue management. Our contribution is to use information present
within a communication scenario to process open-text player-input. We use a
scenario as a basis to develop a scenario-specific corpus and we match a player
open-text input to a pre-scripted statement choice at a step in a scenario using
this scenario-specific corpus. Our research question is: ‘How does the scenario-
specific corpus method (SSCM) compare to some other Natural Language Pro-
cessing (NLP) techniques, when matching user open-text inputs to predefined
answers?’

We extended Communicate to perform an experiment in spring-summer 2018.
The focus of this experiment is to gather data to compare SSCM versus other
NLP methods.
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At our University, final year bachelor computer science students work in a
team project and develop a software product for a real customer. In spring-
summer 2018 there are a total of eighty two students assigned in eight teams of
ten to twelve students each. Seventy eight students gave consent to use their data
for research. The age of the students ranges between twenty and twenty-eight
years.

We developed a scenario called Samenwerken (Collaborate) in Communicate
to train a student in collaboration skills. We adapted Communicate to gather
data in this experiment: a student gets an open-text input box in which she
writes her response instead of choosing from the multiple choices at each step. A
student inputs her text, after which Communicate displays the available scripted
statement options at this step. There is also an option No response matches
displayed at each step. A student indicates which statement is closest to her
open-text input, or chooses No response matches in case no scripted statement
matches her input. If a student chooses No response matches, Communicate
thereafter asks her to select one of the scripted statement options to continue
the simulation.

Two independent experts annotate the play-throughs from the students in
this experiment. We compared a match between a student and the two annota-
tors. For statements where a match is present, we run a two-way random effects
model of ICC (Intraclass Correlation Coefficient) and Cronbachs alpha. We rea-
son that the agreement between a student and the two annotators represents
the upper-bound an NLP match-method can achieve as a match-method can-
not exceed human comprehension. To compare SSCM, we use open-source NLP
methods namely: a) fuzzy string matching (glench.github.io/fuzzyset.js),
b) cosine similarity between word stems, c) semantic distance measures exposed
by the ReaderBench (RB) framework [2], d) semantic similarity computed using
spaCy (https://spacy.io). We also investigate comparing an input to a cluster
of strings.

In our second experiment in fall-winter 2018, we use SSCM to handle open-
text at run-time of a scenario simulation. The focus of this experiment is more
pedagogical.

Entman. [3] describes framing as selection and salience; select an aspect of
a perception and highlight that aspect in a communicating text, to promote
a particular interpretation. Van Lehn et al. [7] study standard behaviour in
Intelligent Tutoring Systems (ITS) and find that giving hints and feedback at a
step level of an ITS improves student learning.

We investigate if framing (highlight and hint) in a dialogue can improve
processing open-text input in our game learning environment Communicate.
Our research questions are: ‘a) what is the effect of highlighting on a student’s
choice; and b) do hints influence a student following a scripted scenario?’

We assign half the students in fall-winter 2018 software projects to an exper-
iment and a control group. We modify Communicate to use SSCM to match a
player’s open-text input to available pre-scripted statement choices at a step of
a dialogue scenario. A match-method has a threshold-value below which there
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is no match. SSCM takes an open input text and returns a match-score per
scripted statement at a step of the simulation. If all returned match-scores for a
input statement are below the threshold value for SSCM, Communicate provides
a hint to a player in the experiment group. To the control group students, Com-
municate says, ”I could not understand”. In both cases, Communicate prompts
a player to input a new text.

If at least one statement option has a match-score above the threshold-value,
we display all options, highlight the best match and ask a player to choose an op-
tion closest to her input. To measure the effect of highlighting, we conduct a 2nd
round with the students a few weeks after the 1st round; to ensure that a student
does not automatically remember the choices. Communicate presents a student
her play-through from the 1st round. At each step, Communicate displays the
statement a student entered in the 1st round, along with the statement options
available at that step of the scenario, and an option No response matches. A stu-
dent chooses an option closest to her input from the 1st round or No response
matches.
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Abstract 
To investigate how participants resolve misunderstood utterances, which contain more than one 

intent, we conducted a wizard-of-oz study, simulating a speech dialog system capable of han-

dling multiple intents in one utterance with periodically simulated misunderstandings. Next to 

the strategy ignoring everything despite the misunderstanding, we found that two third of the 

participants resolved the error and answered a system question in one turn. 

1 Introduction 

Humans tend to structure their communication in an efficient, economic way (Lemon et al., 2002).  Es-

pecially in situations when they have to fulfill also other tasks such as in a driving situation. This means 

that they often speak about different things in one utterance (called multi intents (MIs)) to get back as 

fast as possible to the more demanding driving task, e.g. “Take the normal way to work and I wanna 

call my wife”. While utterances can contain multiple intents simultaneously, such as answering a ques-

tion and providing feedback about the understanding of the question, intents can also be aligned sequen-

tially like in the provided example (Bunt, 2011). Communication problems will arise if the system sum-

marization of the utterance contains a misunderstanding. Humans have different strategies to cope with 

such a problem. The aim of this paper is to find these error correcting strategies for partly misunderstood 

MI utterances. Therefore, we implemented a MI wizard-of-oz study with periodically simulated misun-

derstandings. 

2 Topics and Experiment Design 

Each participant of the user study conducted six dialogues with the speech dialogue system (SDS) of an 

autonomous car. To keep the study controllable the system tries to clarify the user's need by asking 

closed questions. While the system was uttering a question, a picture regularly appeared on the screen 

in front of the participant. This picture represented one out of four user conditions likely to occur during 

a car ride such as the driver feels cold. Participants were instructed to answer the question and to respond 

to the shown picture in one turn. During three out of six dialogues a misunderstanding was simulated. 

The misunderstanding occurred always after the participant used a MI utterance. It only concerned the 

user answer, not the additional intent which was triggered by the picture. The participants received in-

structions to correct possible errors, and no matter which strategy they chose, the wizard ensured that 

resolving the misunderstanding was successful. 

3 Correcting Misunderstandings 

We distinguish between two main strategies which participants used to correct the simulated misunder-

standing. In the first strategy (called MI correction (MIC)) the participant uses at least two sequential 

aligned intents in one utterance: one to fix the misunderstanding and one to respond to the system ques-

tion. The sequence of these intents can also be switched: the participant choses to respond first to the 

system question and after that resolves the misunderstanding. Doing so he changes the sequence of 

topics used by the system. This pattern is labeled as topic sequence change (TSC) (see Table 1). 
 

 

Classification Example utterance 

MIC | TSC | cCorrection only “Please activate the air condition. I want to refuel in Austriac.” 

MIC | TSC | rRejection and cCorrection “Please activate the air condition but I stillr want to refuel in Austriac.” 

SIC | BI | rRejection only [System still speaking] “Correctionr!” 

SIC | cCorrection only “I would like to refuelc.” 

Table 1: Classified examples of participants’ responses to the system misunderstanding: “Ok. We won’t do any more refuelling 

stops and regarding the heat: Should I turn on the air condition or activate the seat ventilation?” Corrections and Rejections 
are marked with c and r. 

215



The second strategy (called single intent correction (SIC)) occurs if the participant focuses only on fixing 

the misunderstanding and ignores system question, or interrupts the system while the sentence contain-

ing the misunderstanding is uttered. The interruption of the system is called barge-in (BI) (see Table 1). 

Furthermore, we analyzed if the participant only rejected or corrected the misunderstanding or did both. 

Rejection means the utterance does point out the wrong part of the utterance, but requires further clari-

fication: “No, I don't want to cancel my appointment.” If only the correction is realized, it can be difficult 

to detect miscommunication at all: “I want to postpone my appointment.”  

 

 

 
 
 
 
 

                                                                                                                

 

4 Results 

We analyzed data from 39 participants (15f/24m), with average age of 25.08 (SD: 4.2). Their experience 

with SDS range in the middle (6-Likert scale, avg.: 3.17, SD: 1.23) as well as the usage of SDSs (5-

Likert scale, avg.: 2.24, SD: 1.22). In total, we built a corpus of interactions with 5h 33min of spoken 

German dialogues. It contains 1454 user utterances with 364 MI utterances. 

Figure 1 shows the distribution of all classified utterances which were used to correct misunderstand-

ings. In 67% of the correction utterances the misunderstanding is resolved and also an answer to the 

system question is provided. Most of them (76%) were labeled as TSC because the utterances contained 

first and foremost the answer to the system question and secondly the correction. 

33% of the recognized misunderstandings were solved by handling only the error, according to the SIC 

strategy. Nearly two thirds (62%) interrupted the system at the moment the failure was realized. The 

other SIC utterances (38%) were uttered by participants who did not interrupt the system, listening to 

the whole prompt and decided afterwards to ignore the correct part. 

Figure 2 shows the distribution of the usage of rejections and / or corrections. When considering MIC 

utterances most of them (45%) included only the correction whereas SIC utterances contained mainly 

both rejection and correction (69%). Overall a preference to give clear hints when miscommunication 

happens and correct the wrong utterance was observed (45%). 

5 Conclusion 

In a situation where users have to resolve a misunderstanding and answer a question, most of them do 

both in one turn. They mostly concentrate first on the question and focus the misunderstanding after-

wards. If only the misunderstanding is addressed, they interrupt the system or ignore the additional 

question. Therefore, when developing a user-centred MI SDS it is necessary not only to consider the 

different strategies used but also variations like changing topic sequences or dropping topics. Addition-

ally, users tend to express only the correction when using a MI utterance and give no obvious clues 

about the occurrence of a misunderstanding in the first place. Due to this reason it can be problematic 

to detect the miscommunication at all. It also seems, that if error recovery works properly, user do not 

hesitate to use multiple intents to get things done in one turn.    
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Figure 1: Overview of the distribution of the usage 

of correction strategies. 
Figure 2: Distribution of the usage of rejections and / 

or corrections in MIC and SIC utterances. 
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1 Introduction

It hardly needs to be said that conditionals are an active area of semantic research. In dialogue, in addition
to if-clause adjuncts forming conditional constructions or as embedded indirect questions, we can also
find speakers using the if-clause alone as in (1):

(1) If I hear that bloody one more time. (BNC KP4 605)

To address conditionals from a wider dialogue-based perspective, examples such as (1) cannot be reason-
ably ignored. Isolate conditional clauses are not an especially well-studied phenomenon, but have still
attracted a small (and growing) body of non-formalised work as a cross-linguistic phenomenon, includ-
ing English (Stirling, 1999), Italian (Vallauri, 2004), Finnish and Swedish (Lindström et al., 2016) and
other Germanic languages (D’Hertefelt, 2015). There is a distinct lack of work on isolate if-clauses from
a formal perspective, though the work on conditionals in Elder (2015) is dialogue-directed and includes
a focus on the function of the if -clause itself. In doing so it makes space for the consequentless if -clause,
in particular their use as directives.

We provide a pilot corpus study noting the presence of isolate if-clauses in spoken English data, plus
an initial general analysis of the relations between lone if-clauses at different degrees of ‘isolation’, and
if-clauses as part of explicit conditionals.

2 Pilot corpus study

A pilot corpus study was carried out on 300 if-clauses found in the spoken section of the BNC. Samples
were drawn from a total of 35 files, with 200 taken from informal conversation, and 20 each from meet-
ings, one-to-one tutoring sessions, medical consultations, media discussions, and interviews. The first
ten instances of non-embedded if-clauses were selected from each1, skipping those which were immedi-
ately interrupted or otherwise too unclear to understand. The annotation can be grouped into two groups,
categories for content provision (precond, bkgd, poss), and those related to communication management
(frame, hedge). Not all instances were annotated for a feature in both groups.

Almost four fifths (78.33%) were found to hold only a content-provision function. A large overall
minority were of type bkgd, where in context the removal of the if-clause would not degrade the content to
the point of misinformation (1.67% were repetition of a preceding if-clause). A non-content use as frame
was also found for a large minority, where the if-clause was judged to provide a topic or case relative
to which other content was relevant, while a small number performed other communicative functions,
hedging speaker certainty, utterance appropriateness or the correctness/acceptability of a lexical item.

About 5% of the if-clauses presented a possibility without any explicit verbal consequent, only one
case of which was a polar question answer. This was slightly more than the number found with either
imperative or interrogative clause consequents. Although the raw numbers at this point become very low,
it can be noted that the other ‘consequentless’ if-clauses were roughly evenly split between those which
did and did not function as a directive.

Place licence statement here for the camera-ready version.
1the exception being the data from medical consultations, which had too few instances per file to take two sets of ten
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3 General analysis

Table 1: If-clause func-
tions among 300 non-
embedded if-clauses

Type Total %
precond 212 70.67
bkgd 53 17.67
poss 17 5.67
frame 45 15.00
hedge 8 2.67

In our initial formalisation we use the framework Type Theory with
Records (TTR) (Cooper, 2005; Cooper, 2012; Cooper and Ginzburg, 2015)
in a similar vein to the grammatical framework found in Ginzburg (2012),
and in regards to syntax follow a HPSG approach. The dialogue state
is considered as a gameboard, with fields tracking conversation history,
questions under discussion, and accepted information. Each construction
is characterised according to two fields: required contextual parameters for
the gameboard and the content encoded in the entry.

The content of if is taken as a function accepting two arguments, the
first of which is to be supposed. Unless overridden by recognition of a
subtype, satisfying the consequent argument will perform the same type of
move as the consequent alone. We treat supposition as the addition of a new maximal QUD. We assume
that we can ‘break out’ the interim output at any point, leaving underspecified fields unresolved. In this
way a singular “If” should evoke a suppositional conversational move without having the content nec-
essary to actually perform one, and a completed if-clause should still be able to perform a suppositional
conversational move before (or without) a consequent.

There is variation in the level of ‘isolation’ in if-clauses, ranging from those explicitly forming a
conditional to those which intuitively resist ‘completion’. The notion of isolation used in the non-formal
literature should be understood as the extent to which some semantic consequent for the if-clause is
explicit, derivable from context, implicit, or fully absent.

The if-clause with a derivable consequent has a specific consequent, which is not recognised sim-
pliciter as another utterance, but derived from it, as per the if-clause which is sufficient answer to a polar
question. If-clause polar question responses have their consequent fully specified through the same gen-
eral mechanism that provides content to other affirmative polar question responses, and follow from a
general polar question response construction.

At the other end of the scale, isolate if-clauses can form constructions conventionalised to the point
where they no longer include any implicit consequent, such as in an exclamatory “Well if it isn’t the
very man!”. Isolate if-clauses are the (semi-)conventionalisation of a specific point in the incrementation
of a conditional. These only ‘accept’ addition of a consequent through re-interpretation as a standard
if-clause and in reinterpretation, the generation continues from that point in incrementation, which has
to be re-established.

Those with neither a directly derivable consequent nor strong resistance to addition of an explicit
consequent, include an implicit underspecified consequent. There is a degree of fluidity between these
and if-clauses performing the same or similar functions in full conditionals. Uninstantiated parameters
can of course be queried, and there is flexibility in whether to accept underspecification as left by the
if -clause, or gain specificity by explicitly completing it or requesting completion from another speaker.
The most general case is simply use of the if-clause to update QUD with a supposition. By introducing
the if-case to QUD, it is made available for discussion without requiring its truth to be determined.

In a more specific case, declarative conditionals can be used to direct an addressee to realise the if-
case. When the speaker does not feel it necessary to make any particular assertion about what will follow,
or to ‘sell’ the directive by clarifying that following it is beneficial, a consequent can be superfluous.
Recognition of a directive if-clause rests with the context and the content of the if-clause itself, as its
content must be relevant to achieving some contextual goal. The semantic content of a directive if-clause
(in our framework, an Outcome as distinct from a Proposition) can be derived from the propositional
content of the antecedent, so no serious disconnect is created between an isolate if-directive and one with
an explicit, specified consequent which has an additional declarative function.
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Abstract

This project uses distributional semantics to investigate the relationship between semantic ne-
gotiation and historic semantic change, two sources of semantic variation. We hypothesize that
semantic negotiation is the mechanism by which historic semantic change occurs, and that intra-
dialogue semantic dynamics can therefore predict shifts in meaning on the global level.

1 Background

Successful communication requires lexico-semantic overlap among speakers; they must agree, at least to
some degree, on the meaning of the words they use. Nevertheless, a given expression often has different
meanings across uses, even within the same language. Sources of semantic variation include differences
between speech communities, diversity of personal linguistic style, polysemy and homophony, historic
semantic change, and dialogical semantic adaptation. In this project, we examine the relationship be-
tween these last two categories. In particular, we look for evidence that semantic adaptation in dialogue
predicts historic semantic change.

1.1 Semantic Adaptation
Over the course of a dialogue, participants collaborate to establish and refine a common ground that sup-
ports further communication (Clark and Schaefer, 1989). Common ground includes semantic alignment:
dialogue-specific conventions about the meaning of new and existing lexical items (Brennan and Clark,
1996).

Semantic alignment takes place through semantic negotiation. Dialogue participants negotiate the
meaning of lexical items both implicitly (when a particular use is accepted by the listener) and explicitly
(through clarification and repair) (Larsson, 2007; Mills and Healey, 2008). Negotiation allows speakers
to adapt the meaning of expressions to facilitate their particular communicative needs.

1.2 Historic Semantic Change
By historic semantic change, we mean changes in the meaning of an expression that take place over an
entire language or community of speakers. As opposed to adaptation, historic change is not confined to a
particular dialogue. In a given language community, historic semantic change has taken place when the
updated meaning is taken as common ground at the community level; i.e., when speakers begin dialogues
with the new meaning as a mutually understood interpretation of the expression in question.

Distributional semantics seeks to represent the meaning of words based on their co-occurrence with
other words. The semantic distance between two words is estimated by the cosine distance between the
distributional vectors representing their meaning (Turney and Pantel, 2010). These methods have been
used to detect semantic change by comparing representations of the same word across time (Gulordava
and Baroni, 2011; Kulkarni et al., 2015). Diachronic word vectors have also been used to test hypotheses
about the regularity of semantic change with respect to word frequency and polysemy (Hamilton et al.,
2016b), and to detect differences in the mechanisms of semantic change (Hamilton et al., 2016a).

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
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2 Methods

This project seeks to test the hypothesis that semantic adaptation is a driver of semantic change. Adap-
tations achieved through semantic negotiation may persist in future dialogues (among the same partic-
ipants) and, if speakers introduce the same adaptation in dialogues with others, gain more widespread
usage. For this reason, we expect that intra-dialogue semantic adaptation (in aggregate) predicts semantic
change at the community level.

The central problem of this project is to find a method of detecting systematic semantic adaptation
that is compatible with the diachronic word vectors described by Hamilton et al. (2016b). Let wt be the
vector representation of word w at time period t; that is, the vector computed using only contexts for w
that occur in time period t. To measure semantic adaptation, we additionally compute wb

t and we
t : the

vectors that consider only occurrences of w at the beginning and end of the dialogue, respectively.
To achieve this, we propose to split the dialogue before the first use of w by a second dialogue par-

ticipant. In other words, wb
t consists of contexts where w has so far only been used by a single person,

and we
t includes only contexts where w has been uttered by multiple participants. If a speaker is going

to introduce an adaptation in the meaning of w, it is likely they will do so on their first utterance of the
word, since to do otherwise gives positive feedback for the unadapted interpretation. Thus, adapted uses
of w are more likely to occur after the second participant has had a chance to introduce an innovative
interpretation of w.

To compare vectors across time periods and between dialogue partitions, we use orthogonal Procrustes,
as described by Hamilton et al. (2016b). In situations with relatively little data and subtle semantic
changes, the authors recommend using PPMI vectors with SVD dimensionality reduction.

Experiments will test two hypotheses: First, that semantic adaptation of a word w predicts his-
toric change i.e., cosdist(wb

t ,w
e
t ) is correlated with cosdist(wt,wt+1). Second, in general the direc-

tion of intra-dialogue adaptation indicates the direction of semantic change i.e., cosdist(we
t ,wt+1) <

cosdist(wb
t ,wt+1).
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Grégoire de Montcheuil
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1 Introduction

Doctors should be trained not only to perform medical or surgical acts but also to develop competences
in communication for their interaction with patients. For instance, they often face the announcement of
undesirable events to patients, as for example damage associated with care (i.e. a consequence of an
unexpected event due to complication, unforeseeable medical situation, dysfunction or medical error).
The way doctors deliver bad news related to damage associated with care has a significant impact on
the therapeutic process: disease evolution, adherence with treatment recommendations, litigation possi-
bilities (Andrade et al., 2010). However, both experienced clinicians and medical trainees consider this
task as difficult, daunting, and stressful. Nowadays, training health care professional to break bad news,
recommended by the French National Authority for Health (HAS)1, is organized as workshops during
which doctors disclose bad news to actors playing the role of patients. However, this training solution
requires several persons: it is costly, and time consuming. We aim at developing a training system in-
habited by an embodied conversational agent playing the role of a virtual patient to give the doctors
capabilities to simulate breaking bad news situations.

In this paper, we present the dialog module we have developped in a project aiming at developing a
multi-platform simulation system that has been designed to train doctors to break bad news with a virtual
patient2. The doctors can interact in natural language with a virtual patient The dialog model of the virtual
patient is based on the notion of “common ground” (Garrod and Pickering, 2004), i.e. a situation model
represented through different variables that is updated depending on the information exchange between
the interlocutors. The variables describing the situation model, specific to breaking bad news situations,
have been defined based on the analysis of corpus of real training sessions in medical institutions and in
light of the pedagogical objective in terms of dialog. The simulation training system can finally be run
on three platforms: PC, virtual reality headset, and an immersive virtual reality room.

Corpus-based Virtual patient’s multimodal dialog model In order to model the virtual patient’s
behavior, we have analyzed audio-visual corpus of interactions between doctors and actors playing the
role of patients during real training sessions in medical institutions. Indeed, for ethical reasons, it is not
possible to videotape real breaking bad news situations. Simulated patients are actors trained to play
the most frequently observed patients reactions. The total volume of videos is 5 hours 43 minutes and
8 seconds for 23 videos of patient-doctor interaction with different scenarios (e.g. cancer diagnosis,
digestive perforation’s announcement, etc.).

The dialog model of the virtual patient aims at identifying automatically the dialog behavior of the
virtual patient during the interaction with the doctor, that includes verbal (e.g. specific questions or
remarks) and non-verbal (e.g. head nods, smiles) reactions to utterances of the doctor.

A dialog model based on the construction of a common ground Concerning the verbal behavior, in
order to identify the contents of the virtual patient’s verbal reaction, we propose a dialog model based
on the notion of common ground introduced by Garrod and Pickering (Garrod and Pickering, 2004).

1The French National Authority for Health is an independent public scientific authority with an overall mission of contribut-
ing to the regulation of the healthcare system by improving health quality and efficiency.

2ACORFORMed Project: http://www.lpl-aix.fr/ãcorformed/.
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Conversation is then viewed as a joint activity during which the interlocutors ”work together to establish
a joint understanding of what they are talking about” (Garrod and Pickering, 2004). The joint activity
is based on the alignment of their situation models containing information about space, time, causality,
intentionality, etc. In other words, the interlocutors interact to construct a common representation of a
situation, called an implicit common ground.

In our context, the common ground that the interlocutors (the doctor and the virtual patient) have to
construct concerns about the situation of disclosure a damage associated with care. The French National
Authority for Health (HAS) produces recommendations and best practice guidelines to facilitate the
disclose of unfavorable information to patients (Schnebelen et al., 2011). Based on this guideline and on
the analysis of the training corpus (Saubesty and Tellier, 2015), five principal phases have been drawn
from the data: “opening” (e.g. presentation, inquiring of the patient’s state), “exposing the situation”
(e.g. a reminder of the patient’s care since he/she arrived in the hospital), “breaking the news” (e.g. clear
exposition of known facts), “discussing the future” (e.g. what solution for the damage, who will perform
it, where, ...) and “closing”. For each phase, guideline describes the different information that the doctor
should deliver to the patient concerning this breaking bad news situation. For instance, in the “breaking
the news” phase, the doctor should, at least, inform the patient on the type of the problem (e.g. digestive
perforation), when it occurred (e.g. during a surgical operation), the location (e.g. in the stomach), and
the cause (e.g. the polyp wasn’t positioned properly). In order to construct the situation model, i.e. the
common ground that the doctor and the patient should construct together, we have associated a variable
to each information that the doctor should deliver to the patient. For instance, we have defined for the
step “breaking the news”, 4 variables : type problem, when problem, location problem, cause problem.
In total, we have defined 12 variables. Finally, a situation model is described by this set of phases and
associated variables. A common ground is constructed if all the variables are instantiated, i.e. if the
doctor has provided all the information characterized by the variables. In the following, we call these set
of phases and variables the common ground.

The dialog model is based on this common ground representation. The variables are used both to store
the information provided by the doctor and to determine the reaction of the patient. Indeed, depending
on the recognized verbal utterances of the doctors, the variables will be instantiated. For instance, if
the doctor provides information on the location of the damage, the variable location problem will be
instanced with the location. Moreover, the virtual patient will use the common ground, and in particular
the non-instantiated variables, to determine his/her reactions. Indeed, the virtual patient will ask specific
information to instantiate all the variables. Note that the variables describing the situation correspond
to pedagogical objectives of the breaking bad news situation in terms of dialog. Indeed, the variables
correspond to the set of information that the doctors have to provide to the patient concerning the damage
as specified by the French National Authority for Health (HAS). The dialog model based on this notion of
common ground is then particularly suitable in a learning context since it has the advantage of integrating
the learning objectives concerning the content of the conversation.

In order to test the dialog model, we have selected a specific scenario of breaking bad news situation.
The situation is a digestive perforation that had occurred during an endoscopy. The scenario has been
carefully chosen with the medical partners of the project for several reasons : the panel of resulting
damages, the difficulty of the delivery, and the bad news standard characteristics. To construct the dialog
model for this specific scenario, we have manually analyzed transcribed corpus with this scenario with
three objectives:(1) Validate the situation model: check that we can identify the different phases and
variables of the situation model; (2) Identify the different values of the variables in this specific context
of the digestive perforation; (3) Identify the appropriate verbal or non-verbal responses of the virtual
patient. For this purpose, we have analyzed 7 dialogs of a total duration of 108 mn (each dialog lasts
from 8 mn to 27 mn).

The dialog model with this sepcific scenario was implemented using OpenDial (Lison and Kennington,
2016). OpenDial is a java-based, domain-independent toolkit for developing spoken dialogue systems.
Moreover, the dialog model has been evaluated with real doctors in different virtual reality displays (PC,
virtual reality room, and headset).
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1 Introduction

Natural language processing, and artificial intelligence more generally, has seen impressive break-
throughs in recent years. An important factor in this development has been the availability of large
labelled data sets such as, in NLP, the Stanford Natural Language Inference Corpus (Bowman et al.,
2015) or the Stanford Question Answering Dataset (Rajpurkar et al., 2016),1 and ImageNet (Deng et
al., 2009) in language & vision research. Assembling these dataset, in turn, has been made possible by
the availability of large numbers of workers who could be recruited for the annotation tasks, through
so-called crowdsourcing platforms.

In the subfield of dialogue modelling or conversational AI, developments have been somewhat slower.2

There are intrinsic reasons for this—as a discourse-level semantic/pragmatic phenomenon, dialogue is
much more domain-specific, and so corpora may generalise less easily; as an interactive phenomenon,
the space of possible dialogues is much larger than that of possible word sequences, so that even within
a domain a given corpus will still fail to capture much of the possible variation—but also practical ones.
One of these is that dialogue requires at least two participants between whom a connection must be
established in some way, and the common crowdsourcing platforms do not offer an easy way to achieve
this.

Several projects have recently built, for their own specific purposes, software that allows for pairing
up of participants (inter alia, (Manuvinakurike and DeVault, 2015; Das et al., 2017)), and there has even
been a recent effort to generalise this capability (in the “parlAI” architecture (Miller et al., 2017)). We
contribute to these efforts by presenting our framework, slurk.3 slurk is designed to be modular,
to make it possible to realise various different multimodal dialogue tasks. It is available at https:
//github.com/dsg-bielefeld/slurk.

2 Overview of the System

Figure 1: The Chat Client

The core of the system is a chat server implemented in
Python, on top of the web framework “Flask” and an ex-
tension for using websocket connections to clients.4 Users
connect via webbrowser, to which the client application
(Javascript) is then delivered. The client shows, as usual
for chat tools, a chat history and an input area, but also ad-
ditionally, a display area that is controlled independently
from the chat area (showing an image in Figure 1).

Conceptually, individual chats happen in rooms. In a
given room, there can be (an unlimited number of) human
participants, and there can also be bots. If so desired, a bot

1To mention only two recent datasets from one site, and ignoring the role that the availability of large amounts of unannotated
text corpora through the world wide web has also played.

2But see (Serban et al., 2018) for a recent overview of available dialogue corpora.
3As in “SlackTM for mechanical turk”...
4http://flask.pocoo.org; https://flask-socketio.readthedocs.io
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can be used to control the interaction, for example by controlling who has the floor, or by controlling
what is shown in the display area. The display area can be controlled on a by-user level, displaying
different things to different users. (As in Figure 2.)

Figure 2: Different image per user

Bots can also move users to other rooms; this, together
with a credential mechanism, is how we realise the inter-
face to crowdsourcing platforms and the pairing up. Tech-
nically, bots are realised as independent processes connect-
ing via websockets; our example bots are written in Python
using the websocket / socket.io client libraries.

So far, we have used the system for a data collection
in a setting where the participants play a game together
(self citation; under review). They can talk to each other,
but also each individually control what they see in the dis-
play area, through giving navigation commands to the bot.
Their goal is to meet up, i.e., to convince themselves that
they are looking at the same image. Figure 3 shows an ex-
ample of an interaction in this setting, from the perspective
of one player. See (Ilinykh et al., 2018) for more details.

3 Roadmap

Figure 3: An example task

While the system is fully functional in the current state and
can be used to collect dialogues involving discussion about
(and interaction with) images, development is still ongo-
ing and major new features are planned for the near future.
Among these are a plug-in architecture for the display area,
which will make it easy to insert any kind of javascript-
controlled widget, for example to display a manipulable
virtual environment. We are also working on capabilities
for streaming audio and for inclusion of (web-based) ASR and TTS. Chat area and input area are already
configurable and can be disabled; and in this way, the server will in the next version also serve as the
basis for speech interaction experiments.
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1 Introduction

After achieving impressive success representing image content textually (as done by captioning models
(Fang et al., 2015; Devlin et al., 2015; Chen and Lawrence Zitnick, 2015; Vinyals et al., 2015; Bernardi et
al., 2016); and referring expression resolution and generation (Kazemzadeh et al., 2014; Mao et al., 2015;
Yu et al., 2016; Schlangen et al., 2016)), the Vision and Language community has recently established
“Visual Dialogue” as the more challenging follow up task (Das et al., 2017; De Vries et al., 2017). In
that task, a Questioner, prompted by some textual information (a caption) can ask an Answerer questions
about an image that only the latter sees. We argue here that this setup leads to an impoverished form of
dialogue and hence to data that is not substantially more informative than captioning data, if the goal is to
model visual dialogue. We describe our ongoing work on the MeetUp setting, where two players navigate
separately through a visually represented environment, with the goal of being at the same location. This
goal gives them a reason to describe visual content, leading to motivated descriptions, and the dynamic
setting induces an interesting split between private and shared information.

2 Visual Dialogue

(a) What the ‘questioner’ sees. (b) What the ‘answerer’ sees. (c) Example dialog from our VisDial dataset.

Figure 3: Collecting visually-grounded dialog data on Amazon Mechanical Turk via a live chat interface where one person is assigned the
role of ‘questioner’ and the second person is the ‘answerer’. We show the first two questions being collected via the interface as Turkers
interact with each other in Fig. 3a and Fig. 3b. Remaining questions are shown in Fig. 3c.

Context (COCO) [25] dataset, which contains multiple ob-
jects in everyday scenes. The visual complexity of these
images allows for engaging and diverse conversations to be
held about them.
Live Chat Interface. Good data for this task should in-
clude dialogs that have (1) temporal continuity, (2) ground-
ing in the image, and (3) mimic natural ‘conversational’
exchanges. To elicit such responses, we paired 2 work-
ers on AMT to chat with each other in real-time (Fig. 3).
Each worker was assigned a specific role. One worker (the
‘questioner’) sees only a single line of text describing an
image (caption from COCO); the image remains hidden to
the questioner. Their task is to ask questions about this hid-
den image so as to ‘imagine the scene better’. The sec-
ond worker (the ‘answerer’) sees the image and the cap-
tion. Their task is to answer the questions asked by their
chat partner. Unlike VQA [4], answers are not restricted
to be short or concise, instead workers will be encouraged
to reply as naturally and ‘conversationally’ as possible. An
example dialog is shown in Fig. 3c.
This process is an unconstrained ‘live’ chat, with the only
exception that the questioner must wait to receive an answer
before posting the next question. The workers are allowed
to end the conversation after 20 messages are exchanged (10
pairs of questions and answers). Further details about our
final interface can be found in the supplement.
We also piloted a different setup where the questioner saw a
highly blurred version of the image, instead of the caption.
The conversations seeded with blurred images resulted in
questions that were essentially ‘blob recognition’ – ‘What
is the pink patch at the bottom right?’. For our full-scale
data-collection, we decided to seed with just the captions
since it resulted in more ‘natural’ questions and more
closely modeled the real-world applications discussed in
Section 1 where no visual signal is available to the human.

Building a 2-person chat on AMT. Despite the popular-

ity of AMT as a data collection platform in computer vi-
sion, our setup had to design for and overcome some unique
challenges – the key issue being that AMT is simply not
designed for multi-user Human Intelligence Tasks (HITs).
Hosting a live two-person chat on AMT meant that none of
the Amazon tools could be used and we developed our own
backend messaging and data-storage infrastructure based on
Redis messaging queues and Node.js. To support data qual-
ity, we ensured that a worker could not chat with themselves
(using say, two different browser tabs) by maintaining a
pool of worker IDs paired. To minimize wait time for one
worker while the second was being searched for, we ensured
that there was always a significant pool of available HITs. If
one of the workers abandoned a HIT (or was disconnected)
midway, automatic conditions in the code kicked in asking
the remaining worker to either continue asking questions or
providing facts (captions) about the image (depending on
their role) till 10 messages were sent by them. Workers who
completed the task in this way were fully compensated, but
our backend discarded this data and automatically launched
a new HIT on this image so a real two-person conversation
could be recorded. Our entire data-collection infrastructure
(front-end UI, chat interface, backend storage and messag-
ing system, error handling protocols) will be publicly avail-
able to help future efforts.

4. VisDial Dataset Analysis

We now analyze the v0.5 subset of our VisDial dataset col-
lected so far – it contains 1 dialog (10 question-answer
pairs) on 68k images from COCO (58k train and 10k
val), or a total of 680,000 QA pairs.

4.1. Analyzing VisDial Questions

Visual Priming Bias. One key difference between VisDial
and previous image question-answering datasets (VQA [4],
Visual 7W [62], Baidu mQA [12]) is the lack of a ‘vi-
sual priming bias’ in VisDial. Specifically, in all previ-

Figure 1: The Visual Dialogue Collection Task and an Example Dialogue (from (Das et al., 2017))

Figure 1 shows the environment in which the visual dialogue dataset (Das et al., 2017) was collected.
As the example dialogue on the right indicates, this rather artificial setting (“you have to ask questions
about the image”) seem to encourage a pairwise structuring of question and answer. That the string of
pairs forms a dialogue is only recognisable in the fact that each pair concerns a different aspect of the
image, and that later questions may refer to entities previously mentioned. Since there is no way for the
questioner to provide feedback on the answers, it is unlikely that a model could learn from data of this
type that dialogue is more than a sequence of loosely related question/answer pairs, and that even such
sequences typically would have structure in human dialogue. (For reasons of space, we cannot argue this
point more deeply here.)

3 The MeetUp Task

In contrast, we designed the MeetUp task to elicit more structured dialogue. The task is based on a
dynamic environment with several “rooms” (in the instantiation presented here, represented as images)
where two dialogue participants (players) are placed in different rooms and have to find each other. As
the players cannot see each other, but can communicate (via text messages), the only way they can solve
the task is to establish verbally whether they both currently see the same room/image.
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Figure 2: The scene discussed in the ex-
cerpt below

Our set-up extends recent efforts along the following
dimensions: 1) the task’s main goal can be defined inde-
pendently of reference, in high-level communicative terms
(namely “try to meet up in an unknown environment”),
2) the task is symmetric and does not need a rigid in-
teraction protocol (there is no instruction giver/follower),
3) there is a clear division between private information
(that only one player has access to) and public information
(facts that have been publicly asserted), and reaching the
goal involves moving information from the former state to
the latter (i.e., it involves conversational grounding (Clark,
1996)), 4) reference can be made to things not currently
seen, if they have been introduced into the discourse earlier (see line 59, “I found the kitchen”). We have
conducted a pilot data collection which indicates that this setting indeed leads to interesting dialogues.
We aim to collect a sufficient number of dialogues (in the thousands) in the upcoming weeks, in order to
be able to train agents on this task. Project URL: https://github.com/dsg-bielefeld/meetup.

Time Private to A Public Private to B
31 (01:45) A: I am now in a kitchen with wood floors and a poster that says CONTRATTO

. . . .
59 (02:50) B: Wait– I found the kitchen!

. . . .

60 (02:55) N−→ kitchen
61 (02:55) You can go [/n]orth [/e]ast

[/s]outh [/w]est
62 (03:13) A: I am back in kitchen. It has a white marble dining table in center
63 (03:29) B: Yes. There are four chairs on the island.
64 (03:35) A: Exactly
65 (03:37) B: And the big Contratto poster.
66 (03:48) B: Three lights above the island?
67 (03:53) A: yep
71 (04:05) B: /done
72 (04:07) A: /done
73 (04:10)

Well done! You are all indeed in the same room!

Table 1: (Discontinuous) excerpt from a MeetUp dialogue
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Research goal
Central to explaining many linguistic phenomena is an understanding of what the goals of the given discourse
are. This is made difficult however by the fact that goals are often left implicit in discourse. Much theoretical
work in semantics and pragmatics assumes that discourse goals can be identified with implicit or explicit
questions, or Questions Under Discussion (QUD; e.g., Ginzburg 1996; Roberts 1996). Semantic/pragmatic
theories typically yield strong, falsifiable predictions given a certain QUD, but no comprehensive theory exists
of what that QUD should be for any given piece of discourse. This limits the testability of these theories in
practice, and it stands in the way of a proper understanding of results from experimental linguistics, where
participants’ judgments are due in part to their understandings of the implicit goals underlying the linguistic
stimuli (e.g., Schwarz 1996; Westera and Brasoveanu 2014).

I propose to employ language models to help overcome this challenge, by using them to generate (or com-
pute the probability of) a plausible QUD based on a discourse. To my awareness no quantitative, data-driven
model of QUDs like this has been attempted. This is work in progress, and besides hoping to demonstrate the
promise of this kind of approach and obtaining feedback, I foremost wish to draw attention to this important
open issue for QUD-based theories, and the need for a tighter integration with computational modeling.

Language models
Language models are statistical models that can assign probabilities to sequences of words. For state of
the art performance, language models are typically artificial neural networks (Mikolov et al. 2010 and much
subsequent work). These are generative models: they generate natural-seeming language by sampling words
from a probability distribution conditioned on the words generated before. Neural language models are
trained in an unsupervised manner on large amounts of naturally occurring language, the training task being
simply to always predict the next word.

For this work-in-progress presentation, I train a standard Recurrent Neural Network of the Long Short-
Term Memory (LSTM) type (Hochreiter and Schmidhuber, 1997), which has become the de facto standard
for language modeling. They have been shown to be able to acquire many aspects of syntax (including
long-term dependencies) and lexical meanings (represented as high-dimensional vectors; cf. distributional
semantics). However, discourse-level (inter-sentential) dependencies are still challenging (e.g., Paperno et al.
2016), which leads me to be modest in my expectations of a simple LSTM for the current task of question
prediction, a typical discourse-level task. The current model will serve only as a first illustration, and I plan
to apply more sophisticated models to this task in due course. Let the main contribution for now be merely
to highlight the necessity of connecting pragmatic theory to computational models, and to bring attention
to one possible way of doing so.

Once trained, a language model can start generating words from scratch, or from a writing prompt, e.g.,
one could give it “love” and it may generate “...is in the air”, “...kills” or “...me please”, and any of an
open-ended range of continuations. We can also prompt it to generate a question based on a prior discourse,
which I will pursue below, and/or based on a subsequent utterance, which is an option I will pursue in the
near future. Indeed, to understand the QUD served by a given utterance, it will typically be necessary to
combine both sources of information, i.e., about the preceding discourse and about the utterance itself – but
the present work concentrates on the former.

Dataset used
Since my aim is to get language models to generate (and/or compute the probability of) questions, the
training data must contain sufficiently many questions to learn from. Moreover, for these explicit questions
to be able to teach the model about supposed implicit QUDs, the two types of ‘questions’ must have some
correspondence. We will here assume such a correspondence, between explicit questions and implicit QUDs,
as also assumed for instance in Roberts 1996 – but it is in certain respects a simplification.

The need for a dataset with sufficiently many explicit questions rules out non-fictional sources of data like
newswire texts and Wikipedia, which have virtually none. Dialogue contains a lot of questions, but currently
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available dialogue datasets are comparatively small, whereas language models need a lot of data. Instead I
will use literary text, which is a convenient middle way: much data is available, and it contains a reasonable
number of questions (though of course results obtained may not be representative of other genres). More
precisely, I use the raw data released as part of the LAMBADA dataset (Paperno et al., 2016). The training
data consists of the full text of 2,662 novels, comprising more than 200M words; test data consists of 5,153
passages from 1,332 novels disjoint from the training data. As a rough indication of its question density:
the training data contains 1.5M question marks (compared to 15M periods). It is worth noting that, in this
genre, questions occur almost exclusively in reported speech – something quite like dialogue after all.

Since I want to be able to prompt the trained language model to generate a question, and to compute
the probability of particular questions given that a question was to be produced, the training data must be
minimally augmented to include such prompts. We do so automatically by inserting tags 〈ask〉, 〈say〉 and
〈shout〉 at the start of every sentence in the dataset, based on whether the sentence ends with a question
mark ?, period . or exclamation mark ! – though this assumed alignment between punctuation and speech
act type is a simplification. After training on the data with such tags, one can then prompt the model to
generate a question based on a given discourse by first inputting the discourse, then inputting the tag 〈ask〉,
and finally letting the model generate a sentence.

Outlook
At SemDial I will present some early results obtained on the above task, and a preliminary analysis. I will
do so both by letting the model freely generate some questions for a piece of discourse, and by letting the
model compute probabilities for a handful of plausible questions given a discourse. This may be the first
exploration of using language models, trained on raw data, to ground QUD-based theories in natural data.
As such, much remains to be seen, but I think that the current approach to leverage language models for
generating questions holds some promise.

In the future I aim to combine the above type of model, which predicts a subsequent question given
a prior discourse, with a ‘backwards’ model that predicts a prior question given an utterance. Ultimately
I hope to apply the resulting models to stimuli used in experimental linguistics, and explain gradience in
linguistic judgments in terms of gradience in QUD probability (Westera and Brasoveanu, 2014) – but this is
not yet within reach.
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