Truth and Permissive Consequence

Pablo Cobreros, Paul Égré, David Ripley, Robert van Rooij

1 Universidad de Navarra
2 Institut Jean Nicod
3 University of Melbourne / University of Connecticut
4 Institute of Logic, Language, and Computation

Amsterdam Workshop on Truth
March 14, 2013
Three well-known challenges for a Kripke-style theory of truth (viz. Field 2008, Beall 2011):

- Make the T-equivalences valid
- Obtain a well-behaved conditional
- Deal with the Strengthened Liar
In bivalent classical logic, logical consequence is defined as the preservation of truth from premises to conclusions. Two equivalent definitions of $\Gamma \models \Delta$:

- the premises in Γ cannot be true without some conclusion in Δ being **true**
- the premises of Γ cannot be true without some conclusion in Δ being **not false**
General issue: what happens when moving to a larger truth value space, in which truth \neq non-falsity?

Answer: the two definitions can come apart

Object of this paper: show that the second definition of logical consequence, from truth to non-falsity, gives rise to a nice and well-behaved logic in a trivalent setting.

The resulting notion of consequence, which we may call permissive consequence, is fruitfully applied to the Liar and related paradoxes.
General issue: what happens when moving to a larger truth value space, in which truth ≠ non-falsity?

Answer: the two definitions can come apart

Object of this paper: show that the second definition of logical consequence, from truth to non-falsity, gives rise to a nice and well-behaved logic in a trivalent setting.

The resulting notion of consequence, which we may call permissive consequence, is fruitfully applied to the Liar and related paradoxes.
Truth vs. Non-falsity

- **General issue**: what happens when moving to a larger truth value space, in which \(\text{true} \neq \text{non-falsity} \)?
- **Answer**: the two definitions can come apart
- **Object of this paper**: show that the second definition of logical consequence, from truth to non-falsity, gives rise to a nice and well-behaved logic in a trivalent setting.
- The resulting notion of consequence, which we may call permissive consequence, is fruitfully applied to the Liar and related paradoxes.
Truth vs. Non-falsity

- General issue: what happens when moving to a larger truth value space, in which $\text{truth} \neq \text{non-falsity}$?
- Answer: the two definitions can come apart
- Object of this paper: show that the second definition of logical consequence, from truth to non-falsity, gives rise to a nice and well-behaved logic in a trivalent setting.
- The resulting notion of consequence, which we may call permissive consequence, is fruitfully applied to the Liar and related paradoxes.
Plan for this talk

- The Strict-Tolerant framework
- Transparent Truth
- Revenge issues
Permissive consequence: several precursors

- G. Malinowski (1990) on q-consequence and S. Frankowski (2004) on p-consequence: shifting the set of designated values between premises and conclusions, either by picking a sub- or a super-set.

- A. Nait-Abdallah 1995: studies the interplay between two notions of truth, classical truth (=1) and potential truth (≠ 0) in a trivalent setting.

- B. Bennett 1998: introduces a notion of arguable entailment in a supervaluationist setting: “if all of the premises are ‘unequivocally’ true, then the conclusion is ‘in some sense’ true”

- E. Zardini 2008: main precursor of our work, defines consequence as going from designated values to tolerated values from premises to conclusion.

- N. Smith 2008: fuzzy consequence defined as going from degrees > 0.5 to degrees ≥ 0.5 from premises to conclusions.
In work we did on vagueness (Cobreros et al. 2012), we define strict and tolerant truth in terms of classical truth and a primitive notion of similarity. Here we define strict and tolerant truth directly within a three-valued framework, first by focusing on the language of first-order logic without identity:

- Truth-values: 0, 1/2, 1
- Connectives handled by means of Kleene’s strong tables (conj: min, disj: max, neg: 1-).
- First-order models: $M = (D, I)$ where D domain of individuals, I function from predicates to $\{0, 1/2, 1\}$.

Three-valued logic
Tolerant vs. Strict Interpretation

Framework: 3-valued logic, with Kleene/Priest valuation scheme:

- $M \models^s \phi$ iff $I(\phi) = 1$
- $M \models^t \phi$ iff $M(\phi) > 0$
The distinction between strict and tolerant values induces four notions of consequence:

mn-consequence

\[\Gamma \models^{mn} \Delta \text{ iff if every formula } \gamma \text{ in } \Gamma \text{ is } m\text{-true, then some formula } \delta \text{ in } \Delta \text{ is } n\text{-true.} \]
Overview of mixed consequence

\[st = CL \]

\[ss = K3 \]
\[tt = LP \]

\[ts = \emptyset \]
The two ‘unmixed’ consequence relations (ss and tt) are well-known = Strong Kleene and LP. Note that each loses some desirable properties of the conditional and the deduction theorem:

- **K3:** $\phi \models_{K3} \phi$, but $\not\models_{K3} \phi \to \phi$
- **LP:** $\models_{LP} (\phi \land (\phi \to \psi)) \to \psi$ but $\phi \land (\phi \to \psi) \not\models_{LP} \psi$
ts vs. st

- ts can be viewed as **restraining** consequence: higher standard in conclusions than in the premises. It turns out to be so restraining as to be empty!

- st is **permissive** consequence: lower standard in conclusions than in the premises. The logic is just classical logic!
Remark about the conditional

\[M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]

\[M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]

<table>
<thead>
<tr>
<th>A</th>
<th>0</th>
<th>1/2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Remark about the conditional

\[M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]

\[M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]

\[
\begin{array}{c|ccc}
A & B \\
\hline
\rightarrow & 1 & \frac{1}{2} & 0 \\
1 & 1 & \frac{1}{2} & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 1 & 1 \\
\end{array}
\]
Remark about the conditional

\[M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]

\[M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]
Remark about the conditional

\[
M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B
\]

\[
M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B
\]

\[
\begin{array}{cccc}
A & \rightarrow & B \\
\hline
1 & 1 & 1 & 0 \\
1 & \frac{1}{2} & 0 & 0 \\
0 & 1 & 1 & 1 \\
0 & \frac{1}{2} & 1 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]
Remark about the conditional

\[M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]
\[M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1/2</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td>1/2</td>
</tr>
<tr>
<td>1/2</td>
<td>1</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Cobreros, Égré, Ripley, van Rooij

Truth and Permissive Consequence
Remark about the conditional

\[M \models^t A \to B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]

\[M \models^s A \to B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]
Remark about the conditional

\[M \models^t A \rightarrow B \text{ iff: if } M \models^s A \text{ then } M \models^t B \]

\[M \models^s A \rightarrow B \text{ iff: if } M \models^t A \text{ then } M \models^s B \]

\[\begin{array}{c|c|c}
\rightarrow & 1 & \frac{1}{2} & 0 \\
\hline
1 & 1 & \frac{1}{2} & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} & \frac{1}{2} \\
0 & 1 & 1 & 1 \\
\end{array} \]
So far we’ve talked of transparent vs. strict “truth”, we actually prefer to distinguish two modes of assertion.

The main idea is: regard logical consequence as reflecting constraints on assertion proper.

On the picture we are using: 1 and 0 do not primarily represent truth and falsity, but ‘levels of goodness’ (Zardini 2008), ways of marking that there is a nonarbitrary ground for asserting or denying a sentence. 1/2 will typically be used for sentences for which there is no nonarbitrary ground.
We now assume a first-order language with a distinguished truth-predicate T and a quote-forming operator $\langle \rangle$.

We use the same three-valued models, but with the following two constraints:

- $I(\langle A \rangle) = A$
- $I(T\langle A \rangle) = I(A)$ for every formula A. (identity for truth)
We say that a truth predicate T is transparent iff A and $T\langle A \rangle$ are intersubstitutable everywhere without affecting validity.
Truth and consequences

- Ordered by strength

- ts is almost empty, ss is K3, tt is LP, and st is classical logic.

- Double lines are conservative extensions (no change in T-free consequences).

- $+$ consequence relations feature fully transparent T.
Truth and consequences

Ordered by strength
- \(ts \) is almost empty, \(ss \) is K3, \(tt \) is LP, and \(st \) is classical logic.

- Double lines are conservative extensions (no change in \(T \)-free consequences).
- + consequence relations feature fully transparent \(T \).
Ordered by strength

+ ts is almost empty, ss is K3, tt is LP, and st is classical logic.

Double lines are conservative extensions (no change in T-free consequences).

+ consequence relations feature fully transparent T.

Cobreros, Égré, Ripley, van Rooij

Truth and Permissive Consequence
Ordered by strength

- ts is almost empty, ss is K3, tt is LP, and st is classical logic.

- Double lines are conservative extensions (no change in T-free consequences).

- $^+$ consequence relations feature fully transparent T.

\[\begin{array}{c}
 ss^+ \\
 \downarrow \\
 ss \\
 \downarrow \\
 ts \\
 \downarrow \\
 ts^+ \\
 \downarrow \\
 tt \\
 \downarrow \\
 tt^+ \\
 \downarrow \\
 st^+ \\
 \downarrow \\
 st \\
\end{array} \]
Main properties of the logic

We call STT the logic matching the st_+ consequence relation:

- **Conservative extension**: STT is a conservative extension of classical logic.
- **Inference extension**: if $\Gamma \models^{mn} \Delta$, then $\Gamma^* \models^{+} \Delta^*$, where $*$ is any uniform substitution.
STT validates all instances of the T-schema

STT incorporates a well-behaved conditional, satisfying the deduction theorem
The only price to pay for transparency is nontransitivity. Consider for instance the Liar:

Let $\lambda : = \neg T(\lambda)$. We have:

$$A \models^{STT} T(\lambda) \land \neg T(\lambda)$$

$$T(\lambda) \land \neg T(\lambda) \models^{STT} B$$

However, we do not have: $A \models^{STT} B$ for any A, B.
The Liar

\[\top \]

\[\perp \]

\[T\langle \lambda \rangle \lor \lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \lor \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[[T\langle \lambda \rangle]^{1} \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \]

\[T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \land \lnot T\langle \lambda \rangle \]

\[\lnot T\langle \lambda \rangle \]
Outline

1. Introduction
2. Strict/Tolerant consequence
3. Transparent Truth
4. Discussion
Several objections can be made to our account:

- **Objection 1**: Is it not too high a price to give up transitivity?
- **Objection 2**: How can we know that a sentence is assertible only tolerantly and not strictly?
- **Objection 3**: How is the account going to help with revenge?
- **Objection 4**: isn’t ST dealing with antinomies as fallacies of equivocation?
Objection 1: The scope of nontransitivity

- All steps in the Liar reasoning are STT-valid, but chaining those steps is illegitimate.
- Generalized transitivity: if \(\Gamma \models^{STT} A, \Delta \) and \(\Gamma, A \models^{STT} \Delta \) then \(\Gamma \models^{STT} \Delta \).
- We get a counterexample to generalized transitivity iff there is some model that assigns 1 to everything in \(\Gamma \) and 0 to everything in \(\Delta \), and every such model assigns \(\frac{1}{2} \) to \(A \).

Arguably therefore: nontransitivity is limited to pathological sentences.
More about nontransitivity

- Nontransitivity plays the same role in our treatment of tolerance in the sorites paradox: every step is valid, but chaining them is illegitimate.

- Both in our treatment of vagueness and of self-referential truth, transitivity can be retained everywhere where no special vocabulary is used, or where such vocabulary is used, but provided the standard of assertion can be kept constant.
Objection 2: which sentences are strictly assertible?

Issue: why not abide by strict assertion only, and stick to transitive consequence?

We agree with Williamson and others that, as far as possible, assertion should go by strict standards.

However, we want to be more liberal about assertion, by allowing the assertion or acceptance to go by the tolerant standard when there is no ground for strictly denying or rejecting a sentence.

Problem: are we always in a position to know that sentence is strictly assertible, or simply tolerantly assertible?
Answer: we agree with Kripke that, whether a sentence is Liar-like is contingent, and indeed, we cannot provide a context-independent characterization of which sentences are strictly assertible and which are not.

However, a strong Kleene adept is not in a better position than we are in this respect: hence the objection cannot be an argument for having a single mode of assertion, rather than two.

It would be an argument if a single-mode theory were performing equally on all other scores (see, however, S. Wintein’s work and talk for more on this)
Objection 3: Revenge

Objection: how can the strict-tolerant account help with the Strengthened Liar?

Consider the sentence:

(1) this sentence is not strictly assertible
More formally

Let D be an operator such that: $M(DA) = 1$ if $M(A) = 1$, and $M(DA) = 0$ otherwise.

Let $\sigma := \neg DT\langle \sigma \rangle$

Then σ cannot receive any of the values 1, 0, 1/2 coherently.
A dilemma

There appears to be a basic dilemma for all theories of truth when it comes to revenge:

- Either limit the expressiveness of the language
- Or provide for indefinite extensibility of truth values [viz. Schlenker 2008, Cook 2008]
Comparing options

Option 1: declare σ illegitimate on grounds that assertibility is pragmatic, and not to be reflected in the language.

Option 2: admit sentences like σ, and admit indefinite extensibility, but maintain that assertion and content should be distinguished.

Option 2 appears to us to be more promising. One way of fleshing this out is to use a construction originally proposed by Priest (1984), and used by Ripley (2012) to deal with higher-order vagueness.
Hypercontradictions

Basic idea: start from $V_1 = \{1, 1/2, 0\}$, and consider $V_2 = \mathcal{P}(V_1) - \emptyset$, etc.

Declare a sentence to be tolerantly deniable in V_2 if its values all contain 0 or 1/2, tolerantly assertible if they all contain 1 or 1/2, strictly deniable if they contain only 0, and strictly assertible if they contain only 1.

If we collect the values σ would get over V_1, in V_2 we get: $\{0, 1\}$, or $\{1, 1/2, 0\}$

Hence σ is not strictly deniable, but it is tolerantly assertible: a good thing, since σ says it is not strictly deniable.
The construction can be generalized to further levels.

For each new level of truth values, we can construct a special predicate that will prevent the sentence from getting just one truth value in that set.

But for each such predicate, we can collect which values it would get into a new set, and evaluate, relative to that higher-level, whether the sentence is tolerantly assertible or strictly assertible.

Upshot: we get a hierarchy of truth values, but arguably, strict assertion and tolerant assertion hold through the entire hierarchy.
Objection 4: equivocation

Objection: are we treating semantic antinomies as fallacies of equivocation?

In saying that the Liar is neither strictly assertible nor deniable, but tolerantly both, we may appear to declare the sentence ambiguous.

But this is not what we say: we are not saying the Liar is ambiguous, only that whether it is assertible will depend on the mode of assertion.

Note that Lewis was considering logics for one-mode assertion. We keep the paraconsistent inspiration, but the logic is explicitly designed to deal with pragmatic or assertoric ambiguity.
Main benefits of the theory are:

- we retain Kripke’s identity theory of truth
- we change the logic (make it more permissive) to satisfy transparency (hence the T-biconditionals)
- the change of logic gives us a well-behaved and simple conditional
- revenge issues are in a sense orthogonal to the choice of our logic: however we are in a position to acknowledge the problem, and can conciliate indefinite extensibility with the assertoric division between strict and tolerant
- Main difference with most theories of truth concerns the loss of transitivity: we hope to convince you that it is a feature, not a bug!
Related work

- Work by D. Ripley proposing a sequent calculus for STT
- Work by S. Wintein on tableaux for the strict-tolerant calculus incorporating a truth predicate
- Paper on which this talk is based: “Vagueness, truth and permissive consequence”, in which we bring side by side our treatment of truth and our treatment of vague sentences, with a unificatory purpose