Truth in Metamathematics

Leon Horsten
University of Bristol

Amsterdam Workshop on Truth
13–15 March 2013
Overview

[This talk is based on joint work with Martin Fischer]

1. The purpose of truth theories
2. Expressiveness
3. Conservativeness
4. Minimally adequate truth theories
5. Finite axiomatisability
6. Completeness
7. Speed-up
8. Reflection principles
9. References
The purpose of truth theories

Question

What is the best (a good) theory of truth?
The purpose of truth theories

Question

What is the best (a good) theory of truth?

Depends on the purpose . . .

- truth in natural language
- truth in philosophy
- truth in mathematics
- . . .
Tarski on truth in natural language

- material adequacy:

 the Tarski biconditionals

- natural language is semantically closed

- \Rightarrow natural language is inconsistent
Tarski on formalising metamathematics

- Truth is used in metamathematics (model theory)
- Metamathematics is coherent
 - Tarski thought that this needs to be proved

⇒ Explicate the role of truth in metamathematics
The expressive role of truth in metamathematics

Thesis

The concept of truth plays an expressive role in metamathematics.

- the concept of expressive power is not precise
 - I will not try to give a precise definition of expressiveness.
Interpretability

- a concept that can be simulated in T does not add real expressive power to T
- if T is more expressive than S then T is non-interpretable in S
Interpretability

- a concept that can be simulated in T does not add real expressive power to T
- if T is more expressive than S then T is non-interpretable in S

Thesis (Condition 1)

A truth theory for metamathematics must be non-interpretable.
 Truth and higher types

► “The expressive role of truth can also be played by higher types.”
 ► Tarski’s definition of truth

► Objections:
 ► this is overkill
 ► what about set theory?
 ► class theory? …

⇒ what is minimally needed for doing metamathematics?
The algebraic stance

The semantical turn:

\[
\text{theory} = \text{class of models}
\]

Thesis

Model theory is an algebraic discipline: no models should be excluded.
Two notions of conservativeness

Definition
T is a (proof theoretically) conservative extension of S if and only if $S \subseteq T$ and for all φ in the language of S, if T proves φ, then already S proves φ.

Definition
T is a (semantically) conservative extension of S if and only if all the models of S can be expanded to models of T.
Two notions of conservativeness

Definition

T is a (proof theoretically) conservative extension of S if and only if $S \subseteq T$ and for all φ in the language of S, if T proves φ, then already S proves φ.

Definition

T is a (semantically) conservative extension of S if and only if all the models of S can be expanded to models of T.

Thesis (Condition 2)

A truth theory for metamathematics must be semantically conservative
Proof theoretic and semantic conservativeness are not equivalent:

- semantic conservativeness \Rightarrow proof theoretic conservativeness
- proof theoretic conservativeness $\not\Rightarrow$ semantic conservativeness

$\text{CT} \upharpoonright$: the Tarskian compositional theory of truth with induction restricted to the truth-free background language of arithmetic

- $\text{CT} \upharpoonright$ is proof theoretically conservative over PA but not semantically conservative over PA

\Rightarrow $\text{CT} \upharpoonright$ is not a satisfactory truth theory for metamathematics
Pulling in opposite directions

Question

Which theory of truth is a suitable framework for doing metamathematics?

- non-interpretable: strong truth theory
- semantically conservative: weak truth theory

Can a theory be strong and weak (in the relevant senses) at the same time?
The theory PA^-

- typed: truth restricted to arithmetical formulae
- compositional: e.g.,

$$\forall \phi, \psi \in \mathcal{L}_{\text{PA}} : T(\phi \land \psi) \leftrightarrow (T\phi \land T\psi)$$

- positive: negation does not commute with truth
- induction restricted to total formulas:

$$\text{tot}(\phi) \equiv T\phi \lor T\neg\phi$$

Thesis

$PT^- \text{ is a suitable truth theory for metamathematics.}$
Properties

Proposition

\(PT^- \) is interdefinable with \(ACA_0 \)

- semantically conservative
- noninterpretable

In a (admittedly vague) sense \(PT^- \) is the truth theory corresponding to \(ACA_0 \)
Counterparts

- if we go type-free then Cantini’s theory KF_t results
- the analogue for set theory (KF_{tc}) was investigated by Fujimoto
 - KF_{tc} is the truth theory corresponding to NBG
Theorem

Any theory can be finitely axiomatised in a language expansion with one new predicate.
The proof of Craig-Vaught

- the new predicate is a truth predicate
- the proof is a model expansion argument
- PT^- is a finite axiomatisation of its background theory
The strength of the completeness theorem

- The completeness theorem for deductively closed axiomatic theories needs RCA_0
- The completeness theorem for axiomatic theories needs WKL_0
- The textbook proof of the completeness theorem needs ACA_0
Completeness and PT^-

- WKL_0 is interpretable in PA
- \Rightarrow the proof of completeness does not require a non-interpretable notion of truth
Completeness and PT^-

- WKL_0 is interpretable in PA
- \implies the proof of completeness does not require a non-interpretable notion of truth

However:

Proposition

The textbook proof of completeness can be expressed (in a natural way) in PT^-, but not in a weaker truth theory.
Speed up and expressive power

Having non-trivial speed up is an indication of expressive power
Proposition

$PT^−$ has non-trivial speed up over PA.

Whether $CT|^\uparrow$ has nontrivial speed up is an open problem
Reflection on a cut

PT^- cannot prove full reflection but only a restricted version of it.

Proposition

PT^- can prove reflection for PA on a cut.
References