On the Strict Tolerant Conception of Truth

Stefan Wintein

March 14, 2013
Introduction

What is the Strict Tolerant Conception of Truth?

Bilateralism
A problem for the Strict Tolerant Conception of Truth?

But still . . .

Overview

From classical to Strong Kleene consequence

The strict-tolerant calculus

Assertoric semantics

Why the strict-tolerant distinction is primitive
STCT: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].
What is the Strict Tolerant Conception of Truth?

- STCT: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].

- **Novelty 1:** STCT advocates a non-transitive L_T consequence relation.
What is the Strict Tolerant Conception of Truth?

- **STCT**: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].

- **Novelty 1**: STCT advocates a non-transitive L_T consequence relation.
 - Non-transitive consequence relations are studied in several papers (on vagueness and truth) by P. Cobreros, P. Egé, D. Ripley and R. van Rooij.
STCT: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].

Novelty 1: STCT advocates a non-transitive L_T consequence relation.
- Non-transitive consequence relations are studied in several papers (on vagueness and truth) by P. Cobreros, P. Egré, D. Ripley and R. van Rooij.

Novelty 2: STCT "derives" the non-transitive consequence relation from an inferentialist, *bilateralist* theory of meaning.
What is the Strict Tolerant Conception of Truth?

- **STCT**: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].

- **Novelty 1**: STCT advocates a non-transitive L_T consequence relation.
 - Non-transitive consequence relations are studied in several papers (on vagueness and truth) by P. Cobreros, P. Egré, D. Ripley and R. van Rooij.

- **Novelty 2**: STCT "derives" the non-transitive consequence relation from an inferentialist, *bilateralist* theory of meaning.
 - *Inferentialism*: meaning is to be explained by correctness of inference.
 - *Bilateralism*: correctness of inference is to be explained by constraints on assertion *and denial*. (e.g. Rumfitt, Restall *pace* Dummett)
What is the Strict Tolerant Conception of Truth?

- **STCT**: a novel philosophical and logical approach to truth and semantic paradox, advocated by D. Ripley [PaFoC, forthcoming].

- **Novelty 1**: STCT advocates a non-transitive L_T consequence relation.
 - Non-transitive consequence relations are studied in several papers (on vagueness and truth) by P.Cobreros, P.Egré, D.Ripley and R. van Rooij.

- **Novelty 2**: STCT "derives" the non-transitive consequence relation from an inferentialist, *bilateralist* theory of meaning.
 - *Inferentialism*: meaning is to be explained by correctness of inference.
 - *Bilateralism*: correctness of inference is to be explained by constraints on assertion and denial. (e.g. Rumfitt, Restall *pace* Dummett)

- Being an inferentialist account, STCT needs a syntactic characterization of its preferred consequence relation.
Ripley presents \textbf{ST}: 2 sided sequent calculus for classical logic with truth rules added:

$$
\Gamma, \sigma \vdash_{\text{ST}} \Delta \\
\Gamma, T(\sigma) \vdash_{\text{ST}} \Delta \\
\Gamma \vdash_{\text{ST}} \sigma, \Delta \\
\Gamma \vdash_{\text{ST}} T(\sigma), \Delta
$$
Ripley presents **ST**: 2 sided sequent calculus for classical logic with truth rules added:

\[
\begin{align*}
\Gamma, \sigma & \vdash_{\text{ST}} \Delta \\
\Gamma & \vdash_{\text{ST}} \sigma, \Delta \\
\Gamma & \vdash_{\text{ST}} T(\overline{\sigma}), \Delta
\end{align*}
\]

STCT’s bilateralism is reflected in its sequent interpretation:

\[\Gamma \vdash_{\text{ST}} \Delta : \text{”out of bounds to assert all of } \Gamma \text{ and to deny all of } \Delta”\]
Ripley presents \(\mathbf{ST} \): 2 sided sequent calculus for classical logic with truth rules added:

\[
\Gamma, \sigma \vdash^{\mathbf{ST}} \Delta \\
\Gamma, T(\sigma) \vdash^{\mathbf{ST}} \Delta \\
\Gamma \vdash^{\mathbf{ST}} \sigma, \Delta \\
\Gamma \vdash^{\mathbf{ST}} T(\sigma), \Delta
\]

\(\mathbf{STCT} \)’s bilateralism is reflected in its sequent interpretation:

\(\Gamma \vdash^{\mathbf{ST}} \Delta \) : “out of bounds to assert all of \(\Gamma \) and to deny all of \(\Delta \)”

This interpretation is taken from Restall, who exploits it to give a bilateralistic defence of classical logic.
Ripley presents **ST**: 2 sided sequent calculus for classical logic with truth rules added:

\[
\frac{\Gamma, \sigma \vdash_{\text{ST}} \Delta}{\Gamma, T(\sigma) \vdash_{\text{ST}} \Delta}
\]

\[
\frac{\Gamma \vdash_{\text{ST}} \sigma, \Delta}{\Gamma \vdash_{\text{ST}} T(\sigma), \Delta}
\]

STCT’s bilateralism is reflected in its sequent interpretation:

\[
\Gamma \vdash_{\text{ST}} \Delta : \text{"out of bounds to assert all of } \Gamma \text{ and to deny all of } \Delta\"
\]

This interpretation is taken from Restall, who exploits it to give a bilateralistic defence of classical logic.

ST doesn’t have the Cut rule, but so Ripley argues, this rule (*pace* Restall) ”does not follow from the nature of assertion and denial".
A problem for the Strict Tolerant Conception of Truth?

What to say about a Liar sentence $\neg T(\lambda)$?
What to say about a Liar sentence $\neg T(\lambda)$?

$\neg T(\lambda) \vdash^{ST} \emptyset$: it is out of bounds to assert the Liar.
What is the Strict Tolerant Conception of Truth?

Bilateralism

A problem for the Strict Tolerant Conception of Truth?

But still . . .

Overview

From classical to Strong Kleene consequence

The strict-tolerant calculus

Assertoric semantics

Why the strict-tolerant distinction is primitive

- What to say about a Liar sentence \(\neg T(\lambda) \)?
- \(\neg T(\lambda) \vdash_{ST} \emptyset \): it is out of bounds to assert the Liar.
- \(\emptyset \vdash_{ST} \neg T(\lambda) \): the Liar is a theorem.
A problem for the Strict Tolerant Conception of Truth?

- What to say about a Liar sentence $\neg T(\lambda)$?
- $\neg T(\lambda) \vdash_{ST} \emptyset$: it is out of bounds to assert the Liar.
- $\emptyset \vdash_{ST} \neg T(\lambda)$: the Liar is a theorem.
- Ripley: ’The Liar is neither strictly assertible nor deniable but both tolerantly assertible and deniable.’
What to say about a Liar sentence $\neg T(\lambda)$?

- $\neg T(\lambda) \vdash^{ST} \emptyset$: it is out of bounds to assert the Liar.
- $\emptyset \vdash^{ST} \neg T(\lambda)$: the Liar is a theorem.

Ripley: ’The Liar is neither *strictly* assertible nor deniable but both *tolerantly* assertible and deniable.’

STCT relies on a distinction between strict and tolerant assertions and denials. Isn’t this distinction all too costly?
What to say about a Liar sentence \(\neg T(\lambda) \)?

- \(\neg T(\lambda) \vdash^{ST} \emptyset: \) it is out of bounds to assert the Liar.
- \(\emptyset \vdash^{ST} \neg T(\lambda): \) the Liar is a theorem.

Ripley: ’The Liar is neither strictly assertible nor deniable but both tolerant assertible and deniable.’

STCT relies on a distinction between strict and tolerant assertions and denials. Isn’t this distinction all too costly? Ripley: No!

[The strict-tolerant distinction] is not a primitive distinction: we can understand tolerant assertion and denial in terms of their strict cousins, as I’ve presented them here, or we can equally well understand strict in terms of tolerant. So long as we have a grip on one, there is no difficulty in coming to understand the other.
Ripley’s remarks on the strict-tolerant distinction are not backed up by a formal system which explicates the relevant notions.
Ripley’s remarks on the strict-tolerant distinction are not backed up by a formal system which explicates the relevant notions.

First, I will develop two formal systems which (jointly) do so.

The strict-tolerant calculus: a \((A^s, D^s, A^t, D^t)\) signed tableau calculus which is sound and complete w.r.t. all four Strong Kleene fixed point consequence relations (including STCT’s favorite one).

Assertoric semantics: a ”semantic version” of the strict-tolerant calculus. Which sentences are actually strictly/tolerantly assertible and/or deniable?
Ripley’s remarks on the strict-tolerant distinction are not backed up by a formal system which explicates the relevant notions.

First, I will develop two formal systems which (jointly) do so.

The strict-tolerant calculus: a \((A^s, D^s, A^t, D^t)\) signed tableau calculus which is sound and complete w.r.t. all four Strong Kleene fixed point consequence relations (including STCT’s favorite one).

Assertoric semantics: a ”semantic version” of the strict-tolerant calculus. Which sentences are actually strictly/tolerantly assertible and/or deniable?

Second, I will argue that, taken jointly, the systems suggest that Ripley’s claim that the strict-tolerant distinction is not a primitive distinction, has to be reconsidered.
Introduction

From classical to Strong Kleene consequence

The strict-tolerant calculus

Assertoric semantics

Why the strict-tolerant distinction is primitive
From classical to Strong Kleene consequence

Introduction

From classical to Strong Kleene consequence

Classical consequence
Strong Kleene fixed point (valuations)
Strict-tolerant slang and Strong Kleene consequence
Some pros and cons of SK consequence relations
Assertoric sentences and fixed point satisfiability
The strict-tolerant calculus

Assertoric semantics
Why the strict-tolerant distinction is primitive
Classical consequence

- Classical logic recognizes two semantic values: 1 and 0.
Classical logic recognizes two semantic values: 1 and 0.

Which can be used to define classical consequence.

\[\Gamma \models^{cl} \Delta \]

just in case:

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.
Classical logic recognizes two semantic values: 1 and 0.

Which can be used to define classical consequence.

\[\Gamma \vDash^{cl} \Delta \] just in case:

- All \(\alpha \in \Gamma \) valued as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valued as 1.
- All \(\alpha \in \Gamma \) valued as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valued as non-0.
Classical consequence

- Classical logic recognizes two semantic values: 1 and 0.

- Which can be used to define classical consequence.

\[\Gamma \Vdash_{cl} \Delta \] just in case:

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.

- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.
Classical consequence

- Classical logic recognizes two semantic values: 1 and 0.
- Which can be used to define classical consequence.

\[\Gamma \models^{cl} \Delta \] just in case:

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.
- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.
- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.
- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.
• Classical logic recognizes two semantic values: 1 and 0.

• Which can be used to define classical consequence.

\[\Gamma \vDash^{cl} \Delta \] just in case:

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.

- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.

- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.

• These are all equivalent, as ”non-0 = 1” in classical logic.
Classical consequence

- Classical logic recognizes two semantic values: 1 and 0.
- Which can be used to define classical consequence.

\[\Gamma \models^{cl} \Delta \] just in case:

- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.
- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.
- All \(\alpha \in \Gamma \) valuated as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as non-0.
- All \(\alpha \in \Gamma \) valuated as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valuated as 1.

- These are all equivalent, as "non-0 = 1" in classical logic.
- But not when there are more than 2 semantic values.
Classical consequence

- Classical logic recognizes two semantic values: 1 and 0.
- Which can be used to define classical consequence.

\[\Gamma \models^{cl} \Delta \text{ just in case:} \]

- All \(\alpha \in \Gamma \) valued as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valued as 1.
- All \(\alpha \in \Gamma \) valued as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valued as non-0.
- All \(\alpha \in \Gamma \) valued as 1 \(\Rightarrow \) some \(\beta \in \Delta \) valued as non-0.
- All \(\alpha \in \Gamma \) valued as non-0 \(\Rightarrow \) some \(\beta \in \Delta \) valued as 1.

These are all equivalent, as "non-0 = 1" in classical logic.

- But not when there are more than 2 semantic values.
- Strong Kleene fixed point valuations: \(\{0, \frac{1}{2}, 1\} \) as range.
Let L_T be a f.o. language with truth predicate 'T'.
Let L_T be a f.o. language with truth predicate ‘T’.

A **ground model** $M = (D, I)$ for L_T is a classical model of L s.t:

$$Sen(L_T) \subseteq D, \quad I([\sigma]) = \sigma$$
Let L_T be a f.o. language with truth predicate ‘T’.

A ground model $M = (D, I)$ for L_T is a classical model of L s.t:

$$\text{Sen}(L_T) \subseteq D, \quad I([\sigma]) = \sigma$$

We may have: $I(\lambda) = \neg T(\lambda), I(\tau) = T(\tau)$
Let L_T be a f.o. language with truth predicate 'T'.

A ground model $M = (D, I)$ for L_T is a classical model of L s.t:

$$Sen(L_T) \subseteq D, \quad I([\sigma]) = \sigma$$

We may have: $I(\lambda) = \neg T(\lambda), I(\tau) = T(\tau)$

$V_M : Sen(L_T) \to \{0, \frac{1}{2}, 1\}$ is a SK fixed point (over M) iff:

- Connectives and quantifiers have a Strong Kleene semantics.

- V_M respects the ground model:
 $$\forall \sigma \in Sen(L) : V_M(\sigma) = C_M(\sigma)$$

- V_M satisfies the identity of truth:
 $$\forall \sigma \in Sen(L_T) : V_M(T(\overline{\sigma})) = V_M(\sigma)$$
Let L_T be a f.o. language with truth predicate 'T'.

A ground model $M = (D, I)$ for L_T is a classical model of L s.t:

$Sen(L_T) \subseteq D$, \hspace{1cm} $I([\sigma]) = \sigma$

We may have: $I(\lambda) = \neg T(\lambda)$, $I(\tau) = T(\tau)$

$V_M : Sen(L_T) \rightarrow \{0, \frac{1}{2}, 1\}$ is a SK fixed point (over M) iff:

- Connectives and quantifiers have a Strong Kleene semantics.
- V_M respects the ground model:
 $\forall \sigma \in Sen(L) : V_M(\sigma) = C_M(\sigma)$
- V_M satisfies the identity of truth:
 $\forall \sigma \in Sen(L_T) : V_M(T(\overline{\sigma})) = V_M(\sigma)$

For simplicity: $R \subseteq Con(L_T)$ s.t. for any M, M':

$\forall r \in R : I(r) = I'(r) \in Sen(L_T)$
When V_M is a SK fixed point, we say that:
When V_M is a SK fixed point, we say that:

- $V_M(\sigma) = 1 \quad (0) : \sigma$ is strictly assertible (deniable).
- $V_M(\sigma) \in \{1, \frac{1}{2}\} \quad (\in \{0, \frac{1}{2}\}) : \sigma$ is tolerantly assertible (deniable).
When V_M is a SK fixed point, we say that:

- $V_M(\sigma) = 1 \ (0) : \sigma$ is *strictly* assertible (deniable).
- $V_M(\sigma) \in \{1, \frac{1}{2}\} \ (\in \{0, \frac{1}{2}\}) : \sigma$ is *tolerantly* assertible (deniable).
- $V_M(\sigma) = \frac{1}{2} : \sigma$ is neither strictly, both tolerantly assertible/deniable.
Strict-tolerant slang and Strong Kleene consequence

- When V_M is a SK fixed point, we say that:
 $V_M(\sigma) = 1$ (0) : σ is *strictly* assertible (deniable).
 $V_M(\sigma) \in \{1, \frac{1}{2}\}$ ($\in \{0, \frac{1}{2}\}$) : σ is *tolerantly* assertible (deniable).
- $V_M(\sigma) = \frac{1}{2}$: σ is neither strictly, both tolerantly assertible/deniable.
- FP_M: all SK fixed points over M.

Introduction
From classical to Strong Kleene consequence
Classical consequence
Strong Kleene fixed point (valuations)
Strict-tolerant slang and Strong Kleene consequence
Some pros and cons of SK consequence relations
Assertoric sentences and fixed point satisfiability
The strict-tolerant calculus
Assertoric semantics
Why the strict-tolerant distinction is primitive
When \(V_M \) is a \(SK \) fixed point, we say that:

\[
V_M(\sigma) = 1 \quad (0): \sigma \text{ is \textit{strictly} assertible (deniable).}
\]

\[
V_M(\sigma) \in \{1, \frac{1}{2}\} \quad (\in \{0, \frac{1}{2}\}): \sigma \text{ is \textit{tolerantly} assertible (deniable).}
\]

\[
V_M(\sigma) = \frac{1}{2}: \sigma \text{ is neither strictly, both tolerantly assertible/deniable.}
\]

\(FP_M \): all \(SK \) fixed points over \(M \).

\(FP \): \(V \in FP \iff V \in FP_M \) for some \(M \).
Strict-tolerant slang and Strong Kleene consequence

- When V_M is a SK fixed point, we say that:

 $V_M(\sigma) = 1$ (0) : σ is strictly assertible (deniable).

 $V_M(\sigma) \in \{1, \frac{1}{2}\}$ ($\in \{0, \frac{1}{2}\}$) : σ is tolerantly assertible (deniable).

- $V_M(\sigma) = \frac{1}{2}$: σ is neither strictly, both tolerantly assertible/deniable.

- FP_M : all SK fixed points over M.

 FP : $V \in FP \iff V \in FP_M$ for some M.

- Quantify over FP to define 4 SK consequence relations:
Strict-tolerant slang and Strong Kleene consequence

- When V_M is a SK fixed point, we say that:

 $V_M(\sigma) = 1$ (0) : σ is strictly assertible (deniable).

 $V_M(\sigma) \in \{1, \frac{1}{2}\}$ ($\in \{0, \frac{1}{2}\}$) : σ is tolerantly assertible (deniable).

- $V_M(\sigma) = \frac{1}{2}$: σ is neither strictly, both tolerantly assertible/deniable.

- FP_M: all SK fixed points over M.

 FP: $V \in FP \iff V \in FP_M$ for some M.

- Quantify over FP to define 4 SK consequence relations:

 - All $\alpha \in \Gamma$ valuated as 1 \Rightarrow some $\beta \in \Delta$ valuated as 1.

 - All $\alpha \in \Gamma$ valuated as non-0 \Rightarrow some $\beta \in \Delta$ valuated as non-0

 - All $\alpha \in \Gamma$ valuated as 1 \Rightarrow some $\beta \in \Delta$ valuated as non-0

 - All $\alpha \in \Gamma$ valuated as non-0 \Rightarrow some $\beta \in \Delta$ valuated as 1.
Introduction

From classical to Strong Kleene consequence

Classical consequence

Strong Kleene fixed point (valuations)

Strict-tolerant slang and Strong Kleene consequence

Some pros and cons of SK consequence relations

Assertoric sentences and fixed points satisfiability

The strict-tolerant calculus

Assertoric semantics

Why the strict-tolerant distinction is primitive

When V_M is a SK fixed point, we say that:

- $V_M(\sigma) = 1 \ (0) : \sigma$ is strictly assertible (deniable).

- $V_M(\sigma) \in \{1, \frac{1}{2}\} \ (\in \{0, \frac{1}{2}\}) : \sigma$ is tolerantly assertible (deniable).

- $V_M(\sigma) = \frac{1}{2} : \sigma$ is neither strictly, both tolerantly assertible/deniable.

FP_M: all SK fixed points over M.

FP: $V \in FP \iff V \in FP_M$ for some M.

- Quantify over FP to define 4 SK consequence relations:

 - \models^{ss}: All $\alpha \in \Gamma$ valuated as $1 \Rightarrow$ some $\beta \in \Delta$ valuated as 1.

 - \models^{tt}: All $\alpha \in \Gamma$ valuated in $\{\frac{1}{2}, 1\} \Rightarrow$ some $\beta \in \Delta$ valuated in $\{\frac{1}{2}, 1\}$

 - \models^{st}: All $\alpha \in \Gamma$ valuated as $1 \Rightarrow$ some $\beta \in \Delta$ valuated in $\{\frac{1}{2}, 1\}$

 - \models^{ts}: All $\alpha \in \Gamma$ valuated in $\{\frac{1}{2}, 1\} \Rightarrow$ some $\beta \in \Delta$ valuated as 1.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: transparent truth.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: *transparent truth.*

- \vdash^{ss} violates identity: $\not\models^{ss} \alpha \rightarrow \alpha$.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: *transparent truth*.
- \vDash^{ss} violates identity: $\not\vDash^{ss} \alpha \rightarrow \alpha$.
- \vDash^{tt} violates material modus ponens: $\alpha, \alpha \rightarrow \beta \not\vDash^{tt} \beta$.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: *transparent truth*.
 - \vdash^{ss} violates identity: $\not\vdash^{ss} \alpha \rightarrow \alpha$.
 - \vdash^{tt} violates material modus ponens: $\alpha, \alpha \rightarrow \beta \not\vdash^{tt} \beta$.
 - Not so for \vdash^{st}: whenever an argument form is classically valid, it is also \vdash^{st} valid.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: transparent truth.
- \vdash^{ss} violates identity: $\not\vdash^{ss} \alpha \rightarrow \alpha$.
- \vdash^{tt} violates material modus ponens: $\alpha, \alpha \rightarrow \beta \not\vdash^{tt} \beta$.
- Not so for \vdash^{st}: whenever an argument form is classically valid, it is also \vdash^{st} valid.
- \vdash^{st} is non-transitive: $\alpha \vdash^{st} \beta \& \beta \vdash^{st} \gamma \nRightarrow \alpha \vdash^{st} \gamma$.

Introduction
From classical to Strong Kleene consequence

Classical consequence
Strong Kleene fixed point (valuations)
Strict-tolerant slang and Strong Kleene consequence

Some pros and cons of SK consequence relations
Assertoric sentences and fixed point satisfiability

The strict-tolerant calculus

Assertoric semantics
Why the strict-tolerant distinction is primitive
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: transparent truth.

- \models_{ss} violates identity: $\not\models_{ss} \alpha \rightarrow \alpha$.

- \models_{tt} violates material modus ponens: $\alpha, \alpha \rightarrow \beta \not\models_{tt} \beta$.

- Not so for \models_{st}: whenever an argument form is classically valid, it is also \models_{st} valid.

- \models_{st} is non-transitive: $\alpha \models_{st} \beta \& \beta \models_{st} \gamma \nrightarrow \alpha \models_{st} \gamma$.

- However, (Ripley, Cobreros et al.) non-transitivity is well-located: paradoxical sentences need to be involved.
Some pros and cons of SK consequence relations

- All 4 SK consequence relations: transparent truth.

- \models^{ss} violates identity: $\not\models^{ss} \alpha \rightarrow \alpha$.

- \models^{tt} violates material modus ponens: $\alpha, \alpha \rightarrow \beta \not\models^{tt} \beta$.

- Not so for \models^{st}: whenever an argument form is classically valid, it is also \models^{st} valid.

 - \models^{st} is non-transitive: $\alpha \models^{st} \beta \& \beta \models^{st} \gamma \not\Rightarrow \alpha \models^{st} \gamma$.

- However, (Ripley, Cobreros et al.) non-transitivity is well-located: paradoxical sentences need to be involved.

- Moreover, \models^{st} does preserve a lot of classical meta-inferences and "all failures of classical meta-inferences can be traced down to failures of transitivity".
Assertoric sentences and fixed point satisfiability

Assertoric sentence: sentence of L_T signed with A^s, A^t, D^s or D^t.

<table>
<thead>
<tr>
<th>Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>From classical to Strong Kleene consequence</td>
</tr>
<tr>
<td>Classical consequence</td>
</tr>
<tr>
<td>Strong Kleene fixed point (valuations)</td>
</tr>
<tr>
<td>Strict-tolerant slang and Strong Kleene consequence</td>
</tr>
<tr>
<td>Some pros and cons of SK consequence relations</td>
</tr>
<tr>
<td>Assertoric sentences and fixed point satisfiability</td>
</tr>
<tr>
<td>The strict-tolerant calculus</td>
</tr>
<tr>
<td>Assertoric semantics</td>
</tr>
<tr>
<td>Why the strict-tolerant distinction is primitive</td>
</tr>
</tbody>
</table>
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.
- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 $$A^s_\phi \in S \Rightarrow V(\phi) = 1,$$
 $$D^s_\phi \in S \Rightarrow V(\phi) = 0,$$
 $$A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\},$$
 $$D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}.$$
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 \[A^s_\phi \in S \Rightarrow V(\phi) = 1, \quad D^s_\phi \in S \Rightarrow V(\phi) = 0, \]

 \[A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}, \quad D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}. \]

- Rephrase SK consequence in terms of assertoric sentences:
Assertoric sentences and fixed point satisfiability

Introduction

From classical to Strong Kleene consequence

Classical consequence

Strong Kleene fixed point (valuations)

Strict-tolerant slang and Strong Kleene consequence

Some pros and cons of \(SK\) consequence relations

Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of \(L_T\) signed with \(A^s, A^t, D^s\) or \(D^t\).

- A set of assertoric sentences \(S\) is **fixed point satisfiable** iff, for some \(V\):

\[
A^s_\phi \in S \Rightarrow V(\phi) = 1, \quad D^s_\phi \in S \Rightarrow V(\phi) = 0,
\]

\[
A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}, \quad D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}.
\]

- Rephrase \(SK\) consequence in terms of assertoric sentences:

 - \(\Gamma \models^{ss} \Delta\) iff for each fixed point \(V\):

 All \(\alpha \in \Gamma\) valuated as 1 \(\Rightarrow\) some \(\beta \in \Delta\) valuated as 1.
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 \[
 A^s_\phi \in S \Rightarrow V(\phi) = 1, \quad D^s_\phi \in S \Rightarrow V(\phi) = 0, \\
 A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}, \quad D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}.
 \]

- Rephrase SK consequence in terms of assertoric sentences:
 - $\Gamma \models^{ss} \Delta$ iff for each fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 \Rightarrow some $\beta \in \Delta$ valuated as 1.
 - $\Gamma \models^{ss} \Delta$ iff for no fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 and all $\beta \in \Delta$ valuated as not-1.
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 $$A^s_\phi \in S \Rightarrow V(\phi) = 1, \quad D^s_\phi \in S \Rightarrow V(\phi) = 0,$$

 $$A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}, \quad D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}.$$

- Rephrase SK consequence in terms of assertoric sentences:

 - $\Gamma \vdash^{ss} \Delta$ iff for each fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 \Rightarrow some $\beta \in \Delta$ valuated as 1.

 - $\Gamma \vdash^{ss} \Delta$ iff for no fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 and all $\beta \in \Delta$ valuated in $\{0, \frac{1}{2}\}$.
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 $A^s_\phi \in S \Rightarrow V(\phi) = 1$,
 $D^s_\phi \in S \Rightarrow V(\phi) = 0$,

 $A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}$,
 $D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}$.

- Rephrase SK consequence in terms of assertoric sentences:

 - $\Gamma \vDash^{ss} \Delta$ iff for each fixed point V:

 All $\alpha \in \Gamma$ valued as 1 \Rightarrow some $\beta \in \Delta$ valued as 1.

 - $\Gamma \vDash^{ss} \Delta$ iff for no fixed point V:

 All $\alpha \in \Gamma$ valued as 1 and all $\beta \in \Delta$ valued in $\{0, \frac{1}{2}\}$.

 - $\Gamma \vDash^{ss} \Delta$ iff $A^s(\Gamma) \cup D^t(\Delta)$ is not fixed point satisfiable.
Assertoric sentences and fixed point satisfiability

- **Assertoric sentence**: sentence of L_T signed with A^s, A^t, D^s or D^t.

- A set of assertoric sentences S is **fixed point satisfiable** iff, for some V:

 \[
 A^s_\phi \in S \Rightarrow V(\phi) = 1, \quad D^s_\phi \in S \Rightarrow V(\phi) = 0,
 \]

 \[
 A^t_\phi \in S \Rightarrow V(\phi) \in \{1, \frac{1}{2}\}, \quad D^t_\phi \in S \Rightarrow V(\phi) \in \{0, \frac{1}{2}\}.
 \]

- Rephrase SK consequence in terms of assertoric sentences:

 - $\Gamma \models_{ss} \Delta$ iff for each fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 \Rightarrow some $\beta \in \Delta$ valuated as 1.

 - $\Gamma \models_{ss} \Delta$ iff for no fixed point V:
 All $\alpha \in \Gamma$ valuated as 1 and all $\beta \in \Delta$ valuated in $\{0, \frac{1}{2}\}$.

 - $\Gamma \models_{ss} \Delta$ iff $A^s(\Gamma) \cup D^t(\Delta)$ is not fixed point satisfiable.

 - $\Gamma \models_{st} \Delta$ iff $A^s(\Gamma) \cup D^s(\Delta)$ is not fixed point satisfiable.
The strict-tolerant calculus
Here are the tableau rules of our calculus, where $i \in \{s, t\}$:

\[
\begin{align*}
A_i^{\neg \alpha} & \quad D_i^{\neg \alpha} & \quad A_i^{\alpha \lor \beta} & \quad D_i^{\alpha \lor \beta} & \quad A_i^{\alpha \land \beta} & \quad D_i^{\alpha \land \beta} \\
\hline
D_{\alpha} & \quad A_{\alpha} & \quad A_{\alpha} & \quad D_{\alpha}, D_{\beta} & \quad A_{\alpha}, A_{\beta} & \quad D_{\alpha} | D_{\beta} \\
\hline
A_i^T(\sigma) & \quad D_i^T(\sigma) \\
\hline
A_i^{\forall x \phi(x)} & \quad D_i^{\forall x \phi(x)} & \quad u \text{ fresh} & \quad A_i^{\exists x \phi(x)} & \quad D_i^{\exists x \phi(x)} & \quad u \text{ fresh} \\
\hline
A_{\phi(x/c)} & \quad D_{\phi(x/c)} & \quad A_{\phi(x/u)} & \quad D_{\phi(x/u)} & \quad A_{\phi(x/u)} & \quad D_{\phi(x/c)}
\end{align*}
\]
Here are the tableau rules of our calculus, where $i \in \{s, t\}$:

\[
\begin{array}{cccc}
A^i_{\neg \alpha} & D^i_{\neg \alpha} & A^i_{\alpha \lor \beta} & D^i_{\alpha \lor \beta} \\
D^i_{\alpha} & A^i_{\alpha} & A^i_{\alpha, A^i_{\beta}} & D^i_{\alpha, D^i_{\beta}} \\
A^i_{\alpha \land \beta} & D^i_{\alpha \land \beta} & A^i_{T(\sigma)} & D^i_{T(\sigma)} \\
D^i_{\alpha} & D^i_{\alpha, D^i_{\beta}} & A^i_{\forall x \phi(x)} & D^i_{\forall x \phi(x)} \\
A^i_{\phi(x/c)} & D^i_{\phi(x/u)} & u \text{ fresh} & A^i_{\exists x \phi(x)} & D^i_{\exists x \phi(x)} \\
A^i_{\phi(x/u)} & u \text{ fresh} & D^i_{\phi(x/c)} & D^i_{\phi(x/u)} & u \text{ fresh} \\
\end{array}
\]

The A^t rule is valid: $V(\neg \alpha) \in \{\frac{1}{2}, 1\} \implies V(\alpha) \in \{0, \frac{1}{2}\}$
Here are the tableau rules of our calculus, where \(i \in \{s, t\} \):

\[
\begin{align*}
A^i_{\neg \alpha} & \quad D^i_{\neg \alpha} & \quad A^i_{\alpha \lor \beta} & \quad D^i_{\alpha \lor \beta} & \quad A^i_{\alpha \land \beta} & \quad D^i_{\alpha \land \beta} \\
D^i_{\alpha} & \quad A^i_{\alpha} & \quad A^i_{\alpha} \mid A^i_{\beta} & \quad D^i_{\alpha}, D^i_{\beta} & \quad A^i_{\alpha}, A^i_{\beta} & \quad D^i_{\alpha} \mid D^i_{\beta} \\
A^i_T(\sigma) & \quad D^i_T(\sigma) & \quad A^i_\sigma & \quad D^i_\sigma
\end{align*}
\]

\[
\begin{align*}
A^i_{\forall x \phi(x)} & \quad D^i_{\forall x \phi(x)} & \quad A^i_{\exists x \phi(x)} & \quad D^i_{\exists x \phi(x)} \\
A^i_{\phi(x/c)} & \quad D^i_{\phi(x/u)} & \quad A^i_{\phi(x/\sigma)} & \quad D^i_{\phi(x/c)}
\end{align*}
\]

The \(A^t \) rule is valid: \(V(\neg \alpha) \in \{\frac{1}{2}, 1\} \Rightarrow V(\alpha) \in \{0, \frac{1}{2}\} \)

The \(D^s \) rule is valid: \(V(\alpha \lor \beta) = 0 \Rightarrow V(\alpha) = 0 \& V(\beta) = 0 \), etc.
Here are the tableau rules of our calculus, where $i \in \{s, t\}$:

\[
\begin{array}{cccccc}
A^i_{\neg \alpha} & D^i_{\neg \alpha} & A^i_{\alpha \lor \beta} & D^i_{\alpha \lor \beta} & A^i_{\alpha \land \beta} & D^i_{\alpha \land \beta} \\
\hline
D^i_{\alpha} & A^i_{\alpha} & D^i_{\alpha \lor \beta} & A^i_{\alpha \land \beta} & D^i_{\alpha \land \beta}
\end{array}
\]

\[
\begin{array}{cc}
A^i_{T(\sigma)} & D^i_{T(\sigma)} \\
\hline
A^i_{\sigma} & D^i_{\sigma}
\end{array}
\]

\[
\begin{array}{cccc}
A^i_{\forall x \phi(x)} & D^i_{\forall x \phi(x)} & A^i_{\exists x \phi(x)} & D^i_{\exists x \phi(x)} \\
\hline
A^i_{\phi(x/c)} & D^i_{\phi(x/c)} & A^i_{\phi(x/u)} & D^i_{\phi(x/u)}
\end{array}
\]

The A^t_\neg rule is valid: $V(\neg \alpha) \in \{\frac{1}{2}, 1\} \Rightarrow V(\alpha) \in \{0, \frac{1}{2}\}$

The D^s_\lor rule is valid: $V(\alpha \lor \beta) = 0 \Rightarrow V(\alpha) = 0 \& V(\beta) = 0$, etc.

Observe: no strict-to-tolerant rules.
A set of assertoric sentences S is closed iff:

- For some sentence σ of L_T: $\{A^s_\sigma, D^s_\sigma\} \subseteq S$
- For some truth-free sentence σ of L: $\{A^t_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^s_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^t_\sigma, D^s_\sigma\} \subseteq S$
A set of assertoric sentences S is closed iff:

- For some sentence σ of L_T: $\{A^s_\sigma, D^s_\sigma\} \subseteq S$
- For some truth-free sentence σ of L: $\{A^t_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^s_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^t_\sigma, D^s_\sigma\} \subseteq S$

When S is closed it is not fixed point satisfiable.
A set of assertoric sentences S is closed iff:

- For some sentence σ of L_T: $\{A^s_\sigma, D^s_\sigma\} \subseteq S$
- For some truth-free sentence σ of L: $\{A^t_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^s_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^t_\sigma, D^s_\sigma\} \subseteq S$

When S is closed it is not fixed point satisfiable.

We define 4 syntactic SK consequence relations \vdash^{ij}, e.g.:
A set of assertoric sentences S is closed iff:

- For some sentence σ of L_T: $\{A^s_\sigma, D^s_\sigma\} \subseteq S$
- For some truth-free sentence σ of L: $\{A^t_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^s_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^t_\sigma, D^s_\sigma\} \subseteq S$

When S is closed it is not fixed point satisfiable.

We define 4 syntactic SK consequence relations \vdash_{ij}, e.g.:

- $\Gamma \vdash_{ss} \Delta \iff A^s(\Gamma) \cup D^t(\Delta)$ has a closed tableau.
A set of assertoric sentences S is closed iff:

- For some sentence σ of L_T: $\{A^s_\sigma, D^s_\sigma\} \subseteq S$
- For some truth-free sentence σ of L: $\{A^t_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^s_\sigma, D^t_\sigma\} \subseteq S$
- For some sentence σ of L_T: $\{A^t_\sigma, D^s_\sigma\} \subseteq S$

When S is closed it is not fixed point satisfiable.

We define 4 syntactic SK consequence relations \vdash_{ij}, e.g.:

- $\Gamma \vdash_{ss} \Delta \iff A^s(\Gamma) \cup D^t(\Delta)$ has a closed tableau.
- $\Gamma \vdash_{st} \Delta \iff A^s(\Gamma) \cup D^s(\Delta)$ has a closed tableau.
A set of assertoric sentences \(S \) is closed iff:

- For some sentence \(\sigma \) of \(L_T \): \(\{ A^s_\sigma, D^s_\sigma \} \subseteq S \)
- For some truth-free sentence \(\sigma \) of \(L \): \(\{ A^t_\sigma, D^t_\sigma \} \subseteq S \)
- For some sentence \(\sigma \) of \(L_T \): \(\{ A^s_\sigma, D^t_\sigma \} \subseteq S \)
- For some sentence \(\sigma \) of \(L_T \): \(\{ A^t_\sigma, D^s_\sigma \} \subseteq S \)

When \(S \) is closed it is not fixed point satisfiable.

We define 4 syntactic \(SK \) consequence relations \(\vdash^{ij} \), e.g.:

- \(\Gamma \vdash^{ss} \Delta \iff A^s(\Gamma) \cup D^t(\Delta) \) has a closed tableau.
- \(\Gamma \vdash^{st} \Delta \iff A^s(\Gamma) \cup D^s(\Delta) \) has a closed tableau.

Theorem: \(\vdash^{ij} \) is sound and complete w.r.t. \(\models^{ij} \).
Assertoric semantics

The semantic counterpart of the strict-tolerant calculus

Example: strict assertoric trees

Example: tolerant assertoric trees

Inducing familiar valuations

Some remarks on the interpretation of V^s_M and V^t_M

Why the strict-tolerant distinction is primitive
The strict-tolerant calculus characterizes SK consequence in strict-tolerant terms.
The strict-tolerant calculus characterizes \(SK \) consequence in strict-tolerant terms.

But, which sentences are actually strictly/tolerantly assertible/deniable? What about ‘snow is white’? What about the Truthgetter?
The semantic counterpart of the strict-tolerant calculus

- The strict-tolerant calculus characterizes SK consequence in strict-tolerant terms.

- But, which sentences are actually strictly/tolerantly assertible/deniable? What about ‘snow is white’? What about the Truth teller?

- Given a fixed ground model M: what is the strict/tolerant assertoric status of L_T sentences?
The semantic counterpart of the strict-tolerant calculus

- The strict-tolerant calculus characterizes SK consequence in strict-tolerant terms.

- But, which sentences are actually strictly/tolerantly assertible/deniable? What about ‘snow is white’? What about the Truthteller?

- Given a fixed ground model M: what is the strict/tolerant assertoric status of L_T sentences?

- Answer via assertoric semantics (”semantic strict-tolerant calculus”):
The semantic counterpart of the strict-tolerant calculus

\[\text{The strict-tolerant calculus characterizes } \mathcal{SK} \text{ consequence in strict-tolerant terms.} \]

\[\text{But, which sentences are } \textit{actually} \text{ strictly/tolerantly assertible/deniable? What about ‘snow is white’? What about the Truthteller?} \]

\[\text{Given a fixed ground model } \mathcal{M}: \text{ what is the strict/tolerant assertoric status of } L_T \text{ sentences?} \]

\[\text{Answer via } \textbf{assertoric semantics} \text{ ("semantic strict-tolerant calculus"):} \]

- Quantifiers now range over the domain of \(\mathcal{M} \).
The strict-tolerant calculus characterizes SK consequence in strict-tolerant terms.

But, which sentences are actually strictly/tolerantly assertible/deniable? What about ‘snow is white’? What about the Truth-teller?

Given a fixed ground model M: what is the strict/tolerant assertoric status of L_T sentences?

Answer via assertoric semantics (”semantic strict-tolerant calculus”):

- Quantifiers now range over the domain of M.
- Closure conditions of the strict-tolerant calculus are augmented:
 Not allowed to assert (strictly or tolerantly) σ of L if $C_M(\sigma) = 0$.
 Not allowed to deny (strictly or tolerantly) σ of L if $C_M(\sigma) = 1$.
Example: strict assertoric trees

Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ strictly assertible /deniable?
Example: strict assertoric trees

Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ strictly assertible /deniable?

To answer, compute **strict assertoric trees**: $\mathcal{X}^{\sigma}_{A_s}$ and $\mathcal{X}^{\sigma}_{D_s}$:

\begin{align*}
A_s^T(\lambda) \land W(s) & \\
A_s^T(\lambda) & \\
A_s^W(s) & \\
D_s^T(\lambda) & \\
D_s^T(\lambda) & \\
A_s^T(\lambda) & \\

D_s^T(\lambda) & \\
D_s^W(s) & \\
A_s^T(\lambda) & \\
A_s^T(\lambda) & \\
D_s^T(\lambda) & \\

\end{align*}
Example: strict assertoric trees

Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ strictly assertible /deniable?

To answer, compute **strict assertoric trees**: \mathcal{T}_A^σ and \mathcal{T}_D^σ:

Both \mathcal{T}_A^σ and \mathcal{T}_D^σ are closed M.
Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ strictly assertible /deniable?

To answer, compute **strict assertoric trees**: $\Sigma_{A^s}^{\sigma}$ and $\Sigma_{D^s}^{\sigma}$:

Both $\Sigma_{A^s}^{\sigma}$ and $\Sigma_{D^s}^{\sigma}$ are closed M.

$\mathcal{V}_M^s(\sigma) = (0, 0)$: σ neither strictly assertible nor deniable.
Example: tolerant assertoric trees

Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ tolerantly assertible/deniable?
Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ tolerantly assertible /deniable?

To answer, compute tolerant assertoric trees: \mathcal{A}_A^σ and \mathcal{A}_D^σ:

```
\begin{align*}
A^t_{\neg T(\lambda) \land W(s)} & \\
& \quad A^t_{\neg T(\lambda)} \\
& \quad \quad A^t_{W(s)} \\
& \quad \quad \quad D^t_{T(\lambda)} \\
& \quad \quad \quad \quad D^t_{\neg T(\lambda)} \\
& \quad \quad \quad \quad \quad A^t_{T(\lambda)} \\
\end{align*}
```

```
\begin{align*}
D^t_{\neg T(\lambda) \land W(s)} & \\
& \quad D^t_{\neg T(\lambda)} \\
& \quad \quad D^t_{W(s)} \\
& \quad \quad \quad A^t_{T(\lambda)} \\
& \quad \quad \quad \quad D^t_{T(\lambda)} \\
\end{align*}
```
Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ tolerantly assertible /deniable?

To answer, compute **tolerant assertoric trees**: Σ^σ_A and Σ^σ_D:

Both Σ^σ_A and Σ^σ_D are open in \mathcal{M}.

$$\begin{align*}
A^t_{\neg T(\lambda) \land W(s)} & \quad D^t_{\neg T(\lambda) \land W(s)} \\
A^t_{\neg T(\lambda)} & \quad D^t_{\neg T(\lambda)} \\
A^t_{W(s)} & \quad D^t_{W(s)} \\
D^t_{T(\lambda)} & \quad A^t_{T(\lambda)} \\
D^t_{T(\lambda)} & \quad A^t_{T(\lambda)} \\
A^t_{T(\lambda)} & \quad D^t_{T(\lambda)}
\end{align*}$$
Let $\sigma := \neg T(\lambda) \land W(s)$. Is σ tolerantly assertible/deniable?

To answer, compute tolerant assertoric trees: \mathcal{Y}_A^σ and \mathcal{Y}_D^σ:

Both \mathcal{Y}_A^σ and \mathcal{Y}_D^σ are open M.

$\mathcal{V}_M^t(\sigma) = (1, 1)$: σ both tolerantly assertible and deniable.
Inducing familiar valuations

With M a ground model, V^s_M and V^t_M are induced as follows. With $i, j \in \{s, t\}$:

$$V^i_M(\sigma) = \begin{cases}
(1, 0), & \Sigma^\sigma_A^i \text{ is open}_M & \Sigma^\sigma_D^i \text{ is closed}_M \\
(1, 1), & \Sigma^\sigma_A^i \text{ is open}_M & \Sigma^\sigma_D^i \text{ is open}_M \\
(0, 0), & \Sigma^\sigma_A^i \text{ is closed}_M & \Sigma^\sigma_D^i \text{ is closed}_M \\
(0, 1), & \Sigma^\sigma_A^i \text{ is closed}_M & \Sigma^\sigma_D^i \text{ is open}_M
\end{cases}$$
Inducing familiar valuations

With M a ground model, \mathcal{V}^s_M and \mathcal{V}^t_M are induced as follows. With $i, j \in \{s, t\}$:

$$\mathcal{V}^i_M(\sigma) = \begin{cases}
(1, 0), & \mathcal{V}^\sigma_{A^i} \text{ is open}_M \land \mathcal{V}^\sigma_{D^i} \text{ is closed}_M \\
(1, 1), & \mathcal{V}^\sigma_{A^i} \text{ is open}_M \land \mathcal{V}^\sigma_{D^i} \text{ is open}_M \\
(0, 0), & \mathcal{V}^\sigma_{A^i} \text{ is closed}_M \land \mathcal{V}^\sigma_{D^i} \text{ is closed}_M \\
(0, 1), & \mathcal{V}^\sigma_{A^i} \text{ is closed}_M \land \mathcal{V}^\sigma_{D^i} \text{ is open}_M
\end{cases}$$

Theorem \mathcal{V}^s_M is equivalent to Kripke's \mathcal{K}_M^4, where:

$$\mathcal{K}_M^4(\sigma) = (1, 0) \iff \exists V_M : V_M(\sigma) = 1 \land \nexists V_M : V_M(\sigma) = 0$$

$$\mathcal{K}_M^4(\sigma) = (1, 1) \iff \exists V_M : V_M(\sigma) = 1 \land \exists V_M : V_M(\sigma) = 0$$

$$\mathcal{K}_M^4(\sigma) = (0, 0) \iff \nexists V_M : V_M(\sigma) = 1 \land \nexists V_M : V_M(\sigma) = 0$$

$$\mathcal{K}_M^4(\sigma) = (0, 1) \iff \nexists V_M : V_M(\sigma) = 1 \land \exists V_M : V_M(\sigma) = 0$$
Inducing familiar valuations

With M a ground model, \mathcal{V}_M^s and \mathcal{V}_M^t are induced as follows. With $i, j \in \{s, t\}$:

$$\mathcal{V}_M^i(\sigma) = \begin{cases} (1, 0), & \mathcal{S}_{A}^\sigma_i \text{ is open}_M & \mathcal{S}_{D}^\sigma_i \text{ is closed}_M \\ (1, 1), & \mathcal{S}_{A}^\sigma_i \text{ is open}_M & \mathcal{S}_{D}^\sigma_i \text{ is open}_M \\ (0, 0), & \mathcal{S}_{A}^\sigma_i \text{ is closed}_M & \mathcal{S}_{D}^\sigma_i \text{ is closed}_M \\ (0, 1), & \mathcal{S}_{A}^\sigma_i \text{ is closed}_M & \mathcal{S}_{D}^\sigma_i \text{ is open}_M \end{cases}$$

Theorem \mathcal{V}_M^s is equivalent to Kripke’s \mathcal{K}_M^4, where:

- $\mathcal{K}_M^4(\sigma) = (1, 0) \iff \exists V_M : V_M(\sigma) = 1$ and $\not\exists V_M : V_M(\sigma) = 0$
- $\mathcal{K}_M^4(\sigma) = (1, 1) \iff \exists V_M : V_M(\sigma) = 1$ and $\exists V_M : V_M(\sigma) = 0$
- $\mathcal{K}_M^4(\sigma) = (0, 0) \iff \not\exists V_M : V_M(\sigma) = 1$ and $\not\exists V_M : V_M(\sigma) = 0$
- $\mathcal{K}_M^4(\sigma) = (0, 1) \iff \exists V_M : V_M(\sigma) = 1$ and $\not\exists V_M : V_M(\sigma) = 0$

Theorem $\mathcal{V}_M^t : \text{Sen}(L_T) \rightarrow \{(1, 0), (1, 1), (0, 1)\}$ is equivalent to the minimal fixed point over M.

\[
\begin{align*}
\mathcal{K}_M^4(\sigma) = (1, 0) & \iff \exists V_M : V_M(\sigma) = 1 \\
\mathcal{K}_M^4(\sigma) = (1, 1) & \iff \exists V_M : V_M(\sigma) = 1 \\
\mathcal{K}_M^4(\sigma) = (0, 0) & \iff \not\exists V_M : V_M(\sigma) = 1 \\
\mathcal{K}_M^4(\sigma) = (0, 1) & \iff \exists V_M : V_M(\sigma) = 1
\end{align*}
\]
Some remarks on the interpretation of \mathcal{V}_M^s and \mathcal{V}_M^t

- With $T(\tau)$ a Truthteller: $\mathcal{V}_M^s(T(\tau)) = (1, 1)$.
Some remarks on the interpretation of V^s_M and V^t_M

- With $T(\tau)$ a Truthteller: $V^s_M(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.
Some remarks on the interpretation of \mathcal{V}_M^s and \mathcal{V}_M^t

- With $T(\tau)$ a Truthteller: $\mathcal{V}_M^s(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.

- But $A^s_{T(\tau)}$ and $D^s_{T(\tau)}$ give closure?
Some remarks on the interpretation of \mathcal{V}_M^s and \mathcal{V}_M^t

- With $T(\tau)$ a Truthteller: $\mathcal{V}_M^s(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.

- But $A_{T(\tau)}^s$ and $D_{T(\tau)}^s$ give closure?

- One may strictly assert $T(\tau)$ and one may strictly deny $T(\tau)$, but one may not do so "at the same time".
Some remarks on the interpretation of \mathcal{V}_M^s and \mathcal{V}_M^t

- With $T(\tau)$ a Truthteller: $\mathcal{V}_M^s(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.

- But $A^s_T(\tau)$ and $D^s_T(\tau)$ give closure?

- One may strictly assert $T(\tau)$ and one may strictly deny $T(\tau)$, but one may not do so "at the same time".

- One may not become committed to both a strict assertion and strict denial of $T(\tau)$, as one does e.g. by asserting $T(\tau) \land \neg T(\tau)$.
Some remarks on the interpretation of V^s_M and V^t_M

- With $T(\tau)$ a Truthteller: $V^s_M(T(\tau)) = (1, 1)$.
- So the Truthteller is both strictly assertible and deniable.
- But $A^s_{T(\tau)}$ and $D^s_{T(\tau)}$ give closure?
- One may strictly assert $T(\tau)$ and one may strictly deny $T(\tau)$, but one may not do so ”at the same time”.
- One may not become committed to both a strict assertion and strict denial of $T(\tau)$, as one does e.g. by asserting $T(\tau) \land \neg T(\tau)$.
- $V^s_M(T(\tau) \land \neg T(\tau)) = (0, 1)$
Some remarks on the interpretation of ν^s_M and ν^t_M

- With $T(\tau)$ a Truthteller: $\nu^s_M(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.

- But $A^s_{T(\tau)}$ and $D^s_{T(\tau)}$ give closure?

- One may strictly assert $T(\tau)$ and one may strictly deny $T(\tau)$, but one may not do so "at the same time".

- One may not become committed to both a strict assertion and strict denial of $T(\tau)$, as one does e.g. by asserting $T(\tau) \land \neg T(\tau)$.

- $\nu^s_M(T(\tau) \land \neg T(\tau)) = (0, 1)$

ν^s_M and ν^t_M model *initial* assertoric possibilities.
Performing strict/tolerant assertoric actions rules out other such actions.
Some remarks on the interpretation of \mathcal{V}_M^s and \mathcal{V}_M^t

- With $T(\tau)$ a Truthteller: $\mathcal{V}_M^s(T(\tau)) = (1, 1)$.

- So the Truthteller is both strictly assertible and deniable.

- But $A_{T(\tau)}^s$ and $D_{T(\tau)}^s$ give closure?

- One may strictly assert $T(\tau)$ and one may strictly deny $T(\tau)$, but one may not do so "at the same time".

- One may not become committed to both a strict assertion and strict denial of $T(\tau)$, as one does e.g. by asserting $T(\tau) \land \neg T(\tau)$.

- $\mathcal{V}_M^s(T(\tau) \land \neg T(\tau)) = (0, 1)$

- \mathcal{V}_M^s and \mathcal{V}_M^t model initial assertoric possibilities.
 Performing strict/tolerant assertoric actions rules out other such actions.

- The transmission of assertoric possibilities due to (strict and tolerant) assertions and denials is captured by the strict-tolerant calculus.
Why the strict-tolerant distinction is primitive
$$\text{Why bilateralism?}$$

- We interpret A^s, D^s, A^t and D^t as force indicators.
Why bilateralism?

- We interpret A^s, D^s, A^t and D^t as *force indicators*.

- Why does Ripley think that STCT has *bilateralism* and not, say *fourilateralism* commitments?
- We interpret A^s, D^s, A^t and D^t as *force indicators*.

- Why does Ripley think that STCT has *bilateralist* and not, say *four*ilateralist commitments?

 [The strict-tolerant distinction] it is not a primitive distinction; we can understand tolerant assertion and denial in terms of their strict cousins, as I’ve presented them here, or we can equally well understand strict in terms of tolerant. So long as we have a grip on one, there is no difficulty in coming to understand the other.

 Ripley, PaFC
Why bilateralism?

- We interpret A^s, D^s, A^t and D^t as force indicators.

- Why does Ripley think that STCT has bilateralist and not, say fourlateralist commitments?

 [The strict-tolerant distinction] it is not a primitive distinction; we can understand tolerant assertion and denial in terms of their strict cousins, as I’ve presented them here, or we can equally well understand strict in terms of tolerant. So long as we have a grip on one, there is no difficulty in coming to understand the other. Ripley, PaFC

- In a sense, this remark is to the point. But not in the required sense.
We interpret A^s, D^s, A^t and D^t as force indicators.

Why does Ripley think that STCT has bilateralism and not, say fourilateralist commitments?

[The strict-tolerant distinction] it is not a primitive distinction; we can understand tolerant assertion and denial in terms of their strict cousins, as I’ve presented them here, or we can equally well understand strict in terms of tolerant. So long as we have a grip on one, there is no difficulty in coming to understand the other. Ripley, PaFC

In a sense, this remark is to the point. But not in the required sense.

The remark is to the point relative to a particular fixed point V_M:

- σ is strongly V_M assertible \iff σ is not tolerantly V_M deniable
- σ is strongly V_M deniable \iff σ is not tolerantly V_M assertible
The strict and tolerant can be understood in terms of one another if, given M, there would be a *privileged* V_M^* which would inform us about the assertoric status of the L_T sentences.
Supervenience of Semantics and the Fixed Point Conception

- The strict and tolerant can be understood in terms of one another if, given M, there would be a privileged V^*_M which would inform us about the assertoric status of the L_T sentences.

- **Supervenience of semantics**: Once all the empirical facts have been settled, so are all the semantic facts. In terms of our formal theory, the intuition becomes: for any given ground model, there is exactly one correct interpretation of the truth predicate. — M. Kremer 1988
The strict and tolerant can be understood in terms of one another if, given M, there would be a privileged V^*_M which would inform us about the assertoric status of the L_T sentences.

Supervenience of semantics: Once all the empirical facts have been settled, so are all the semantic facts. In terms of our formal theory, the intuition becomes: for any given ground model, there is exactly one correct interpretation of the truth predicate. M. Kremer 1988

Fixed Point Conception of Truth: This criterion takes the notion of a fixed point to give the whole meaning of true. Or, in Kripke’s words, the intuitive concept of truth is expressed by the formula: ‘we are entitled to assert (or deny) of a sentence that it is true precisely under the circumstances when we can assert (or deny) the sentence itself’. M. Kremer 1988
The strict and tolerant can be understood in terms of one another if, given \mathcal{M}, there would be a privileged V_M^* which would inform us about the assertoric status of the L_T sentences.

Supervenience of semantics: Once all the empirical facts have been settled, so are all the semantic facts. In terms of our formal theory, the intuition becomes: for any given ground model, there is exactly one correct interpretation of the truth predicate. M. Kremer 1988

Fixed Point Conception of Truth: This criterion takes the notion of a fixed point to give the whole meaning of true. Or, in Kripke’s words, the intuitive concept of truth is expressed by the formula: ‘we are entitled to assert (or deny) of a sentence that it is true precisely under the circumstances when we can assert (or deny) the sentence itself’. M. Kremer 1988

Due to its inferentialist commitments, STCT is committed to **FPCT**.
Supervenience of Semantics and the Fixed Point Conception

- The strict and tolerant can be understood in terms of one another if, given M, there would be a privileged V^*_M which would inform us about the assertoric status of the L_T sentences.

- **Supervenience of semantics**: Once all the empirical facts have been settled, so are all the semantic facts. In terms of our formal theory, the intuition becomes: for any given ground model, there is exactly one correct interpretation of the truth predicate. M. Kremer 1988

- **Fixed Point Conception of Truth**: This criterion takes the notion of a fixed point to give the whole meaning of true. Or, in Kripke’s words, the intuitive concept of truth is expressed by the formula: ‘we are entitled to assert (or deny) of a sentence that it is true precisely under the circumstances when we can assert (or deny) the sentence itself’. M. Kremer 1988

- Due to its inferentialist commitments, STCT is committed to **FPCT**.

- Moreover, as V^s_M and V^t_M do not determine each other, we can’t understand the strict in terms of tolerant (nor vice versa).
Thus, we need 4 distinct primitive speech acts?
Thus, we need 4 distinct primitive speech acts?

Not so fast. For look at assertoric semantics:
- Thus, we need 4 distinct primitive speech acts?

- Not so fast. For look at assertoric semantics:

 - Modulo an insignificant difference in sign: $\mathcal{X}_A^s = \mathcal{X}_A^t$ and $\mathcal{X}_D^s = \mathcal{X}_D^t$
Thus, we need 4 distinct primitive speech acts?

Not so fast. For look at assertoric semantics:

- Modulo an insignificant difference in sign: $\emptyset_A^s = \emptyset_A^t$ and $\emptyset_D^s = \emptyset_D^t$

- Thus, there are only 2 speech acts (assertion and denial) but two distinct assertoric norms (closure conditions): a strict and a tolerant one.
Thus, we need 4 distinct primitive speech acts?

Not so fast. For look at assertoric semantics:

- Modulo an insignificant difference in sign: $\sigma_A^s = \sigma_A^t$ and $\sigma_D^s = \sigma_D^t$

- Thus, there are only 2 speech acts (assertion and denial) but two distinct assertoric norms (closure conditions): a strict and a tolerant one.

However, assertoric semantics does not take into account the relations between strict and tolerant.
But not so fast... Argument 1

- Thus, we need 4 distinct primitive speech acts?

- But not so fast. For look at assertoric semantics:
 - Modulo an insignificant difference in sign: \(\Psi_{A_s}^\sigma = \Psi_{A_t}^\sigma \) and \(\Psi_{D_s}^\sigma = \Psi_{D_t}^\sigma \)
 - Thus, there are only 2 speech acts (assertion and denial) but two distinct assertoric norms (closure conditions): a strict and a tolerant one.

- However, assertoric semantics does not take into account the relations between strict and tolerant.

- The strict-tolerant calculus does so in its closure conditions:
 \[A_s^\sigma, D_t^\sigma \text{ or } A_t^\sigma, D_s^\sigma \text{ occur on a tableau path.} \]
But not so fast... Argument 1

- Thus, we need 4 distinct primitive speech acts?

- Not so fast. For look at assertoric semantics:
 - Modulo an insignificant difference in sign: $\Sigma^\sigma_A^s = \Sigma^\sigma_A^t$ and $\Sigma^\sigma_D^s = \Sigma^\sigma_D^t$
 - Thus, there are only 2 speech acts (assertion and denial) but two distinct assertoric norms (closure conditions): a strict and a tolerant one.

- However, assertoric semantics does not take into account the relations between strict and tolerant.

- The strict-tolerant calculus does so in its closure conditions:
 A^s_σ, D^t_σ or A^t_σ, D^s_σ occur on a tableau path.

- Hence, in order to understand the relations between strict and tolerant actions, it seems that we must understand the signs A^s, D^s, A^t, D^t as primitive force indicators.
- Perhaps then, the strict and tolerant can’t be understood in terms of one another.
But not so fast... Argument 2

- Perhaps then, the strict and tolerant can’t be understood in terms of one another.

- But who cares? What is at the heart of STCT is a syntactic (bilaterlistic) characterization of \models^{st}. The strict and tolerant are at least on a par as we can do so by putting constraints either on:
But not so fast... Argument 2

- Perhaps then, the strict and tolerant can’t be understood in terms of one another.

- But who cares? What is at the heart of STCT is a syntactic (bilaterlistic) characterization of \models^{st}. The strict and tolerant are at least on a par as we can do so by putting constraints either on:
 - strict assertions and strict denials
 - tolerant assertions and tolerant denials.

- According to the strict-tolerant calculus, this argument is wrong.
But not so fast... Argument 2

- Perhaps then, the strict and tolerant can’t be understood in terms of one another.

- But who cares? What is at the heart of STCT is a syntactic (bilaterlistic) characterization of \models^{st}. The strict and tolerant are at least on a par as we can do so by putting constraints either on:
 - strict assertions and strict denials
 - tolerant assertions and tolerant denials.

- According to the strict-tolerant calculus, this argument is wrong.

- \models^{st} can be characterized by putting constraints on strict assertions and denials (as in \models^{st}) but not in terms their tolerant cousins.
Perhaps then, the strict and tolerant can’t be understood in terms of one another.

But who cares? What is at the heart of STCT is a syntactic (bilateralistic) characterization of \models^{st}. The strict and tolerant are at least on a par as we can do so by putting constraints either on:

- strict assertions and strict denials
- tolerant assertions and tolerant denials.

According to the strict-tolerant calculus, this argument is wrong.

\models^{st} can be characterized by putting constraints on strict assertions and denials (as in \models^{st}) but not in terms their tolerant cousins.

According to the strict-tolerant calculus, strict assertions and denials have a privileged status.
But but not so fast... Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \models^{st} via the notion of \textit{refusal}:

<table>
<thead>
<tr>
<th>Introduction</th>
<th>From classical to Strong Kleene consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The strict-tolerant calculus</td>
</tr>
<tr>
<td>Assertoric semantics</td>
<td>Why the strict-tolerant distinction is primitive</td>
</tr>
<tr>
<td></td>
<td>Why \textit{bilateralism}?</td>
</tr>
<tr>
<td></td>
<td>Supervenience of Semantics and the Fixed Point Conception</td>
</tr>
<tr>
<td></td>
<td>But not so fast... Argument 1</td>
</tr>
<tr>
<td></td>
<td>But not so fast... Argument 2</td>
</tr>
<tr>
<td></td>
<td>But not so fast... Argument 3</td>
</tr>
<tr>
<td></td>
<td>Concluding remarks</td>
</tr>
</tbody>
</table>
But not so fast... Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \models^{st} via the notion of *refusal*:

- Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds
But not so fast. . . Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \vdash^{st} via the notion of *refusal*:

- Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds

- Refusal-to-tolerantly-deny σ is tantamount to strictly asserting σ.
But we can easily restore the asymmetry between the strict and tolerant by characterizing \models^{st} via the notion of refusal:

- Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds.

- Refusal-to-tolerantly-deny σ is tantamount to strictly asserting σ.

- But what kind of refusal is this?
But not so fast... Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \models^{st} via the notion of *refusal*:

 - Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds

 - Refusal-to-tolerantly-deny σ is tantamount to strictly asserting σ.

 - But what kind of refusal is this?

 - $\models^{st} \sigma, \neg \sigma$. Out of bounds to refuse to (tolerantly) assert σ and its negation. But what if σ is unknown?
But not so fast... Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \(\models^{st} \) via the notion of *refusal*:
 - Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds
 - Refusal-to-tolerantly-deny \(\sigma \) is tantamount to strictly asserting \(\sigma \).
 - But what kind of refusal is this?
 - \(\models^{st} \sigma, \neg \sigma \). Out of bounds to refuse to (tolerantly) assert \(\sigma \) and its negation. But what if \(\sigma \) is unknown?
 - Go multi-agent? If agent \(A \) refuses \(B \)'s tolerant assertion of \(\sigma \), \(A \) is committed to a strict denial of \(\sigma \).
But not so fast... Argument 3

- But we can easily restore the asymmetry between the strict and tolerant by characterizing \models_{st} via the notion of *refusal*:

- Refusal-to-tolerantly-deny all premisses and refusal-to-tolerantly-assert all consequences is out of bounds.

- Refusal-to-tolerantly-deny σ is tantamount to strictly asserting σ.

- But what kind of refusal is this?

 - $\models_{st} \sigma, \lnot \sigma$. Out of bounds to refuse to (tolerantly) assert σ and its negation. But what if σ is unknown?

- Go multi-agent? If agent A refuses B’s tolerant assertion of σ, A is committed to a strict denial of σ.

- Then again, even a detailed notion of refusal (and acceptance) only shows that the strict-tolerant symmetry can be ”restored” via auxiliary notions.
The idea of advocating a non-transitive consequence relation for L_T (and vagueness) is, I take it, a very interesting and promising direction.
The idea of advocating a non-transitive consequence relation for L_T (and vagueness) is, I take it, a very interesting and promising direction.

Same for STCT, who seeks to defend this relation philosophically by deriving it from an independent account of meaning (bilateralism).
The idea of advocating a non-transitive consequence relation for L_T (and vagueness) is, I take it, a very interesting and promising direction.

Same for STCT, who seeks to defend this relation philosophically by deriving it from an independent account of meaning (bilateralism).

The strict-tolerant calculus and assertoric semantics shed light on STCT and suggest that the strict-tolerant distinction needs further attention.
The idea of advocating a non-transitive consequence relation for L_T (and vagueness) is, I take it, a very interesting and promising direction.

Same for STCT, who seeks to defend this relation philosophically by deriving it from an independent account of meaning (bilateralism).

The strict-tolerant calculus and assertoric semantics shed light on STCT and suggest that the strict-tolerant distinction needs further attention.

Thanks for your attention.