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Abstract. We survey a line of investigation into the theory of the enu-
meration degrees. Enumeration reducibility captures a model of com-
putation based on positive information. We will focus on the theory of
the associated degree structure in the language of partial orders and its
fragments, built by restricting the quantifier complexity of statements.
We will consider the local substructure of the enumeration degrees cap-
tured by the degrees that are computationally weaker than the Halting
set. We consider how things change when we change the signature of the
language.
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This is the extended abstract of my talk for the conference CiE 2024 “Twenty
years of theoretical and practical synergies”. I will present a line of investigation
into one aspect of the structure of the enumeration degrees—one that asks: how
complicated is the theory of the structure. This line of investigation accompa-
nies the study of every computability theoretic reducibility. It was carried out
extensively for the Turing degrees. The enumeration degrees can be viewed as
an extension of the Turing degrees. We will keep track of relevant result in both
structures and point out aspects in which they differ.

The partial order of the enumeration degrees arises from the relation enu-
meration reducibility, introduced by Friedberg and Rogers [3] in 1959.

Definition 1 (Friedberg and Rogers [3]). A set A is enumeration reducible
to a set B (denoted by A ≤e B) if there is a c.e. set Φ, such that

A = Φ(B) = {n : ∃u(〈n, u〉 ∈ Φ & Du ⊆ B)},

where Du denotes the finite set with code (canonical index) u under the standard
coding of finite sets.

Equivalent forms of enumeration reducibility were actually introduced by
several authors independently: see Kleene [7], Myhill [13], Uspensky [24], Sel-
man [17]. The most common motivation for their introduction was to extend the
notion of Turing reducibility to partial function. Scott [16] showed that enumer-
ation reducibility on c.e. sets gives rise to a structure that interprets untyped
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lambda calculus, thus we can be confident that the reducibility provides a robust
notion of computation that is intrinsically interesting.

To each reducibility we associate a degree structure in which we identify sets
that are reducible to each other. The structure of the Turing degrees DT has a
natural embedding in the structure of the enumeration degrees De: we map the
Turing degree of a set A to the enumeration degree of the set A ⊕ A. In this
sense we view De as an extension of DT .

This embedding is non-trivial and, in fact, the two structures are not even
elementary equivalent. Spector [23] proved that the Turing degrees have min-
imal elements, while Gutteridge [5] showed that the enumeration degrees are
downwards dense.

We focus on understanding the complexity of the sets of statements in the
language of partial orders that are true in the Turing degrees and that are
true in the enumeration degrees. We denote these sets by Th(DT ) and Th(De)
and call them the theory of the degree structure. We will see that in each case
these theories are maximally complex: as complicated as the theory Second or-
der arithmetic. These results are due to Simpson [20] for DT and to Slaman
and Woodin [22] for De. We will describe the general method of Slaman and
Woodin [21] that codes models of arithmetic inside the degree structure and
also comment on an alternative proof for the complexity of Th(De) that relies
on the definability of the Turing degrees inside the enumeration degrees by Cai
et. al [1].

The local structure of the enumeration degrees De(≤ 0′e) consists of the in-
terval degrees [0e,0

′
e]. It contains as a substructure the image of the interval

[0T ,0
′
T ], which constitutes the local structure of the Turing degree DT (≤ 0′T ).

It is a countable structure and its element have simple definitions in terms of the
arithmetical hierarchy: the enumeration degrees of Σ0

2 sets. Cooper [2] proved
that De(≤ 0′e) is dense, while Sacks [15] showed that minimal Turing degrees
exist even in DT (≤ 0′T ). The theories of the local structures are also maximally
complex: each is computably isomorphic to first order arithmetic [19, 4].

In each of the cases above we may decide to restrict our attention to sim-
pler statements: we will borrow notation from the arithmetical hierarch and say
that a statement of the form (∃x1)(∀x2) . . . (Qxn)ϕ, where Q is the appropriate
quantifier after n− 1 alternations and ϕ is quantifier free, a Σn formula. Πn is
defined similarly when we start with ∀. The Σn-Theory of a structure D consists
of all Σn statements true in D and is denoted by Σn-Th(D).

The Σ1 theories of DT , De, DT (≤ 0′T ) and De(≤ 0′e) are each decidable. They
can be reformulated as a structural question asking which finite partial orders
can be embedded in the structure. In each case the answer is all. And so at
the one end, when we consider only existential statements, we have decidable
theories. At the other, when we allow arbitrarily long quantifier alternations, we
have highly undecidable theories. Naturally, we wonder where does decidability
break down.

In all cases the Σ3-theory of the degree structure is undecidable. We will
review these results due to Lerman and Schmerl (see [11]) for the local and global
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Turing degrees and to Kent [6] for the local and global enumeration degrees. We
will describe the Nies Transfer Method [14] that gives a general recipe on how
to prove such results.

The question that remains is then what happens at level 2. In the Turing
degrees both global [10, 18] and local [12] we have an algorithm to decide where
a two-quantifier statement is true or not. The algorithm largely relies on a gen-
eralization of the existence of minimal degrees. In De and in De(≤ 0′e) these
questions remain open. We will discuss partial progress made towards such a
solution and the obstacles ahead. The work discussed features in [9] and [8].

Finally we will consider how things change if we change the signature of the
language: what happens if we add a function symbol for the jump operator, the
skip operator, or the least upper bound operator.
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