Admissibility of Π_2-Inference Rules: interpolation, model completion, and contact algebras

Luca Carai, University of Salerno

Joint work with: Nick Bezhanishvili, Silvio Ghilardi, and Lucia Landi

Logic4Peace, 22 April 2022
Π_2-rules
An inference rule \(\rho \) is a \(\Pi_2 \)-rule if it is of the form

\[
\frac{F(\phi/x, y) \to \chi}{G(\phi/x) \to \chi}
\]

where \(F(x, y) \), \(G(x) \) are propositional formulas.

We say that \(\theta \) is obtained from \(\psi \) by an application of the rule \(\rho \) if

\[
\psi = F(\phi/x, y) \to \chi \quad \text{and} \quad \theta = G(\phi/x) \to \chi,
\]

where \(\phi \) is a tuple of formulas, \(\chi \) is a formula, and \(y \) is a tuple of propositional letters not occurring in \(\phi \) and \(\chi \).
Definition

An inference rule \(\rho \) is a \(\Pi_2 \)-rule if it is of the form

\[
\begin{align*}
F(\phi/x, y) \rightarrow \chi \\
\implies \\
G(\phi/x) \rightarrow \chi
\end{align*}
\]

where \(F(x, y), G(x) \) are propositional formulas.

We say that \(\theta \) is obtained from \(\psi \) by an application of the rule \(\rho \) if

\[
\psi = F(\phi/x, y) \rightarrow \chi \quad \text{and} \quad \theta = G(\phi/x) \rightarrow \chi,
\]

where \(\phi \) is a tuple of formulas, \(\chi \) is a formula, and \(y \) is a tuple of propositional letters not occurring in \(\phi \) and \(\chi \).

Let \(S \) be a propositional modal system. We say that the rule \(\rho \) is **admissible** in \(S \) if \(\vdash_{S+\rho} \phi \) implies \(\vdash_S \phi \) for each formula \(\phi \).
First method

Conservative extensions
We say that $\phi(x) \land \psi(x, y)$ is a conservative extension of $\phi(x)$ in S if

$$\vdash_S \phi(x) \land \psi(x, y) \rightarrow \chi(x) \text{ implies } \vdash_S \phi(x) \rightarrow \chi(x)$$

for every formula $\chi(x)$.

Theorem

If S has the interpolation property, then a Π_2-rule ρ is admissible in S iff $G(x) \land F(x, y)$ is a conservative extension of $G(x)$ in S.

Therefore, if S has the interpolation property and conservativity is decidable in S, then Π_2-rules are effectively recognizable in S.

Corollary

The admissibility problem for Π_2-rules is NexpTime-complete in K and $S5$; in ExpSpace and NexpTime-hard in $S4$.
We say that $\phi(x) \land \psi(x, y)$ is a conservative extension of $\phi(x)$ in S if

$$\vdash_S \phi(x) \land \psi(x, y) \rightarrow \chi(x) \text{ implies } \vdash_S \phi(x) \rightarrow \chi(x)$$

for every formula $\chi(x)$.

Theorem

If S has the interpolation property, then a Π_2-rule ρ is admissible in S iff $G(x) \land F(x, y)$ is a conservative extension of $G(x)$ in S.

Corollary

The admissibility problem for Π_2-rules is NexpTime-complete in K and $S5$; in ExpSpace and NexpTime-hard in $S4$.
We say that $\phi(x) \land \psi(x, y)$ is a **conservative extension** of $\phi(x)$ in S if

$$\vdash_S \phi(x) \land \psi(x, y) \rightarrow \chi(x) \text{ implies } \vdash_S \phi(x) \rightarrow \chi(x)$$

for every formula $\chi(x)$.

Theorem

If S has the interpolation property, then a Π_2-rule ρ is admissible in S iff $G(x) \land F(x, y)$ is a conservative extension of $G(x)$ in S.

Therefore, if S has the interpolation property and conservativity is decidable in S, then Π_2-rules are effectively recognizable in S.

Corollary

The admissibility problem for Π_2-rules is

- NexpTime-complete in K and $S5$;
- in ExpSpace and NexpTime-hard in $S4$.
Second method

Uniform interpolants
An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_{S} \bigwedge_{i=1}^{n} [\forall] (\phi_{i} \leftrightarrow \psi_{i}) \rightarrow ([\square] \phi_{1}, \ldots, \phi_{n} \leftrightarrow [\square] \psi_{1}, \ldots, \psi_{n})$$

for every modality $[\square]$ of S.
An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_S \bigwedge_{i=1}^n [\forall](\phi_i \leftrightarrow \psi_i) \rightarrow ([\forall][\phi_1, \ldots, \phi_n] \leftrightarrow [\forall][\psi_1, \ldots, \psi_n])$$

for every modality $[\Box]$ of S.

If $\phi(x, y)$ is a formula, its right global uniform pre-interpolant $[\forall_x \phi(y)]$ is a formula such that for every $\psi(y, z)$ we have that

$$\psi(y, z) \vdash_S \phi(x, y) \; \text{iff} \; \psi(y, z) \vdash_S [\forall_x \phi(y)].$$
An S5-modality $[\forall]$ is called a universal modality if

$$\vdash_S \bigwedge_{i=1}^n [\forall](\phi_i \leftrightarrow \psi_i) \rightarrow ([\square]\phi_1, \ldots, \phi_n] \leftrightarrow [\square]\psi_1, \ldots, \psi_n])$$

for every modality $[\square]$ of S.

If $\phi(x, y)$ is a formula, its right global uniform pre-interpolant $\forall_x \phi(y)$ is a formula such that for every $\psi(y, z)$ we have that

$$\psi(y, z) \vdash_S \phi(x, y) \text{ iff } \psi(y, z) \vdash_S \forall_x \phi(y).$$

Theorem

Suppose that S has uniform global pre-interpolants and a universal modality $[\forall]$. Then a Π_2-rule ρ is admissible in S iff

$$\vdash_S [\forall] \forall_y (F(x, y) \rightarrow z) \rightarrow (G(x) \rightarrow z).$$
Third method

Simple algebras and model completions
To a Π_2-rule we associate the first-order formula

$$\Pi(\rho) := \forall x, z \left(G(x) \not\leq z \Rightarrow \exists y : F(x, y) \not\leq z \right).$$

Theorem

Suppose that S has a universal modality. A Π_2-rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.
To a Π_2-rule we associate the first-order formula

$$\Pi(\rho) := \forall x, z \left(G(x) \nleq z \Rightarrow \exists y : F(x, y) \nleq z \right).$$

Theorem

Suppose that S has a universal modality. A Π_2-rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an S-algebra is simple iff

$$[\forall]x = \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise.} \end{cases}$$
To a Π_2-rule we associate the first-order formula

$$\Pi(\rho) := \forall x, z \left(G(x) \not\leq z \Rightarrow \exists y : F(x, y) \not\leq z \right).$$

Theorem

Suppose that S has a universal modality. A Π_2-rule ρ is admissible in S iff for each simple S-algebra B there is a simple S-algebra C such that B is a subalgebra of C and $C \models \Pi(\rho)$.

In the presence of a universal modality, an S-algebra is simple iff

$$[\forall] x = \begin{cases} 1 & \text{if } x = 1, \\ 0 & \text{otherwise.} \end{cases}$$

Moreover, S-algebras form a discriminator variety. Therefore, the variety of S-algebras is generated by the simple S-algebras.
The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.
The **model completion** of a universal first-order theory T, if it exists, is the theory of the **existentially closed** models of T.

Let T be a universal theory in a finite language. If T is **locally finite** and has the **amalgamation property**, then it admits a model completion.
The model completion of a universal first-order theory T, if it exists, is the theory of the existentially closed models of T.

Let T be a universal theory in a finite language. If T is locally finite and has the amalgamation property, then it admits a model completion.

Theorem

Suppose that S has a universal modality and let T_S be the first-order theory of the simple S-algebras. If T_S has a model completion T_S^*, then a Π_2-rule ρ is admissible in S iff $T_S^* \models \Pi(\rho)$ where

$$\Pi(\rho) := \forall x, z \left(G(x) \nless z \Rightarrow \exists y : F(x, y) \nless z \right).$$
The symmetric strict implication calculus
and contact algebras
Definition (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

The symmetric strict implication calculus S^2IC is given by the axioms

(A0) $[\forall] \phi \leftrightarrow (\top \leadsto \phi)$,
(A1) $(\bot \leadsto \phi) \land (\phi \leadsto \top)$,
(A2) $[(\phi \lor \psi) \leadsto \chi] \leftrightarrow [(\phi \leadsto \chi) \land (\psi \leadsto \chi)]$,
(A3) $[\phi \leadsto (\psi \land \chi)] \leftrightarrow [(\phi \leadsto \psi) \land (\phi \leadsto \chi)]$,
(A4) $(\phi \leadsto \psi) \rightarrow (\phi \rightarrow \psi)$,
(A5) $(\phi \leadsto \psi) \leftrightarrow (\neg \psi \leadsto \neg \phi)$,
(A8) $[\forall] \phi \rightarrow [\forall][\forall] \phi$,
(A9) $\neg [\forall] \phi \rightarrow [\forall] \neg [\forall] \phi$,
(A10) $(\phi \leadsto \psi) \leftrightarrow [\forall](\phi \leadsto \psi)$,
(A11) $[\forall] \phi \rightarrow (\neg [\forall] \phi \leadsto \bot)$,

and modus ponens (for \rightarrow) and necessitation (for $[\forall]$).
An open subset A of a topological space is called regular open if $A = \text{int}(\text{cl}(A))$.

Let v be a valuation into a topological space X that maps each propositional variable to a regular open of X. We can extend each valuation on all formulas as follows:

$$v(\bot) = \emptyset$$
$$v(\top) = X$$
$$v(\phi \land \psi) = v(\phi) \cap v(\psi)$$
$$v(\phi \lor \psi) = \text{int}(\text{cl}(v(\phi) \cup v(\psi)))$$
$$v(\neg \phi) = \text{int}(X \setminus v(\phi))$$
$$v(\phi \Rightarrow \psi) = \begin{cases} X & \text{if } \text{cl}(v(\phi)) \subseteq v(\psi), \\ \emptyset & \text{otherwise.} \end{cases}$$

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

$\vdash S2\text{IC} \phi$ iff $v(\phi) = X$ for every compact Hausdorff space X and v.

An open subset A of a topological space is called regular open if $A = \text{int}(\text{cl}(A))$.

Let ν be a valuation into a topological space X that maps each propositional variable to a regular open of X. We can extend each valuation on all formulas as follows

\[
\begin{align*}
\nu(\bot) & = \emptyset \\
\nu(\top) & = X \\
\nu(\phi \land \psi) & = \nu(\phi) \cap \nu(\psi) \\
\nu(\phi \lor \psi) & = \text{int}(\text{cl}(\nu(\phi) \cup \nu(\psi))) \\
\nu(\neg \phi) & = \text{int}(X \setminus \nu(\phi)) \\
\nu(\phi \Rightarrow \psi) & = \begin{cases} X & \text{if } \text{cl}(\nu(\phi)) \subseteq \nu(\psi), \\ \emptyset & \text{otherwise.} \end{cases}
\end{align*}
\]
An open subset \(A \) of a topological space is called regular open if \(A = \text{int} (\text{cl}(A)) \).

Let \(\nu \) be a valuation into a topological space \(X \) that maps each propositional variable to a regular open of \(X \). We can extend each valuation on all formulas as follows

\[
\begin{align*}
\nu(\bot) &= \emptyset \\
\nu(\top) &= X \\
\nu(\phi \land \psi) &= \nu(\phi) \cap \nu(\psi) \\
\nu(\phi \lor \psi) &= \text{int}(\text{cl}(\nu(\phi) \cup \nu(\psi))) \\
\nu(\neg \phi) &= \text{int}(X \setminus \nu(\phi)) \\
\nu(\phi \Rightarrow \psi) &= \begin{cases} X & \text{if } \text{cl}(\nu(\phi)) \subseteq \nu(\psi), \\ \emptyset & \text{otherwise}. \end{cases}
\end{align*}
\]

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

\[\vdash_{S^2IC} \phi \iff \nu(\phi) = X \text{ for every compact Hausdorff space } X \text{ and } \nu. \]
The algebras associated with \(S^2 \text{IC} \) are called \textit{strict implication algebras}.

When a strict implication algebra is simple, \(\leadsto \) becomes a characteristic function of a binary relation. They correspond exactly to contact algebras.
The algebras associated with S^2IC are called **strict implication algebras**.

When a strict implication algebra is simple, $\sim\supset$ becomes a characteristic function of a binary relation. They correspond exactly to contact algebras.

Definition

A **contact algebra** is a boolean algebra equipped with a binary relation \prec satisfying the axioms:

(S1) $0 \prec 0$ and $1 \prec 1$;
(S2) $a \prec b, c$ implies $a \prec b \land c$;
(S3) $a, b \prec c$ implies $a \lor b \prec c$;
(S4) $a \leq b \prec c \leq d$ implies $a \prec d$;
(S5) $a \prec b$ implies $a \leq b$;
(S6) $a \prec b$ implies $\neg b \prec \neg a$.
Theorem

The model completion Con^* of the theory of contact algebras is finitely axiomatizable.
Theorem

The model completion Con^* of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

\[
\forall a, b_1, b_2 \ (a \neq 0 \land (b_1 \lor b_2) \land a = 0 \land a \prec a \lor b_1 \lor b_2 \Rightarrow \\
\exists a_1, a_2 \ (a_1 \lor a_2 = a \land a_1 \land a_2 = 0 \land a_1 \neq 0 \land a_2 \neq 0 \land a_1 \prec a_1 \lor b_1 \land a_2 \prec a_2 \lor b_2))
\]

\[
\forall a, b \ (a \land b = 0 \land a \not\prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \land a_1 \land a_2 = 0 \land a_1 \not\prec \neg b \land a_2 \not\prec \neg b \land a_1 \prec \neg a_2))
\]

\[
\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \land a_1 \land a_2 = 0 \land a_1 \prec a \land a_1 \not\prec a_1))
\]
The model completion Con^* of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

\[
\forall a, b_1, b_2 \ (a \neq 0 & (b_1 \lor b_2) \land a = 0 & a \prec a \lor b_1 \lor b_2 \Rightarrow \\
\exists a_1, a_2 \ (a_1 \lor a_2 = a & a_1 \land a_2 = 0 & a_1 \neq 0 & a_2 \neq 0 & a_1 \prec a_1 \lor b_1 \\
& a_2 \prec a_2 \lor b_2))
\]

\[
\forall a, b \ (a \land b = 0 & a \not\prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a & a_1 \land a_2 = 0 \\
& a_1 \not\prec \neg b & a_2 \not\prec \neg b & a_1 \prec \neg a_2))
\]

\[
\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a & a_1 \land a_2 = 0 & a_1 \prec a & a_1 \not\prec a_1))
\]
Theorem

The model completion Con^* of the theory of contact algebras is finitely axiomatizable.

An axiomatization is given by the following three sentences.

\[\forall a, b_1, b_2 \ (a \neq 0 \& (b_1 \lor b_2) \land a = 0 \& a \prec a \lor b_1 \lor b_2 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \neq 0 \& a_2 \neq 0 \& a_1 \prec a_1 \lor b_1 \& a_2 \prec a_2 \lor b_2)) \]

\[\forall a, b \ (a \land b = 0 \& a \not\prec \neg b \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \not\prec \neg b \& a_2 \not\prec \neg b \& a_1 \prec \neg a_2)) \]

\[\forall a \ (a \neq 0 \Rightarrow \exists a_1, a_2 \ (a_1 \lor a_2 = a \& a_1 \land a_2 = 0 \& a_1 \prec a \& a_1 \not\prec a_1)) \]
The following Π_2-rule

\[
\frac{(p \rightsquigarrow p) \land (\phi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \to \chi}{(\phi \rightsquigarrow \psi) \to \chi}
\]

corresponds to the zero-dimensionality of the space.
The following Π_2-rule

$$
\frac{(p \rightsquigarrow p) \land (\phi \rightsquigarrow p) \land (p \rightsquigarrow \psi) \rightarrow \chi}{(\phi \rightsquigarrow \psi) \rightarrow \chi}
$$

corresponds to the zero-dimensionality of the space.

Using the axiomatization of Con^* it is easy to show that it is admissible in S^2IC.

The following Π_2-rule

\[
\frac{(p \leadsto p) \land (\phi \leadsto p) \land (p \leadsto \psi) \rightarrow \chi}{(\phi \leadsto \psi) \rightarrow \chi}
\]

corresponds to the zero-dimensionality of the space.

Using the axiomatization of Con^* it is easy to show that it is admissible in $S^2\text{IC}$.

Therefore, $S^2\text{IC}$ is complete wrt Stone spaces.

Theorem (G. Bezhanishvili, N. Bezhanishvili, T. Santoli, Y. Venema (2019))

\[\vdash_{S^2\text{IC}} \phi \iff v(\phi) = X \text{ for every Stone space } X \text{ and } v. \]
THANK YOU!

We stand with Ukraine!
THANK YOU!

We stand with Ukraine!