Bisimulations between Veltman models and generalized Veltman models

Tin Perkov

University of Zagreb
(supported by Croatian Science Foundation under the projects UIP-05-2017-9219 and IP-01-2018-7459)

Logic4Peace, 2022
Interpretability logic

Provability logic \textbf{GL}: a modal logic which formalizes Gödel’s provability predicate.
Interpretability logic

Provability logic \textbf{GL}: a modal logic which formalizes Gödel’s provability predicate.

$\square F$ reads “It is provable that F holds.”
Interpretability logic

Provability logic \mathbf{GL}: a modal logic which formalizes Gödel’s provability predicate.

- $\Box F$ reads “It is provable that F holds.”
- Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of \mathbf{GL}.

\rightarrow Some base theory T extended by A interprets T extended by B.

Some known results on interpretability correspond to axioms of the basic interpretability logic \mathbf{IL} (Visser 1988) and its extensions.

$I\mathbf{LM}$:

$A \rightarrow (A \land \Box C) \rightarrow (B \land \Box C)$ (Montagna’s principle)
Interpretability logic

Provability logic \(\mathbf{GL} \): a modal logic which formalizes Gödel’s provability predicate.

- \(\Box F \) reads “It is provable that \(F \) holds.”
- Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of \(\mathbf{GL} \).

The interpretability predicate is a generalization of the provability predicate.
Interpretability logic

Provability logic **GL**: a modal logic which formalizes Gödel’s provability predicate.

▶ □F reads “It is provable that F holds.”

▶ Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of **GL**.

The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T *interprets* a theory T' if there is a translation from T' to T such that the translation of each theorem of T' is provable in T.

$A \triangleright B$ reads “Some base theory T extended by A interprets T extended by B.

Some known results on interpretability correspond to axioms of the basic interpretability logic IL (Visser 1988) and its extensions.

ILM: $A \triangleright B \rightarrow (A \land □C) \triangleright (B \land □C)$ (Montagna’s principle)
Interpretability logic

Provability logic **GL**: a modal logic which formalizes Gödel’s provability predicate.

- ▶ □ \(F \) reads “It is provable that \(F \) holds.”
- ▶ Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of **GL**.

The interpretability predicate is a generalization of the provability predicate. An arithmetical theory \(T \) interprets a theory \(T' \) if there is a translation from \(T' \) to \(T \) such that the translation of each theorem of \(T' \) is provable in \(T \).

- ▶ \(A \triangleright B \) reads “Some base theory \(T \) extended by \(A \) interprets \(T \) extended by \(B \).”
Interpretability logic

Provability logic \textbf{GL}: a modal logic which formalizes Gödel’s provability predicate.

- ▶ □F reads “It is provable that F holds.”
- ▶ Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of \textbf{GL}.

The interpretability predicate is a generalization of the provability predicate. An arithmetical theory \(T \) interprets a theory \(T' \) if there is a translation from \(T' \) to \(T \) such that the translation of each theorem of \(T' \) is provable in \(T \).

- ▶ A▷B reads “Some base theory \(T \) extended by A interprets \(T \) extended by B.”
- ▶ Some known results on interpretability correspond to axioms of the basic interpretability logic \textbf{IL} (Visser 1988) and its extensions.
Interpretability logic

Provability logic **GL**: a modal logic which formalizes Gödel’s provability predicate.

- ▶ □ F reads “It is provable that F holds.”
- ▶ Hilbert-Bernays conditions and Löb’s theorem correspond to axioms and inference rules of **GL**.

The interpretability predicate is a generalization of the provability predicate. An arithmetical theory T *interprets* a theory T' if there is a translation from T' to T such that the translation of each theorem of T' is provable in T.

- ▶ $A ▸ B$ reads “Some base theory T extended by A interprets T extended by B.”
- ▶ Some known results on interpretability correspond to axioms of the basic interpretability logic **IL** (Visser 1988) and its extensions.

- ▶ **ILM**: $A ▸ B \rightarrow (A \land □ C) ▸ (B \land □ C)$ (Montagna’s principle)
Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times R[w]$

Satisfaction:

$w \models A \supset B$ if for all u s.t. wRu and $u \models A$ there is v s.t. uS_wv and $v \models B$
Modal semantics

Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- For each $w \in W$, $S_w \subseteq R[w] \times R[w]$
 - If wRu then uS_wu
- Satisfaction: $w \models A \Rightarrow B$ if for all u s.t. wRu and $u \models A$ there is v s.t. uS_wv and $v \models B$
Modal semantics

Veltman models:

- \(\mathcal{W} \neq \emptyset \)
- \(R \subseteq \mathcal{W} \times \mathcal{W} \) transitive and reverse well-founded
- for each \(w \in \mathcal{W} \), \(S_w \subseteq R[w] \times R[w] \)
 - if \(wRu \) then \(uS_wu \)
 - if \(uS_wv \) and \(vS_wz \) then \(uS_wz \)
- Satisfaction:
 \[
 w \models A \rightarrow B \text{ if for all } u \text{ s.t. } wRu \text{ and } u \models A \text{ there is } v \text{ s.t. } uS_wv \text{ and } v \models B
 \]
Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- for each $w \in W$, $S_w \subseteq R[w] \times R[w]$
 - if wRu then uS_wu
 - if uS_wv and vS_wz then uS_wz
 - if $wRuRv$ then uS_wv

Satisfaction:

$w \vDash A \supset B$ if for all u s.t. wRu and $u \vDash A$ there is v s.t. uS_wv and $v \vDash B$
Modal semantics

Veltman models:

- $\mathcal{W} \neq \emptyset$
- $R \subseteq \mathcal{W} \times \mathcal{W}$ transitive and reverse well-founded
- for each $w \in \mathcal{W}$, $S_w \subseteq R[w] \times R[w]$
 - if wRu then uS_wu
 - if uS_wv and vS_wz then uS_wz
 - if $wRuRv$ then uS_wv

Satisfaction: $w \models A \triangleright B$ if for all u s.t. wRu and $u \models A$ there is v s.t. uS_wv and $v \models B$
Generalized semantics

Generalized Veltman models:

- $W \neq \emptyset$
- $R \subseteq W \times W$ transitive and reverse well-founded
- For each $w \in W$, $S_w \subseteq R[w] \times \mathcal{P}(R[w])$
 - if wRu then $uS_w\{u\}$
 - if $uS_w V$ and $vS_w Z_v$ for all $v \in V$ then $uS_w(\bigcup Z_v)$
 - if $wRuRv$ then $uS_w\{v\}$

Satisfaction: $w \models A \supset B$ if for all u s.t. wRu and $u \models A$ there is V s.t. $uS_w V$ and $v \models B$ for all $v \in V$
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu'

Key properties:
▶ if wZw', then w and w' are modally equivalent
▶ the converse does not hold generally, but it holds in case of image-finite Veltman models (an analogue of Hennessy-Milner theorem, de Jonge 2004)
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if $w Z w'$, then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if $w Z w'$ and $w Ru$, then there is u' s.t. $w' R' u'$ and $u Z u'$ and for all v' s.t. $u' S' v' w'$ there is v s.t. $u S_w v$ and $v Z v'$
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S_{w'}v'$ there is v s.t. uS_wv and vZv'

(back) if wZw' and $w'R'u'$, then there is u s.t. wRu and uZu' and for all v s.t. uS_wv there is v' s.t. $u'S_{w'}v'$ and vZv'
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S'_{w'}v'$ there is v s.t. $uS_{w}v$ and vZv'

(back) if wZw' and $w'R'u'$, then there is u s.t. wRu and uZu' and for all v s.t. $uS_{w}v$ there is v' s.t. $u'S'_{w}v'$ and vZv'

Key properties:

- if wZw', then w and w' are modally equivalent
Bisimulation between Veltman models

Let W and W' be Veltman models. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S'_{w'}v'$ there is v s.t. uS_wv and vZv'

(back) if wZw' and $w'R'u'$, then there is u s.t. wRu and uZu' and for all v s.t. uS_wv there is v' s.t. $u'S'_{w'}v'$ and vZv'

Key properties:

- if wZw', then w and w' are modally equivalent
- the converse does not hold generally, but it holds in case of image-finite Veltman models (an analogue of Hennessy-Milner theorem, de Jonge 2004)
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if $w Z w'$, then $w \models p$ iff $w' \models p$, for all propositional letters p.
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \Vdash p$ iff $w' \Vdash p$, for all propositional letters p

(forth) if wZw' and wRu, then

No! Too restrictive: requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one

Hennessy-Milner analogue does not hold
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu'
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \Vdash p$ iff $w' \Vdash p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S'w', v'$ there is V s.t. $uS_w V$ and vZv' for all $v \in V$?

No! Too restrictive: requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one

Hennessy-Milner analogue does not hold
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S'_w v'$ there is V s.t. $uS_w V$ and vZv' for all $v \in V$?

No! Too restrictive
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S^u_{w'v'}$, there is V s.t. uS^w_{uV} and vZv' for all $v \in V$?

No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(a) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is u' s.t. $w'R'u'$ and uZu' and for all v' s.t. $u'S'_{w'}, v'$ there is V s.t. uS_wV and vZv' for all $v \in V$?

No! Too restrictive:

- requires all $v \in V$ to be mutually modally equivalent, which practically collapses generalized semantics to ordinary one
- Hennessy-Milner analogue does not hold
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is a non-empty $U' \subseteq W'$ s.t. $w'R'u'$ and uZu' for all $u' \in U'$

Now, as desired:

▶ bisimilarity implies modal equivalence
▶ Hennessy-Milner analogue holds
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is a non-empty $U' \subseteq W'$ s.t. $w'R'u'$ and uZu' for all $u' \in U'$ and for all $f : U' \rightarrow W'$ s.t. $u'S'_w, f(u')$ for all $u' \in U'$ there is V s.t. $uS_w V$ and for all $v \in V$ there is u' s.t. $vZf(u')$
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is a non-empty $U' \subseteq W'$ s.t. $w'R'u'$ and uZu' for all $u' \in U'$ and for all $f : U' \rightarrow W'$ s.t. $u'S'_{w}, f(u')$ for all $u' \in U'$ there is V s.t. $uS_{w}V$ and for all $v \in V$ there is u' s.t. $vZf(u')$

(back) if wZw' and $w'R'u'$, then there is u s.t. wRu and uZu' and for all V s.t. $uS_{w}V$ there is v' s.t. $u'S'_{w}, v'$ and vZv' for some $v \in V$
Bisimulation between generalized Veltman models and Veltman models

Let \(W \) be a generalized Veltman model and \(W' \) a Veltman model. A bisimulation is \(Z \subseteq W \times W' \) s.t.

(at) if \(wzw' \), then \(w \models p \) iff \(w' \models p \), for all propositional letters \(p \)

(forth) if \(wzw' \) and \(wru \), then there is a non-empty \(U' \subseteq W' \) s.t.
\(w'r'u' \) and \(uzu' \) for all \(u' \in U' \) and for all \(f : U' \to W' \) s.t.
\(u'f(u') \) for all \(u' \in U' \) there is \(V \) s.t. \(uS_w V \) and for all \(v \in V \) there is \(u' \) s.t. \(vZf(u') \)

(back) if \(wzw' \) and \(w'r'u' \), then there is \(u \) s.t. \(wru \) and \(uzu' \) and for all \(V \) s.t. \(uS_w V \) there is \(v' \) s.t. \(u'S_w' v' \) and \(vZv' \) for some \(v \in V \)

Now, as desired:

- bisimilarity implies modal equivalence
Bisimulation between generalized Veltman models and Veltman models

Let W be a generalized Veltman model and W' a Veltman model. A bisimulation is $Z \subseteq W \times W'$ s.t.

(at) if wZw', then $w \models p$ iff $w' \models p$, for all propositional letters p

(forth) if wZw' and wRu, then there is a non-empty $U' \subseteq W'$ s.t. $w'R'u'$ and uZu' for all $u' \in U'$ and for all $f : U' \to W'$ s.t. $u'S_{w'}f(u')$ for all $u' \in U'$ there is V s.t. $uS_{w}V$ and for all $v \in V$ there is u' s.t. $vZf(u')$

(back) if wZw' and $w'R'u'$, then there is u s.t. wRu and uZu' and for all V s.t. $uS_{w}V$ there is v' s.t. $u'S_{w'}v'$ and vZv' for some $v \in V$

Now, as desired:

- bisimilarity implies modal equivalence
- Hennessy-Milner analogue holds
Example

Consider a generalized Veltman frame such that:

- $W = \{0, 1, 2, 3\}$, $R = \{(0, 1), (0, 2), (0, 3)\}$, $1S_0\{2, 3\}$
- $1 \models p$, $2 \models q$, $3 \models r$

Then $Z = \{(0, 0'), (1, 1'), (1, 1''), (2, 2'), (3, 3')\}$ is a bisimulation.

Hence, 0 and $0'$ are modally equivalent (as are all pairs in Z).

With the more restrictive definition of bisimulation, we would not have a bisimulation in this example, thus we can use it as a counterexample for Hennessy-Milner analogue in that case.
Example

Consider a generalized Veltman frame such that:

- \(W = \{0, 1, 2, 3\} \), \(R = \{(0, 1), (0, 2), (0, 3)\} \), \(1S_0\{2, 3\} \)
- \(1 \models p \), \(2 \models q \), \(3 \models r \)

Now, consider a Veltman frame as follows:

- \(W = \{0', 1', 1'', 2', 3'\} \), \(R = \{(0', 1'), (0', 1''), (0', 2'), (0', 3')\} \), \(1'S_0'2', 1''S_0'3' \)
- \(1' \models p \), \(1'' \models p \), \(2' \models q \), \(3' \models r \)

Then \(Z = \{(0, 0'), (1, 1'), (1, 1''), (2, 2'), (3, 3')\} \) is a bisimulation. Hence, \(0 \) and \(0' \) are modally equivalent (as are all pairs in \(Z \)). With the more restrictive definition of bisimulation, we would not have a bisimulation in this example, thus we can use it as a counterexample for Hennessy-Milner analogue in that case.
Consider a generalized Veltman frame such that:
- $W = \{0, 1, 2, 3\}$, $R = \{(0, 1), (0, 2), (0, 3)\}$, $1S_0\{2, 3\}$
- $1 \Vdash p$, $2 \Vdash q$, $3 \Vdash r$

Now, consider a Veltman frame as follows:
- $W = \{0', 1', 1'', 2', 3'\}$, $R = \{(0', 1'), (0', 1''), (0', 2'), (0', 3')\}$, $1'S_0', 2', 1''S_0', 3'$
- $1' \Vdash p$, $1'' \Vdash p$, $2' \Vdash q$, $3' \Vdash r$

Then $Z = \{(0, 0'), (1, 1'), (1, 1''), (2, 2'), (3, 3')\}$ is a bisimulation.
Consider a generalized Veltman frame such that:

- $\mathcal{W} = \{0, 1, 2, 3\}$, $R = \{(0, 1), (0, 2), (0, 3)\}$, $1S_0\{2, 3\}$
- $1 \vdash p$, $2 \vdash q$, $3 \vdash r$

Now, consider a Veltman frame as follows:

- $\mathcal{W} = \{0', 1', 1'', 2', 3'\}$, $R = \{(0', 1'), (0', 1''), (0', 2'), (0', 3')\}$, $1'S_0'2'$, $1''S_0'3'$
- $1' \vdash p$, $1'' \vdash p$, $2' \vdash q$, $3' \vdash r$

Then $\mathcal{Z} = \{(0, 0'), (1, 1'), (1, 1''), (2, 2'), (3, 3')\}$ is a bisimulation. Hence, 0 and 0' are modally equivalent (as are all pairs in \mathcal{Z}).
Example

Consider a generalized Veltman frame such that:

- $W = \{0, 1, 2, 3\}$, $R = \{(0, 1), (0, 2), (0, 3)\}$, $1S_0\{2, 3\}$
- $1 \Vdash p$, $2 \Vdash q$, $3 \Vdash r$

Now, consider a Veltman frame as follows:

- $W = \{0', 1', 1'', 2', 3'\}$, $R = \{(0', 1'), (0', 1''), (0', 2'), (0', 3')\}$, $1'S_0'2'$, $1''S_0'3'$
- $1' \Vdash p$, $1'' \Vdash p$, $2' \Vdash q$, $3' \Vdash r$

Then $Z = \{(0, 0'), (1, 1'), (1, 1''), (2, 2'), (3, 3')\}$ is a bisimulation. Hence, 0 and $0'$ are modally equivalent (as are all pairs in Z).

With the more restrictive definition of bisimulation, we would not have a bisimulation in this example, thus we can use it as a counterexample for Hennessy-Milner analogue in that case.
Obtaining a bisimilar model

It is straightforward to obtain a bisimilar generalized Veltman model from a given Veltman model: we use the same W and R, and define $uS'_w V$ iff $uS_w v$ for some $v \in V$.
Obtaining a bisimilar model

It is straightforward to obtain a bisimilar generalized Veltman model from a given Veltman model: we use the same W and R, and define $uS'_w V$ iff $uS_w v$ for some $v \in V$.

The previous example is very simple, but already illustrates that the opposite direction is much more involved. Exploring it is an ongoing work.