The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth

Although it was traditionally thought that self-reference is a crucial ingredient of semantic paradoxes (e.g. *This sentence is false*), Yablo (e.g. 2004) showed that this is not so by displaying an infinite series of non-self-referential sentences which, taken together, are paradoxical. Let us write $\{<s(\mathbf{k}), F_k>: k\geq 0\}$ for a denumerable set of pairs whose second coordinate is a sentence named by the first coordinate (we call such sets 'naming relations'). It can be shown that each of the following naming relations is paradoxical (*Tr* is interpreted as the truth predicate; **i**, k, k' are integer-denoting):

- (1) a. Universal Liar: $S_{\forall} := \{\langle s(\mathbf{i}), \forall k \ (k > \mathbf{i} \Rightarrow \neg \operatorname{Tr}(s(k))) \rangle : \mathbf{i} \ge 0\}^1$
 - b. Existential Liar: $S_{\exists} := \{ \langle s(\mathbf{i}), \exists k \ (k > \mathbf{i} \Rightarrow \neg \operatorname{Tr}(s(k))) \rangle : \mathbf{i} \ge 0 \}$
 - c. Almost Universal Liar: $S_{AA} := \{ \langle s(\mathbf{i}), \exists k \ (k > \mathbf{i} \land \forall k' \ (k' > k \Rightarrow \neg Tr(s(k'))) \rangle : \mathbf{i} \ge 0 \}$

We generalize Yablo's construction along two dimensions: (i) First, we investigate the behavior of Yablo-style series of the form $\{\langle s(i), [Qk: k > i] Tr(s(k)) \rangle$: $i \ge 0\}$, for some generalized quantifier Q. We show that for any Q that satisfies certain natural properties, all the sentences in the series must have the same value. We derive a characterization of those values of Q for which the series is paradoxical. (ii) Second, we show Yablo's results are a special case of a much more general phenomenon: given certain assumptions, *any semantic phenomenon that involves self-reference can be 'imitated' without self-reference*. The result is proven for Kripke's Theory of Truth with the Strong Kleene Logic (Kripke 1975).

1. Yablo-Series with Generalized Quantifiers

We naming relations of the form in (2), where Q is a binary generalized quantifier (e.g. *some, most, no, all, an odd number of,* etc.) which satisfies the properties of Permutation Invariance, Extension and Conservativity. For special values of Q we obtain versions of Yablo's paradox:

- (2) $S_Q = \{ \langle s(i), [Qk: k > i] \ s(k) \rangle : i \ge 0 \}$
 - a. For Q=No, S_Q is the Universal Liar.
 - b. For $Q=Not \ all$, S_Q is the Existential Liar.
 - c. For Q=All but a finite number of, S_Q is the Almost Universal Liar.
- (3) A relations R of subsets of E satisfies:
 a. Permutation Invariance just in case for all E, for any permutation π of E, for all X, Y ⊆E, R_E(X, Y) iff R_E(π(X), π(Y))
 b. Extension iff: for any X, Y, E, E' if X, Y⊂E, and Y, Y⊂E', then P, (Y, Y) iff P, (Y, Y)
 - b. Extension iff: for any X, Y, E, E', if X, $Y \subseteq E$ and X, $Y \subseteq E'$, then $R_E(X, Y)$ iff $R_{E'}(X, Y)$
 - c. Conservativity iff for all X, Y, E: $R_E(X, Y)$ iff $R_E(X, X \cap Y)$

In a bivalent logic, a generalized quantifier Q that satisfies the conditions in (3) is defined by its 'tree of numbers' Q^2 , which is a a function from pairs of numbers (including ∞) to truth values such that: for any formulas F, F' with extensions <u>F</u> and <u>F'</u>, Qx F F' is true (in a bivalent system) iff $Q^2(\langle |\underline{F}-\underline{F}'|, |\underline{F}\cap\underline{F}'| \rangle)=1$ (van Benthem 1986). We study S_Q in any n-value logic which is 'reasonable', in the sense that the semantics of the quantifiers satisfies a generalization of the tree of numbers:

 (4) An n-valued logic with truth values in E is *reasonable* just in case: If for any assignment function F has a classical value, then for any generalized quantifier Q, the value of a closed formula [Qk: F]F' only depends on (l{d∈D: [[F]]^{k→d}=1}∩{d∈D: [[F']]^{k→d}=e}])_{e∈F}.

We show that if a reasonable compositional logic has a finite number of truth values, *all the* sentences in S_Q must have the same truth value. We derive a characterization of those values of Q for which S_Q is paradoxical in a bivalent or trivalent system:

(5) Let Q be a binary generalized quantifiers satisfying Permutation Invariance, Extension and Conservativity. Then:

a. A binary valuation can be found in which S_Q has the value *true* iff $\underline{Q}^2(<0, \infty>)=1$

b. A binary valuation can be found in which S₀ has the value *false* iff $Q^2(\langle \infty, 0 \rangle)=0$

c. S_Q is paradoxical iff no binary valuation can be found in which S_Q has the value *true* and no binary valuation can be found in which S_Q has the value *false*, iff $Q^2(<0, \infty>)=0$ and $Q^2(<\infty,0>)=1$

¹ To see that this series is paradoxical: (i) Suppose all sentences are false. Then what each of them says is true - contradiction. (ii) Suppose that s(i) is true. Then s(i+1), s(i+2), s(i+3), etc. are false - which should make s(i+1) true!

2. Elimination of Self-Reference

Cook 2004 considers a primitive setting in which infinite conjunction replaces quantification over sentences, and shows that in his system every paradox that involves self-reference can be 'unwinded' to give rise to a Yablo-style paradox without self-reference. We generalize Yablo's and Cook's constructions by showing that under certain conditions, *a language with self-reference can be translated into a self-reference-free fragment of a language with quantification over sentences.* The analysis is framed within Kripke's theory of truth, so as to apply not just to purely logical paradoxes, as in Cook's framework, but also to 'empirical' paradoxes (e.g. *Every statement made by Nixon about Watergate is false;* as uttered by Nixon, this statement may or may not be paradoxical depending on some empirical facts).

We start from a classical language L without quantifiers, to which we add a truth predicate *Tr* whose interpretation is partial (trivalent); we call the resulting language L', and specify a bijective naming relation N over L' (i.e. each sentence of L' has exactly one name). For each pair $\langle \underline{s}, s \rangle$ of N (where \underline{s} is a term denoting the formula s), we define a series of translations $\{\langle \underline{s}(\mathbf{k}), \mathbf{h}_k(s) \rangle$: $k \ge 0$ in a <u>quantificational</u> language L* that extends L (we also write: $\mathbf{h}_k(\underline{s}, s) = \langle \underline{s}(\mathbf{k}), \mathbf{h}_k(s) \rangle$). We fix a classical interpretation I for L, and restrict attention to interpretations of L' and L* that extend I and are fixed points in the sense of Kripke 1975. It can be shown that:

P1. None of the translations is self-referential, i.e. for no k is $h_k(s)$ self-referential.

P2. In any fixed point I* of L* compatible² with N, all the translations of a given formula s of L have the same value according to I*, i.e. for all k, k' ≥ 0 , I*(h_k(s))=I*(h_k(s)).

P3. (a) for every fixed point I' of L' compatible with N there is a fixed point I* of L* compatible with h[N] such that for each sentence s of L', $I'(s)=I^*(h_k(s))$ [notation: $h[N] := \{h_k(<\underline{s}, s>: <\underline{s}, s>\in N \land k\geq 0\}$]. Conversely, (b) for every fixed point I* of L* compatible with h[N] there is a fixed point I' of L' compatible with N such that for each sentence s of L', $I'(s)=I^*(h_k(s))$.

The translation procedure h is defined in (6) and illustrated in (7)-(10):

- (6) Let [Qk': k] > k]F abbreviate: $\exists k'' (k' > k \land \forall k' (k' \ge k'' \rightarrow F))$. If $\leq \underline{s}, s \geq \in \mathbb{N}$, $h_k \leq \underline{s}, s > = \leq \underline{s}(\underline{k}), [Qk': k' > k][s]_{k'} >$ where $[s]_{k'}$ is the result of substituting each occurrence of the form Tr(c) in s with Tr(c(k')).
- (7) Suppose that $\langle c_1, P_1^0 \rangle \in \mathbb{N}$, where P_1^0 is an atomic proposition. Then: $h_k \langle c_1, P_1^0 \rangle = \langle c_1(\mathbf{k}), [Q\mathbf{k}': \mathbf{k}' \rangle \mathbf{k}] P_1^0 \rangle$ Note that the quantification is vacuous, since P_1^0 does not contain any variables. For any interpretation I for L and for any interpretations I' and I* which extend I to L' and L* respectively, for each $k \ge 0$, $I^*(h_k(P_1^0)) = I^*([Q\mathbf{k}': \mathbf{k}' \rangle \mathbf{k}] P_1^0) = I^*(P_1^0) = I(P_1^0)$
- (8) Suppose that $<c_2$, $Tr(c_1)> \in N$, with c_1 as in (7). $h_k < c_2$, $Tr(c_1)> = <c_2(\mathbf{k})$, $[Qk': k'>k]Tr(c_1(k'))>$
- (9) Suppose that <c₃, ¬Tr(c₃)>∈N. h_k<c₃, ¬Tr(c₃)>= <c₃(k), [Qk': k'>k] ¬Tr(c₃(k'))> It is clear that {<c₃, ¬Tr(c₃)>} and {<c₃(k), [Qk': k'>k] ¬Tr(c₃(k'))>: k≥0} are both Liar-like: the former is the simple Liar, and the latter is the Almost Universal Liar.
- (10) Suppose that $\langle c_4, \operatorname{Tr}(c_4) \rangle \in \mathbb{N}$. $h_k \langle c_4, \operatorname{Tr}(c_4) \rangle = \langle c_4(\mathbf{k}), [Q\mathbf{k}': \mathbf{k}' \rangle \mathbf{k}]\operatorname{Tr}(c_4(\mathbf{k}')) \rangle$ $\{\langle c_4, \operatorname{Tr}(c_4) \rangle\}$ is the 'Truth-Teller', and $\{\langle c_4(\mathbf{k}), [Q\mathbf{k}': \mathbf{k}' \rangle \mathbf{k}]\operatorname{Tr}(c_4(\mathbf{k}')) \rangle : \mathbf{k} \geq 0\}$ is an infinite Truth-Teller: all sentences in the series must have the same truth value, but it may be chosen arbitrarily.

We consider alternative values of Q and characterize those that can be used in the translation:

(11) Q can be used in the translation h if and only if for all finite $i \ge 0$, $Q^2(<\infty, i>)=0$ and $Q^2(<i, \infty>)=1$ In particular, we show that when the latter condition fails, Property **P2** fails to hold.

When we restrict attention to infinite universes, this gives only two quantifiers: Q=all but finitely many (which is, in effect, the quantifier used in (6)) and Q=infinitely many.

References: Cook, R. 2004. 'Patterns of Paradox', *Journal of Symbolic Logic*, 69, 3, 767-774; Kripke, S. 1975. 'Outline of a Theory of Truth', *Journal of Philosophy* 72: 690-716; van Benthem, J. 1986. *Essays in Logical Semantics*, Reidel, Dordrecht; Yablo, S. 2004. 'Circularity and Paradox', in *Self-Reference*, CSLI.

² An interpretation I is compatible with a naming relation N if for each $\langle s, F \rangle \in N$, I(s)=F.