
The Elimination of Self-Reference: Generalized Yablo-Series and the Theory of Truth 

Although it was traditionally thought that self-reference is a crucial ingredient of semantic 
paradoxes (e.g. This sentence is false), Yablo (e.g. 2004)  showed that this is not so by displaying an 
infinite series of non-self-referential sentences which, taken together, are paradoxical. Let us write 
{<s(k), Fk>: k≥0} for a denumerable set of pairs whose second coordinate is a sentence named by 
the first coordinate (we call such sets 'naming relations'). It can be shown that each of the following 
naming relations is paradoxical (Tr is interpreted as the truth predicate; i, k, k' are integer-denoting): 
(1) a. Universal Liar: S∀ := {<s(i), ∀k (k>i ⇒ ¬Tr(s(k)))>: i≥0}1 

b. Existential Liar: S∃:= {<s(i), ∃k (k>i ⇒ ¬Tr(s(k)))>: i≥0} 
c. Almost Universal Liar: SAA:= {<s(i), ∃k (k> i ∧ ∀k' (k'>k ⇒ ¬Tr(s(k'))))> : i≥0} 

We generalize Yablo's construction along two dimensions: (i) First, we investigate the behavior of 
Yablo-style series of the form {<s(i), [Qk: k>i] Tr(s(k))>: i≥0}, for some generalized quantifier Q. 
We show that for any Q that satisfies certain natural properties, all the sentences in the series must 
have the same value. We derive a characterization of those values of Q for which the series is 
paradoxical. (ii) Second, we show Yablo's results are a special case of a much more general 
phenomenon: given certain assumptions, any semantic phenomenon that involves self-reference can 
be 'imitated' without self-reference. The result is proven for Kripke's Theory of Truth with the 
Strong Kleene Logic (Kripke 1975).  
 

1. Yablo-Series with Generalized Quantifiers 
We naming relations of the form in (2), where Q is a binary generalized quantifier (e.g. some, most, 
no, all, an odd number of, etc.) which satisfies the properties of Permutation Invariance, Extension 
and Conservativity. For special values of Q we obtain versions of Yablo's paradox: 
(2) SQ={<s(i), [Qk: k>i] s(k)>: i≥0} 

a. For Q=No, SQ is the Universal Liar.   
b. For Q=Not all, SQ is the Existential Liar.  
c. For Q=All but a finite number of,  SQ is the Almost Universal Liar.   

(3) A relations  R of subsets of E satisfies: 
a.  Permutation Invariance just in case for all E, for any permutation π of E, for all X, Y ⊆E,  
RE(X, Y) iff  RE(π(X), π(Y)) 
b. Extension iff: for any X, Y, E, E', if X, Y⊆ E  and X, Y⊆ E’, then RE(X, Y) iff  RE'(X, Y) 
c. Conservativity iff for all X, Y, E: RE(X, Y) iff RE(X, X∩ Y) 

In a bivalent logic, a generalized quantifier Q that satisfies the conditions in (3) is defined by its 
'tree of numbers' Q2,  which is a a function from pairs of numbers (including ∞) to truth values such 
that: for any formulas F, F' with extensions F and F', Qx F F' is true (in a bivalent system) iff 
Q2(<|F-F'|, |F∩F'|>)=1(van Benthem 1986). We study SQ in any  n-value logic which is 'reasonable', 
in the sense that the semantics of the quantifiers satisfies a generalization of the tree of numbers: 
(4) An n-valued logic with truth values in E is reasonable just in case: 

If for any assignment function F has a classical value, then for any generalized quantifier Q, the value 
of a closed formula [Qk: F]F' only depends on  
(|{d∈D: [[F]] k→d=1}∩{d∈D: [[F']] k→d=e}|)e∈E.  

We show that if a reasonable compositional logic has a finite number of truth values, all the 
sentences in SQ must have the same truth value. We derive a characterization of those values of Q 
for which SQ is paradoxical in a bivalent or trivalent system: 
(5) Let Q be a binary generalized quantifiers satisfying Permutation Invariance, Extension and 

Conservativity. Then: 
a. A binary valuation can be found in which SQ has the value true iff Q2(<0, ∞>)=1 
b. A binary valuation can be found in which SQ has the value false iff  Q2(<∞,0>)=0 
c. SQ is paradoxical  iff no binary valuation can be found in which SQ has the value true and no 
binary valuation can be found in which SQ has the value false, iff Q2(<0, ∞>)=0 and Q2(<∞,0>)=1 

                                                 
1 To see that this series is paradoxical: (i) Suppose all sentences are false. Then what each of them says is true - 
contradiction. (ii) Suppose that s(i) is true. Then s(i+1), s(i+2), s(i+3), etc. are false - which should make s(i+1) true! 



 
 

2. Elimination of Self-Reference 
Cook 2004 considers a primitive setting in which infinite conjunction replaces quantification over 
sentences, and shows that in his system every paradox that involves self-reference can be 
'unwinded' to give rise to a Yablo-style paradox without self-reference. We generalize Yablo's and 
Cook's constructions by showing that under certain conditions,  a language with self-reference can 
be translated into a self-reference-free fragment of  a language with quantification over sentences. 
The analysis is framed within Kripke's theory of truth, so as to apply not just to purely logical 
paradoxes, as in Cook's framework, but also to 'empirical' paradoxes (e.g. Every statement made by 
Nixon about Watergate is false;  as uttered by Nixon, this statement may or may not be paradoxical 
depending on some empirical facts).  
 We start from a classical language L without quantifiers, to which we add a truth predicate 
Tr whose interpretation is partial (trivalent); we call the resulting language L', and specify a 
bijective naming relation N over L' (i.e. each sentence of L' has exactly one name).  For each pair 
<s, s> of N (where s is a term denoting the formula s), we define a series of translations {<s(k), 
hk(s)>: k≥0} in a quantificational language L* that extends L (we also write: hk(<s, s>)=<s(k), 
hk(s)>). We fix a classical interpretation I for L, and restrict attention to interpretations of L' and L* 
that extend I and are fixed points in the sense of Kripke 1975.  It can be shown that: 
P1.  None of the translations is self-referential, i.e. for no k is hk(s) self-referential.  
P2.  In any fixed point I* of L* compatible2 with N,  all the translations of a given formula s of L 
have the same value according to I*, i.e. for all k, k'≥0, I*(hk(s))=I*(hk'(s)). 
P3.  (a) for every fixed point I' of L' compatible with N there is a fixed point I* of L* compatible 
with h[N] such that for each sentence s of L', I'(s)=I*(hk(s)) [notation: h[N] := {hk(<s, s>:  
<s, s>∈N ∧ k≥0}]. Conversely, (b) for every fixed point I* of L* compatible with h[N] there is a 
fixed point I' of L' compatible with N such that for each sentence s of L', I'(s)=I*(hk(s)). 
 The translation procedure h is defined in (6) and illustrated in (7)-(10): 
(6) Let [Qk': k'>k]F abbreviate: ∃k" (k">k ∧ ∀k' (k'≥k" → F)).   

If <s, s>∈N,  hk<s, s> = <s(k), [Qk': k'>k][s]k'> 
where [s]k' is the result of substituting each occurrence of the form Tr(c) in s with Tr(c(k')). 

(7) Suppose that <c1, P0
1>∈N, where P0

1 is an atomic proposition. Then: 
hk<c1, P0

1> = <c1(k), [Qk': k'>k] P0
1>  

Note that the quantification is vacuous, since P0
1 does not contain any variables. For any interpretation 

I for L and for any interpretations I' and I* which extend I to L' and L* respectively, for each k≥0,  
I*(hk(P0

1))=I*([Qk': k'>k] P0
1)= I*(P0

1)=I(P0
1)=I'(P0

1) 
(8) Suppose that <c2, Tr(c1)> ∈N, with c1 as in (7). 

hk<c2, Tr(c1)> =<c2(k), [Qk': k'>k]Tr(c1(k'))>  
(9) Suppose that <c3, ¬Tr(c3)>∈N.  

hk<c3, ¬Tr(c3)>= <c3(k), [Qk': k'>k] ¬Tr(c3(k'))> 
It is clear that  {<c3, ¬Tr(c3)>} and {<c3(k), [Qk': k'>k] ¬Tr(c3(k'))>: k≥0} are both Liar-like: the 
former is the simple Liar, and the latter is the Almost Universal Liar. 

(10) Suppose that <c4, Tr(c4)> ∈N.  
hk<c4, Tr(c4)>= <c4(k), [Qk': k'>k]Tr(c4(k'))> 
{<c4, Tr(c4)>} is the 'Truth-Teller', and {<c4(k), [Qk': k'>k]Tr(c4(k'))>: k≥0}  is an infinite Truth-
Teller: all sentences in the series must have the same truth value, but it may be chosen arbitrarily. 

We consider alternative values of Q and characterize those that can be used in the translation: 
(11) Q can be used in the translation h if and only if for all finite i≥0, Q2(<∞, i>)=0 and Q2(<i, ∞>)=1 

In particular, we show that when the latter condition fails, Property P2 fails to hold. 
When we restrict attention to infinite universes, this gives only two quantifiers: Q=all but finitely 
many (which is, in effect, the quantifier used in (6)) and Q=infinitely many.  
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2 An interpretation I is compatible with a naming relation N if for each <s, F>∈N, I(s)=F.  


