First-Order Interpolation Derived from Propositional Interpolation ${ }^{\star}$

Matthias Baaz ${ }^{1}$ and Anela Lolic ${ }^{2}$
${ }^{1}$ Institute of Discrete Mathematics and Geometry, TU Wien baaz@logic.at
${ }^{2}$ Kurt Gödel Society, Institute of Logic and Computation, TU Wien
anela@logic.at

Ever since Craig's seminal paper on interpolation [3], interpolation properties have been recognized as important properties of logical systems. Recall that a logic L has interpolation if whenever $A \rightarrow B$ holds in L there exists a formula I in the common language of A and B such that $A \rightarrow I$ and $I \rightarrow B$ hold in L.

Propositional interpolation properties can be determined and classified with relative ease using the ground-breaking results of Maksimova cf. [7, 6, 5]. This approach is based on an algebraic analysis of the logic in question. In contrast first-order interpolation properties are notoriously hard to determine, even for logics where propositional interpolation is more or less obvious. For example it is unknown whether $\mathrm{G}_{[0,1]}^{\mathrm{QF}}$ (first-order infinitely-valued Gödel logic) interpolates (cf. [1]) and even for $\mathrm{MC}^{\mathrm{QF}}$, the logic of constant domain Kripke frames of three worlds with two top worlds (an extension of MC), interpolation proofs are very hard cf. Ono $[8]$. This situation is due to the lack of an adequate algebraization of non-classical first-order logics. In this paper we present a proof theoretic methodology to reduce first-order interpolation to propositional interpolation:

$$
\left.\begin{array}{c}
\text { existence of suitable skolemizations }+ \\
\text { existence of Herbrand expansions }+ \\
\text { propositional interpolation }
\end{array}\right\} \Rightarrow \begin{gathered}
\text { first-order } \\
\text { interpolation. }
\end{gathered}
$$

The construction of the first-order interpolant from the propositional interpolant follows this procedure:

1. Develop a validity equivalent skolemization replacing all strong quantifiers ${ }^{3}$ in the valid formula $A \rightarrow B$ to obtain the valid formula $A_{1} \rightarrow B_{1}$.
2. Construct a valid Herbrand expansion $A_{2} \rightarrow B_{2}$ for $A_{1} \rightarrow B_{1}$. Occurrences of $\exists x B(x)$ and $\forall x A(x)$ are replaced by suitable finite disjunctions $\bigvee B\left(t_{i}\right)$ and conjunctions $\Lambda B\left(t_{i}\right)$, respectively.
3. Interpolate the propositionally valid formula $A_{2} \rightarrow B_{2}$ with the propositional interpolant $I^{*}: A_{2} \rightarrow I^{*}$ and $I^{*} \rightarrow B_{2}$ are propositionally valid.
4. Reintroduce weak quantifiers to obtain valid formulas $A_{1} \rightarrow I^{*}$ and $I^{*} \rightarrow B_{1}$.

[^0]5. Eliminate all function symbols and constants not in the common language of A_{1} and B_{1} by introducing suitable quantifiers in I^{*} (note that no Skolem functions are in the common language, therefore they are eliminated). Let I be the result.
6. I is an interpolant for $A_{1} \rightarrow B_{1} . A_{1} \rightarrow I$ and $I \rightarrow B_{1}$ are skolemizations of $A \rightarrow I$ and $I \rightarrow B$. Therefore I is an interpolant of $A \rightarrow B$.

It is decidable if propositional lattice based finitely-values logics admit the interpolation property [2]. Consequently, it is decidable if finitely-valued first-order logics admit the interpolation property. In this lecture we extend the methodology to prenex fragments of non-classical logics where Skolemization is admissible due to the second epsilon theorem [4].

References

1. Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft Computing 21(1), 149152 (2017)
2. Baaz, M., Lolic, A.: First-order interpolation derived from propositional interpolation. Theor. Comput. Sci. 837, 209-222 (2020)
3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic 22(03), 269-285 (1957)
4. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. (1968)
5. Maksimova, L.: Intuitionistic logic and implicit definability. Annals of Pure and Applied Logic 105(1-3), 83-102 (2000)
6. Maksimova, L.L.: Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra and Logic 16(6), 427-455 (1977)
7. Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Studia Logica 38(4), 419-428 (1979)
8. Ono, H.: Model extension theorem and Craig's interpolation theorem for intermediate predicate logics. Reports on Mathematical Logic 15, 41-58 (1983)

[^0]: * This abstract is based on the publication [2].
 ${ }^{3}$ Here we are dealing with quantifiers \forall and \exists such that $A(t) \rightarrow \exists x A(x)$ and $\forall x A(x) \rightarrow$ $A(t)$ hold. This occurrence of quantifiers is called weak, the dual occurrence is called strong.

