First-Order Interpolation Derived from Propositional Interpolation*

Matthias Baaz¹ and Anela Lolic²

 ¹ Institute of Discrete Mathematics and Geometry, TU Wien baaz@logic.at
² Kurt Gödel Society, Institute of Logic and Computation, TU Wien anela@logic.at

Ever since Craig's seminal paper on interpolation [3], interpolation properties have been recognized as important properties of logical systems. Recall that a logic L has *interpolation* if whenever $A \to B$ holds in L there exists a formula I in the common language of A and B such that $A \to I$ and $I \to B$ hold in L.

Propositional interpolation properties can be determined and classified with relative ease using the ground-breaking results of Maksimova cf. [7, 6, 5]. This approach is based on an algebraic analysis of the logic in question. In contrast first-order interpolation properties are notoriously hard to determine, even for logics where propositional interpolation is more or less obvious. For example it is unknown whether $G_{[0,1]}^{QF}$ (first-order infinitely-valued Gödel logic) interpolates (cf. [1]) and even for MC^{QF} , the logic of constant domain Kripke frames of three worlds with two top worlds (an extension of MC), interpolation proofs are very hard cf. Ono [8]. This situation is due to the lack of an adequate algebraization of non-classical first-order logics. In this paper we present a proof theoretic methodology to reduce first-order interpolation to propositional interpolation:

 $\left. \begin{array}{l} \text{existence of suitable skolemizations } + \\ \text{existence of Herbrand expansions } + \\ \text{propositional interpolation} \end{array} \right\} \Rightarrow \begin{array}{l} \text{first-order} \\ \text{interpolation.} \end{array}$

The construction of the first-order interpolant from the propositional interpolant follows this procedure:

- 1. Develop a validity equivalent skolemization replacing all strong quantifiers³ in the valid formula $A \to B$ to obtain the valid formula $A_1 \to B_1$.
- 2. Construct a valid Herbrand expansion $A_2 \to B_2$ for $A_1 \to B_1$. Occurrences of $\exists x B(x)$ and $\forall x A(x)$ are replaced by suitable finite disjunctions $\bigvee B(t_i)$ and conjunctions $\bigwedge B(t_i)$, respectively.
- 3. Interpolate the propositionally valid formula $A_2 \to B_2$ with the propositional interpolant $I^*: A_2 \to I^*$ and $I^* \to B_2$ are propositionally valid.
- 4. Reintroduce weak quantifiers to obtain valid formulas $A_1 \to I^*$ and $I^* \to B_1$.

^{*} This abstract is based on the publication [2].

³ Here we are dealing with quantifiers \forall and \exists such that $A(t) \rightarrow \exists x A(x)$ and $\forall x A(x) \rightarrow A(t)$ hold. This occurrence of quantifiers is called weak, the dual occurrence is called strong.

- 2 M. Baaz and Anela Lolic
- 5. Eliminate all function symbols and constants not in the common language of A_1 and B_1 by introducing suitable quantifiers in I^* (note that no Skolem functions are in the common language, therefore they are eliminated). Let I be the result.
- 6. *I* is an interpolant for $A_1 \to B_1$. $A_1 \to I$ and $I \to B_1$ are skolemizations of $A \to I$ and $I \to B$. Therefore *I* is an interpolant of $A \to B$.

It is decidable if propositional lattice based finitely-values logics admit the interpolation property [2]. Consequently, it is decidable if finitely-valued first-order logics admit the interpolation property. In this lecture we extend the methodology to prenex fragments of non-classical logics where Skolemization is admissible due to the second epsilon theorem [4].

References

- Aguilera, J.P., Baaz, M.: Ten problems in Gödel logic. Soft Computing 21(1), 149– 152 (2017)
- Baaz, M., Lolic, A.: First-order interpolation derived from propositional interpolation. Theor. Comput. Sci. 837, 209–222 (2020)
- 3. Craig, W.: Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory. The Journal of Symbolic Logic **22**(03), 269–285 (1957)
- 4. Hilbert, D., Bernays, P.: Grundlagen der Mathematik. (1968)
- 5. Maksimova, L.: Intuitionistic logic and implicit definability. Annals of Pure and Applied Logic **105**(1-3), 83–102 (2000)
- Maksimova, L.L.: Craig's theorem in superintuitionistic logics and amalgamable varieties of pseudo-Boolean algebras. Algebra and Logic 16(6), 427–455 (1977)
- Maksimova, L.L.: Interpolation properties of superintuitionistic logics. Studia Logica 38(4), 419–428 (1979)
- Ono, H.: Model extension theorem and Craig's interpolation theorem for intermediate predicate logics. Reports on Mathematical Logic 15, 41–58 (1983)