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We explore a novel combination of methods to provide explanations for the outputs of neural net-
works using logic explained networks (LEN, [2]) combined with the genetic algorithm neuroevolu-
tion of augmenting topologies (NEAT, [5]). The new algorithms’ performance and explanations are
benchmarked in the well-known cart-pole balancing control problem. This contributes to the field
of explainable AI, as it provides a bridge between symbolic and sub-symbolic AI.
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1 Introduction

Genetic algorithms are mainly used to solve reinforcement learning problems. In particular, neu-
roevolution of augmenting topologies (NEAT) is good at training neural networks by evolving the net-
work architecture. NEAT increases the complexity of the neural network only if its current, simpler ver-
sion is unable to find a solution. Since the neural network is evolving incrementally through crossover
and mutation, it can be argued that the NEAT’s architecture is, in some sense, minimal. On the other
hand, logic explained networks (LENs) force the neural network to follow logical constraints expressed
in propositional logic by modifying the loss function. The LEN booleanizes inputs to form concepts,
which act like literals in a propositional sentence (so that the explanations are propositional logic formu-
las). This restricts the input and output spaces to only boolean values, which in turn reduces the power
of neural networks. After training, the LEN goes through a step called pruning, i.e., reducing the length
of the explanations given by the final neural network with minimum loss in expressivity (the ability to
approximate complex functions) and explainability. Pruning is achieved by removing concepts that do
not significantly contribute the final decisions. This is done by looking at the weights associated with the
neural network’s input concepts. Therefore, the pruning step reduces the accuracy of the network, but
increases the readability of the explanations provided by the network.

We combine the two algorithms by replacing the pruning step of LEN by the minimal architecture
supplied by NEAT. The LEN algorithm will restrict the input and output spaces of the neural network in
order to provide propositional logic explanations. To keep the expressivity of the neural network, we use
fuzzy logic, as it is capable of handling non-boolean logical values. Therefore, the new concepts for the
combined algorithm have fuzzy variables, which in turn provide fuzzy logic explanations as the output
of the LEN algorithm.

2 Methodology

There are three key modifications to the structure of the NEAT algorithm to incorporate the LEN
component, see Figure 1: 1) a pre-processing block is added to each neural network in a generation,
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which takes care of booleanization or mapping of the inputs to fuzzy variables; 2) a post-processing
block is added to each neural network in a generation, which takes care of the extraction of explanations
provided by the neural network while training; and finally 3) the fitness function of the neural network is
modified to incorporate the bi-directional loss function used in the LEN algorithm:

L↔(yi, f ,C) = ∑
c∈C

yi(c) log( fi(c))+(1− yi(c)) log(1− ( fi(c))) (1)

where, L↔ is called the bi-implication loss function; yi is the actual ith output concept or label; fi is the
output of LEN; C is the set of all input concepts, and r is the total number of input concepts. The new
fitness function already accounts for non-binary outputs and hence the output of the neural network can
be a fuzzy variable, which then undergoes post-processing to convert the fuzzy variable output of the
neural network into the required output format. The new fitness function requires labeled data, hence
making this a supervised learning algorithm. In this work, three different versions of the algorithm
were implemented: (V1) NEAT and LEN, (V2) NEAT and LEN with partial booleanization, and (V3)
NEAT and LEN with fuzzy logic [6].1 V2 performs booleanization of the input space without loss of
information, which is achieved by allowing the concepts to be real numbers instead of boolean values.
The combined algorithm provides an output explanation for each decision taken by the neural network

Figure 1: Modified structure of the NEAT algorithm.

during and after training as a conjunction of concepts. The partial explanations (which can be seen
as predictions) are of the form: c1 ∧ c2 ∧ . . .∧ cn → D, where c1, . . . ,cn are the input concepts and D
is the decision. We can write the full, bi-directional explanations in DNF (Disjunctive Normal Form)
form as follows: D ↔ V 1 ∨V 2 ∨ . . .∨V m, where the right-hand side represents all the vectors that lead
to the decision D made by the neural network, and for each i ∈ {1, . . . ,m}, Vi is a shorthand notation
for ci

1 ∧ ci
2 ∧ . . .∧ ci

n. Since the loss function in Equation (1) optimizes for the above bi-implication
formula, the explanations are provided are in that form. From the bi-implicatiomn we can then retrieve
the implications. Therefore, each decision taken by the neural network can be given an explanation in
that form.

3 Results

Each version of the combined algorithm was benchmarked in the cart-pole balancing environment
[4, 3] using the metrics of: fitness, network topology, explanation accuracy, number of species, genome
length, and explanation length. For simplicity, only the first three are presented in this abstract.

1The code can be found in the Github repository [1].
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The fitness of a neural network in NEAT is the ability of the neural network to solve a given problem
relative to the other neural networks evolved during the run of the algorithm. The fitness range chosen
for this problem was between 0 to 1000, and shown in Figure 2.2 The fitness of V1 indicates that
the algorithm was unable to solve the cart-pole problem and provide explanations at the same time.
V2 performs significantly better than V1: partial booleanization retains the information provided by
the input, and so this version is able to solve the cartpole problem easily. V3 has good fitness, while
simultaneously achieving decent explanation accuracy in the network’s logical explanations.

(a) Fitness for V1. (b) Fitness for V2. (c) Fitness for V3

Figure 2: Fitness evolution for each version of the implementation.

Figure 3 shows that the neural network topologies generated by the algorithm are simple for ver-
sions V2 and V3, whereas V1 (which struggles to solve the cart-pole balancing problem) is exploring
more complex architectures.

(a) Network structure for V1. (b) Network structure for V2. (c) Network structure for V3.

Figure 3: Network structure for each version of the implementation; the red, green, and dotted connec-
tions represent negative weight, positive weight, and disabled connections, respectively.

Explanation accuracy refers to the accuracy of the explanations provided by the trained neural
network, i.e., the ability of the neural network to provide correct logical explanations for the decisions
taken by the trained neural network. Therefore, an explanation accuracy of 70% tells us that if this neural
network provides 10 logical explanations in the implicative form, then it can be expected that 7 of them
are correct. We cannot tell which of the explanations are incorrect because the full explanations are in
DNF. Hence, the explanation accuracy only talks about the explanatory power of the algorithm and not
the decision-making ability of the neural network. From Table 1 it can be seen that only in the fuzzy
logic implementation we can test the provided explanations, because in V1 the neural network generated
was unable to balance the pole long enough to learn its explanations (hence, the below 50% accuracy in
V1 training), and in V2 partial booleanized inputs do not follow the rules of propositional logic. For V3,
since the neural network provides explanations in fuzzy logic, a fuzzy logic system was used to evaluate
the explanations by using the explanations as inference rules. The explanation accuracy of 62.02% was

2Note that the y-axis limits are [0, 100], [0,1000], and [0, 800] in graphs (a), (b), and (c), respectively. The maximum fitness
of the three versions is 65, 963, and 694, respectively.
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- Explanation type Explanation accuracy (25 runs)
Training accuracy Testing accuracy with logical system

V1 Propositional logic 12.21% -
V2 Propositional logic 90.91% -
V3 Fuzzy logic 56.71% 62.02%

Table 1: Explanation accuracy for each version.

obtained in a Monte Carlo simulation with 25 random runs. Here, the low explanation accuracy can be
attributed to a ‘collapse’ in the explanation algorithm: the provided explanations are always the same
and correct 50% of the time. A method to reduce the risk of the explanation algorithm collapsing can
drastically increase the testing accuracy during the Monte Carlo simulation run.

4 Discussion and conclusion

The results obtained indicate that the provided algorithm has a lot of potential, as it can be used
to explain the decisions made by a neural network. The low explanation accuracy could be improved
by fine-tuning the parameters for the NEAT algorithm and, also, by providing the NEAT algorithm with
more domain-specific information. The explanation accuracy in V1 is subpar because the neural network
is unable to develop a strategy to solve the cartpole problem. This reflects an intuitive requirement
that a neural network should be able to develop a strategy to solve the problem before it attempts to
provide explanations. The simple network topologies produced by V2 and V3 indicate that the combined
algorithm is able to solve the cart-pole problem without adding hidden nodes which is to be expected
from prior experiments with NEAT.

To sum up, we have shown that NEAT and LEN can be combined to provide logical explanations.
The new algorithm can use fuzzy logic explanations to increase the expressivity of the neural network.
It thus provides another method at the interface between symbolic and sub-symbolic methods in AI.
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