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Abstract

We show that similarly to splittings in lattices of varieties, splitting algebras in lattices
of quasivarieties do not have to be finitely presented.

1 Introduction

Initially, splittings in the lattices of extensions of logics (especially, intuitionistic propositional
logic and some modal logics viewed as sets of formulas closed under rules of Modus Ponens and
substitution) were used for studying the properties of these lattices, for instance, for proving that
the cardinality is not countable (for more information, see, e.g., [6, 7]). As splitting formulas
are &-irreducible, they were used for describing the logics having irredundant axiomatization.
It turned out that not every (even intermediate) logic can be axiomatized by &-irreducible
formulas, and this led to modification of &-irreducible formulas to Zakharyaschev’s canonical
formulas. It also turned out (see, e.g. [3]) that splitting formulas can be used as anti-axioms
in the refutation systems. The algebraic counterparts of the logics admitting some kind of the
Deduction Theorem are varieties with EDPC. If we view the logics as structural consequence
relations, the quasivarieties become the algebraic counterparts, and the questions asked about
splittings in lattices of varieties can be asked about splittings in lattices of quasivarieties.

One of such questions was whether every splitting algebra in a variety with EDPC is finitely
presented. The counterexamples for the varieties of modal and Heyting algebras were given
in [6, 2]. In Section 3, we give a counterexample by exhibiting a quasivariety of Heyting
algebras which contains a splitting algebra that is not finitely presented. Since in the case when
(quasi)variety is not generated by its finite members and splitting algebra is not unique (up to
isomorphism), the problem of finite presentability of splitting algebra should be rephrased in
the following way:

Problem 1.1. Can every splitting pair in a lattice of all sub(quasi)varieties of a (quasi)variety
be defined by a finitely presented splitting algebra?

2 Basic Facts

All algebras are assumed to be of the same arbitrary but fixed type. As usual, for a class
of algebras K, we take: HK,SK,PK,PuK to be respectively the classes of all homomorphic
images, all isomorphic copies of all subalgebras, all isomorphic images of all direct products and
ultrapoducts of members of K. We also let NA be a class of all algebras B such that A /∈ SB.

If Q is a quasivariety and A ∈ Q, a congruence θ of A is a Q-congruence if A/θ ∈ Q; in
addition, A is Q− irreducible if the meet of all distinct from identity Q-congruences of A is
distinct from identity – Q-monolith . The identity congruence is denoted by εA.

To prove the main theorem, we need the following facts from the theory of quasivarieties.

Proposition 2.1 ([5, Theorem 1.2.8.]). If an algebra A is locally embeddable into a class K,
then A is embeddable into an ultraproduct of some algebras in K, that is, A ∈ SPuK.
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Because quasivarieties are closed under Pu and S, the following holds.

Corollary 2.2. If algebra A is locally embeddable in a quasivariety Q, then A ∈ Q.

Proposition 2.3. Let Q = Q(K) be a quasivariety generated by a class of algebras K and A
be a Q-irreducible Q-finitely presentable algebra. Then, A ∈ SK.

Let Λq(Q) be a lattice of all subquasivarieties of quasivariety Q. A pair (Q1,Q2), where
Q1,Q2 ∈ Λq(Q) is a splitting pair in Λq(Q) if Q1 ̸⊆ Q2 and for every Q′ ∈ Λq(Q),

Q1 ⊆ Q′ or Q′ ⊆ Q2. (Split)

Let us observe that if (Q1,Q2) is a splitting pair, immediately from (Split) it follows that
Q2 is uniquely defined by Q1 (and vice-versa).

The Q-irreducible finitely-generated algebras which define splitting pair in Q are called
Q-splitting algebras (and we omit the reference to quasivariety if no confusion arises).

Similarly to lattices of varieties, every splitting (Q1,Q2) is defined by a finitely generated
Q-irreducible algebra A, namely, Q1 = Q(A), and Q2 is the largest quasivariety from Λq(Q)
not containing A, which will be denoted by Q(A). Thus, in every splitting pair (Q1,Q2),

Q1 = Q(A), and Q2 = Q(A).

Proposition 2.4. Let Q be a quasivariety and A be a Q-splitting algebra. Then,

(a) Q(A) ⊆ NA and hence, Q(A) ⊆ NA ∩Q;

(b) if A ∈ Q is Q-irreducible algebra and it is finitely presented in Q , then class NA is a
quasivariety and consequently, NA ∩Q = Q(A).

(a) immediately follows from the observation that A /∈ Q(A); for (b), see [1, Corollary 3].

Corollary 2.5. In any quasivariety Q, every finitely-presented and Q-irreducible algebra A is
a Q-splitting algebra and Q(A) = NA. Thus, every finite Q-irreducible algebra of a finite type
is a Q-splitting algebra.

3 Main Theorem

We consider Heyting algebras in signature Σ = {→,∧,∨,¬,0,1}, and variety of all Heyting
algebras is denoted by H. Let Q1 be the quasivariety generated by some one-generated free
Heyting algebra F1 := FH(1), and we let F′

1 be a Heyting algebra obtained from F1 by adding
a new top element (see Fig. 1, where element g is a free generator of F1).

Our goal is to prove the following theorem.

Theorem 3.1. The following holds:

(a) F1 is a splitting algebra in Q1;

(b) F′
1 is subdirectly irreducible and it generates Q1, hence, F

′
1 is a splitting algebra in Q1;

(c) F′
1 is not finitely presented in Q1.
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Figure 1: Splitting Heyting algebras

Proof of (a). Since F1 is a free algebra in H, it is free in Q1 as well and hence, it is
finitely presented in Q1. If we show that F1 is Q1-irreducible, we can apply Corollary 2.5, and
complete the proof of (a).

To prove that F1 is Q1-irreducible, we will demonstrate that it has a nontrivial Q1-monolith,
namely, we will show that F1 contains distinct from 1 elements which cannot be distinguished
from 1 by any Q1-congruence; more precisely, we will show that ¬¬g ∨ (¬¬g → g) belongs to
the monolith and it is its smallest element.

Let g′ := ¬¬g ∨ (¬¬g → g) and let us consider congruence θ := θ(g′,1). First, let us
observe that θ is a Q1-congruence. Indeed, F1/θ is an 8-element one-generated Heyting algebra
(elements of which are denoted by ⋆), which is a subdirect product of three- and five-element
algebras C3 and C5, the Hasse diagrams of which are depicted in Fig. 1. Algebras C3 and C5

are isomorphic to subalgebras of F1: C3 is isomorphic to the subalgebra generated by element
¬¬g → g, and C5 – by element ¬¬g. Thus, C3,C5 ∈ Q1 and consequently, F1/θ ∈ Q1.

Next, let us note that θ is the smallest distinct from identity Q1-congruence of F1, because
the following quasi-identity holds in F1, but it does not hold in any quotient algebra by any
congruence θ′ such that ε

F1
⊂ θ′ ⊂ θ:

((x → y) → (x ∨ z)) ∨ u ≈ 1 ⇒ (((x → y) → x) ∨ ((x → y) → y) ∨ u) ≈ 1.

Indeed, let us recall from [4, Proposition 5.41] that the above quasi-identity holds in a finite
Heyting algebra if and only if this algebra is a subdirect product of the projective Heyting
algebras; C3,C5 and a two-element Heyting algebra C2 are the only finite projective one-
generated Heyting algebras in Q1, and F1/θ

′ is not a subdirect product of C3,C5 and C2,
because identity ¬¬x ∨ (¬¬x → x) ≈ 1 holds in C2,C3,C5 but not in F1/θ

′.
Proof of (b). To prove (b) we will show that algebra F′

1 is locally embeddable in F1 and
hence, by Corollary 2.2, F′

1 ∈ Q(F1) = Q1. To that end, we will exhibit a class of finite partial
subreducts of F′

1 in which every finite partial subreduct of F′
1 can be embedded, and then, we

will apply Corollary 2.2.
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With each element a ∈ F′
1 such that 0 < a < ω we associate a partial subreduct

Fa := F′
1[{b ∈ F′

1 | b ≤ a} ∪ {o,1},Σ]
Fo := F′

1[{o,1},Σ], F1 := F′
1[{1},Σ].

It is not hard to see that for every finite subset of elements A ⊆ F′
1, there are two cases to

consider: (i) A does not contain elements distinct from o and 1, and (ii) A contains elements
distinct from o and 1.

Case (i) is trivial. In Case (ii), because A is finite, one can take a disjunction of all elements
from A distinct from o and 1, let us denote it by b, and observe that [F ] : b is a desired finite
partial subreduct.

Let us note that F1 is isomorphic to a subalgebra of F′
1 generated by element g, so, to

simplify the proof, we can assume that F1 is a subalgebra of F′
1.

First, let us note that F1 = F1[{1},Σ]. In addition, subreduct Fo can be embedded into
subreduct F1[{0,1},Σ]. Thus, we need to consider only subreducts Fb, where b < o.

Suppose that b < o. Then we can take a map φ that sends every element of Fb distinct
from o into itself. Now, we need to extend φ to o.

Because b < o, there is element c ∈ F1 distinct from 1 and such that c ̸≤ b. Let us consider
element d := c ∨ (c → d). We leave for the reader to verify that

for every a ≤ b, d → a = a,

and therefore, we can extend φ by letting φ(o) = d, and this completes the proof of (b).
Proof of (c). To prove that algebra F′

1 is not finitely presented in Q1, we will show that
F′

1 can not be embedded into F1, and then we can apply Proposition 2.3, because Q1 = Q(F1)
and F′

1 is subdirectly irreducible: the congruence θ(o,1) is its monolith.
For contradiction: assume that φ : F′

1 −→ F1 is an embedding.
Let us observe that in F′

1, elements 0,¬g,¬¬g,1 are regular, that is, they satisfy condition
¬¬x = x. In addition, all elements {a ∈ F′

1 | g ∨ ¬g ≤ a} are dense, that is, they satisfy
condition ¬x = 0. Thus, g is the only element of F′

1 which is neither regular, nor dense.
Similarly, in F1 element g is the only element which is neither regular, nor dense. Hence,
φ : g 7→ g.

Let us recall that element g generates algebra F1, hence, φ is a map onto F1 and conse-
quently, either φ(o) = 1, and φ is not one-to-one map, or φ(o) < 1 and there is an element
a ∈ F1 such that φ(o) = a, which contradicts that φ is an isomorphism.
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