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1 Introduction

In this paper we study a temporal logic for finite linear structures and a surjective bounded
morphism between them. We give a modal axiomatization of such structures and also show that
any such structure can be uniquely characterised by a temporal formula, up to an isomorphism.
As a main theorem we prove Kripke completeness of the proposed axiomatization.

Finite linear structures, i.e., finite sets with a strict linear ordering, naturally arise as
representations of a discrete, bounded time flow. Many domains of our everyday practice
including time series [2], linear planning [4], [7], scene analysis [1], [9], chain-of-responsibility
design pattern in programming [3], [8], etc. involve a finite linear structure to represent a
sequence of consecutive steps.

In many such scenarios, the processes (F,<) comes with a natural partition
⋃

i∈I Fi of F
into convex equivalence classes Fi. We call Fi convex if for each a, b ∈ Fi with a < b and each
t with a < t < b, we have t ∈ Fi. In such a case, the index set I naturally “inherits” a linear
ordering from (F,<).

Mathematically, such a process (
⋃

i∈I Fi, <) can be represented as two temporal linear struc-
tures F and I related by means of a bounded morphism.

An example of such a structure comes from the analysis of video data where the linear
sequence of image frames is partitioned into intervals (grouped in some way e.g. by homogeneous
sound moments, or by each interval representing an episode, or a scene). In the area of computer
vision, deep learning (DL) methods usually process a video stream as a black box, without
looking into the temporal structure or content [6]. By contrast, we aim to represent a high-level
knowledge about frames, scenes and their temporal interrelationships and to develop formal
languages capable of reasoning about resulting structures [5].

To flesh out this approach a little more, let us consider a conceptual representation of a
movie. The raw video data of the movie can simply be represented as a sequence of frames.
On a slightly higher level of conceptualization, the same raw data can be understood as a
sequence of scenes, where a scene is a subset of logically related consecutive frames. If one also
“remembers” which frame belongs to which scene, the following structure emerges:
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Figure 1: A temporal sequence of the frames F and the scenes S of a movie.
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Note that the set of scenes naturally inherits the temporal order from the ordering of the
frames.

Our goal in the present paper is to formalise the observed examples as relational structures
and study them within the scope of temporal logic.

1.1 Intended structures, syntax and the intended semantics

We represent a temporal sequence of events as a finite strict linear order. To represent a convex
partition we use the following definition.

Definition 1.1. Let (F,<) and (S,<′) be two strict linear orders. We say that a function
f : F → S is a bounded morphism if firstly f is monotone, that is a ≤ b implies f(a) ≤ f(b),
and additionally it satisfies the boundedness condition: for arbitrary elements a ∈ F and b′ ∈ S,
if f(a) <′ b′ then there exists an element b ∈ F such that a < b and f(b) = b′.

Definition 1.2. A TES (Temporal Event Structure) is a tuple (F, S,<,<′, f) where (F,<)
and (S,<′) are finite strict linear orders and f : F ↠ S is an onto bounded morphism.

We use the functional temporal propositional modal language L which consists of formulas ϕ
that are built up inductively according to the grammar:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 2F ϕ | 2F ϕ | 2S ϕ | 2S ϕ | 2f ϕ | 2f ϕ

where p ranges over proposition symbols. The logical symbols ‘⊤’ and ‘⊥’, and the dual boolean
and modal connectives are defined as usual.

Our intention is to interpret the language L over an arbitrary TES (F, S,<,<′, f) in such
a way that 2F and 2F range over (F,<); 2S and 2S range over (S,<′); and 2f and 2f range
over (F ∪ S, f), where f is viewed as a (functional) relation.

For example, truth of a formula like ext ∧2F (ext) ∧2F (int) at a particular frame is in-
tended to express the property that "this frame and all the later frames are exterior

shots, however all the previous frames are interior shots".
The validity of a formula like2S 2S 2S ⊥ would mean that the movie consists of at most two

scenes. The validity of Suspense → 2S (Revelation) would mean that each suspense scene is
eventually followed by a revelation scene, etc.

2 Axioms and abstract semantics

Let FS be a logic defined in the language L by the following set of axioms and closed under
the standard rules of uniform substitution, modus ponens and necessitation.

• All classical tautologies, standard axioms of modal logic K for each modal operator;

Inv: GL: NoBranching: Dom-Cod:

p →2∗ 2∗ p 2∗ (2∗ p → p) →2∗ p 2∗ 2∗ p → 2∗ p ∨ p ∨ 2∗ p 2F ⊤ ∨ 2F ⊤ →2f ⊥
p →2∗ 2∗ p 2∗ (2∗ p → p) →2∗ p 2∗ 2∗ p → 2∗ p ∨ p ∨ 2∗ p 2S ⊤ ∨ 2S ⊤ →2f ⊥
x ∈ {F, S, f} x ∈ {F, S} x ∈ {F, S}
Surj: Bounded: DomConn:

2f ⊤ ∨ 2f ⊤ 2f 2S p → 2F 2f p 2f 2f p → 2F p ∨ p ∨ 2F p

MinMax: Func: Monot:

2f ⊥ ∨2f ⊥ p →2f 2f p 2F 2f p →2f ( 2S p ∨ p)
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Let Ax (FS) denote the axioms of the logic FS.

Kripke Semantics for the temporal logic FS is provided by Kripke frames with a separate
relation for each modal operator and equipped with a valuation function. More precisely a frame
F is a tuple (W,RF , RS , Rf , R

′
F , R

′
S , R

′
f ) where W is a nonempty set and each of RF , RS , Rf ,

R′
F , R

′
S , R

′
f ⊆ W ×W is a binary relation on W .

Definition 2.1. Given a frame F = (W,RF , RS , Rf , R
′
F , R

′
S , R

′
f ) and a model M = (F , V ) a

truth of a formula at a world w ∈ W of a model M is defined in the following way:
For a propositional symbol p define M, w |= p iff V (w, p) = 1;
M, w |= α ∧ β iff M, w |= α and M, w |= β;
M, w |= ¬α iff it is not the case that M, w |= α;
M, w |=2∗ α iff for an arbitrary world v ∈ W with wR∗v we have M, v |= α;
M, w |=2∗ α iff for an arbitrary world v ∈ W with wR′

∗v we have M, v |= α;
where ∗ ∈ {F, S, f}

Definition 2.2. A map f between two relational structures (W,R) and (V, S) is domain con-
nected if for any w,w′ ∈ W with f(w′) = f(w) we have w′Rw, w′ = w or wRw′.

Definition 2.3. We will say that a relation R ⊆ W × W is trichotomous if for arbitrary
w,w′ ∈ W either wRw′ or w′Rw. We will say that R is non-branching, if for arbitrary elements
a, b, c ∈ W , whenever both aRb and aRc hold, then either bRc or cRb holds.

Definition 2.4. We will say that a frame F = (W,RF , RS , Rf , R
′
F , R

′
S , R

′
f ) is an FS - frame if

the following conditions are satisfied: W = WF ∪WS where WF ̸= ∅, WS ̸= ∅ and WF ∩WS = ∅;
RF , R

′
F ⊆ WF ×WF ; RS , R

′
S ⊆ WS ×WS ; RF , R

′
F , RS and R′

S are non-branching, transitive
and well-founded; R′

F = R−1
F ; R′

S = R−1
S ; Rf ⊆ WF×WS ; Rf is a surjective bounded morphism

with respect to RF and RS ; Rf is domain connected; R′
f = R−1

f .

The class of FS - frames is characterised by the axioms of the temporal logic FS.

Theorem 2.1. For an arbitrary frame F it holds that F |= Ax (FS) iff F is an FS - frame.

Clearly a disjoint union of FS-frames is again an FS-frame. This implies that FS-frames
can be infinite, and fail the trichotomy property for RF and RS , while our intended models,
TESs are finite with < and <′ trichotomous. To retain finiteness and trichotomy, we focus our
attention on connected FS-frames, i.e. on FS-frames which cannot be presented as a disjoint
union of two FS-frames. It turns out that a connected FS-frame is in a way isomorphic to a
TES. We proceed towards establishing this connection.

Definition 2.5. For a given FS-frame F = (W,RF , RS , Rf , R
′
F , R

′
S , R

′
f ) and elements u, v ∈

W , we will say that there is an FS-chain from u to v if there is a finite sequence of points
v0, v1, . . . , vn such that v0 = u, vn = v and additionally vi is related to vi+1 by an arbitrary
relation from the set Rel = {RF , RS , Rf , R

′
F , R

′
S , R

′
f}.

Definition 2.6. Given an FS-frame F = (W,RF , RS , Rf , R
′
F , R

′
S , R

′
f ) we will say that V ⊆ W

is connected in F if for any two distinct points u, v ∈ V there is an FS-chain v0, v1, . . . , vn from
u to v such that vi ∈ V for each i. We will say that an FS-frame F is connected if its underlying
set is connected in F .

Theorem 2.2. In every connected FS - frame F = (W,RF , RS , Rf , R
′
F , R

′
S , R

′
f ), W is finite;

The relation RF is trichotomous on WF ; The relation RS is trichotomous on WS.

The class of connected FS - frames is modally undefinable since it is not closed under disjoint
unions, however the next theorem links connected FS - frames and TESs.
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Theorem 2.3. There is a one-to-one correspondence between the class CTES of all TES struc-
tures and the class CFS of all connected FS - frames.

Theorem 2.3 allows us to talk about the satisfiability of an L-formula in a model based on
a TES. Indeed, for a given formula ϕ ∈ L and a TES F = (F, S,<,<′, f) we will say that ϕ
is satisfiable at a point w ∈ F ∪S if there is a valuation V on F ∪S such that M, w |= ϕ where
M = (F∗, V ) is a model based on the FS-frame F∗ = (F ∪ S,<,<′, f,>,>′, f−1). The notion
of validity is also similarly transferred.

The next theorem shows that each TES can be fully described by an L-formula, up to an
isomorphism.

Theorem 2.4. Given a TES F = (F, S,<,<′, f), there is a formula ϕF ∈ L such that for
an arbitrary TES T we have: T |= ϕF iff T is isomorphic to F .

Finally, we establish our main finding:

Theorem 2.5. The logic FS is sound and complete w.r.t. the class of all TESs.

It follows that the logic FS has the finite model property and is decidable.

Future Work

It is natural to extend the current work by considering structures with more than two layers
e.g., with finitely many layers (F1, F2, . . . , Fk, f1, f2, . . . , fk−1) where each layer Fi represents
a finite linear order while each fi : Fi → Fi+1 is a surjective bounded morphism. A natural
example of such a structure for k = 3 would be a set of movie frames, grouped into episodes,
these further grouped into scenes, which finally form acts.

The approach and the methods developed in the current study should smoothly generalize
to such a setting for any fixed k. The concluding step in this direction would be to axiomatize
and study the class of all such structures, for all k > 1.
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