
Matching Modulo Proximity Theories

Temur Kutsia and Cleo Pau
RISC, Johannes Kepler University Linz, Austria

1 Introduction
Matching is a fundamental technique in rule-based computational formalisms. Given a pattern expression
and a data expression, its task is to instantiate the pattern in such a way that it “fits” the data, where
“fitting” typically means syntactic equality, equivalence modulo the given theory, or some other predefined
relation. In this paper, we study matching modulo theories that generalize equivalence to tolerance: reflexive,
symmetric, but not necessarily transitive relations. Our relations are quantitative: they are fuzzy proximities.
We introduce conditional proximity equations (CPEs) of a special type, define the notion of proximity theory
induced by CPEs, and develop an algorithm for solving matching problems in proximity theories.

Our work is a generalization and extension of some earlier works. The notion of CPEs is quite powerful
and flexible and helps to model different concepts of proximities between first-order terms. Consequently, in
our framework we can express class-based proximity matching in basic [4] and fully fuzzy signatures [6]. It
can be also used with block-based algorithms that can solve proximity matching problems [1, 2]. Moreover,
proximity theories as we define them can be seen as an extension of shallow collapse-free equational theories
from crisp (two-valued) to a fuzzy setting.

2 Preliminaries
Proximity relations. A binary fuzzy relation on a set S is a mapping from S×S to the real interval [0, 1].
If R is a fuzzy relation on S and λ is a number 0 < λ ≤ 1 (called cut value), then the λ-cut of R on S,
denoted Rλ, is an ordinary (crisp) relation on S defined as Rλ := {(s1, s2) | R(s1, s1) ≥ λ}.

A fuzzy relation R on a set S is called a proximity relation on S iff it is reflexive (R(s, s) = 1 for all
s ∈ S) and symmetric (R(s1, s2) = R(s2, s1) for all s1, s2 ∈ S).

Two objects s1 and s2 are called δ-proximal in the proximity relation R to each other if R(s1, s2) = δ.
We write it as s1 'R,δ s2 or just s1 'δ s2 if the relation R is clear from the context. The bigger the δ is, the
more proximal the objects are to each other.

A triangular norm (T-norm) ⊗ on [0, 1] is a binary operation on this interval, which is associative,
commutative, nondecreasing in both arguments, and having 1 as its unit element. T-norms have been studied
in detail in [3]. In this paper we assume that the T-norm is minimum (Gödel T-norm).

Language. The set of first-order terms T (F ,V) over disjoint sets of variables V and fixed arity function
symbols F is defined as usual. We use s, r, t to denote them. V(t) stands for the set of variables of t.
Substitutions over T (F ,V) are mappings from variables to terms, where all but finitely many variables are
mapped to themselves. The symbols σ, ϑ, ϕ are used for substitutions. The identity substitution is denoted
by Id . We use the usual set notation for substitutions. Substitution application to terms is written in the
postfix notation such as tσ and is defined recursively as xσ = σ(x) and f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ).

Below we will be using proximity degree variables, proximity degree constraints, and their solutions. A
degree variable d is a variable that takes its values from the real interval [0, 1]. A degree expression δ is
defined by the grammar δ ::= n | d | δ1⊗ δ2, where n ∈ [0, 1]. A degree constraint is an atomic formula
a ≤ δ ≤ b, where a and b are numbers from [0, 1]. We will also write shortly δ ≥ a for a ≤ δ ≤ 1 and δ = a
for a ≤ δ ≤ a. A degree mapping is a mapping from degree variables to degree expressions. The application
of a degree mapping µ on a degree constraint a ≤ δ ≤ b, denoted µ(a ≤ δ ≤ b), is defined as a ≤ µ(δ) ≤ b.

Background Knowledge. Background knowledge specifies which terms are to be considered proximal
(and by which degree). It is represented by a set of conditional proximal equations (called axioms of the
background proximal theory), which are defined in the following way:

Definition 1 (Conditional proximal equation). A conditional proximal equation (CPE) is a formula of
the form f(x1, . . . , xn) 'λ⊗ d1⊗···⊗ dk

g(y1, . . . , ym)⇐ Def∧Res∧Deg where λ ∈ (0, 1], x1, . . . , xn, y1, . . . , ym
are pairwise distinct variables, d1, . . . , dk are pairwise distinct degree variables, and Def, Res, and Deg are
conjunctive formulas (called respectively defining, restricting, and degree constraints) defined as follows:

– Def = u1 'd1
v1 ∧ · · · ∧uk 'dk

vk, k ≥ 0, where for each 1 ≤ i ≤ k, ui ∈ {x1, . . . , xn}, vi ∈ {y1, . . . , ym},
and they are not necessarily distinct;

– Res = z1 'g1
t1 ∧ · · · ∧ zl 'gl

tl, l ≥ 0, where g1, . . . , gk are pairwise distinct degree variables that do not
appear among d1, . . . , dk, and for each 1 ≤ j ≤ l,
• zj ∈ {x1, . . . , xn, y1, . . . , ym},
• tj ∈ T (F ,V(Def)) (i.e., only variables in tj are those appearing in Def),
• if tj is a variable, then zj ∈ V(Def), but {zj , tj} 6= {ui, vi} for all 1 ≤ i ≤ k (i.e., Def and Res do
not share equations);

– Deg = a1 ≤ d1 ≤ b1 ∧ · · · ∧ ak ≤ dk ≤ bk ∧ c1 ≤ g1 ≤ d1 ∧ · · · ∧ cl ≤ gl ≤ dl such that for each 1 ≤ j ≤ l,
• if cj = 0, then zj ∈ V(Def),
• if for zj 'gj

tj ∈ Res, zj and tj are variables such that one of them belongs to {u1, . . . , uk} and the
other one to {v1, . . . , vk}, then cj = dj = 0.

Intuitively, if s = f(x1, . . . , xn) and t = g(y1, . . . , ym), the definition says:

– Def (together with Deg) defines which arguments of s and t should be close to each other. Their proximity
degrees are used in the computation of the proximity degree between s and t;

– Res puts additional restrictions that do not affect the computation of the proximity degree between s
and t. It may require, e.g. that some arguments within s or within t are close to each other or should
not be close to each other; or that some argument of s (or of t) should be close or not close with some
term (guaranteed to be ground in matching problems); or that some argument of s must not be close to
some argument of t (also in this case, during matching, this check will be performed on ground terms);

– Deg makes sure that if an equation from Res is allowed to have the zero degree, then the sides of this
equation contain only variables from Def (guaranteeing the ground term check in matching); and if an
equation from Res is between arguments of s and t, then they must not be close to each other (proximal
with degree zero). Valid degree constraints are usually dropped from Deg.

Remark 1. Using conditional proximities, we can encode proximities between symbols in fully fuzzy signa-
tures [5,6]. For instance, f ∼{(1,1),(1,2),(3,2)}0.6 g for a ternary f and binary g can be written as the conditional
proximity f(x1, x2, x3) 'min{0.6,d1,d2,d3} g(y1, y2)⇐ x1 'd1

y1 ∧ x1 'd2
y2 ∧ x3 'd3

y2. It uses only the Def
part. The Res and Deg constraints are empty and, hence, valid conjunctions.1

Definition 2 (Proximity theory). Given a set of conditional proximities A (over the set of terms T (F ,V)),
the set of proximities induced by A, denoted by P(A), is the least set satisfying the conditions:

1. t '1 t ∈ P(A) for all t ∈ T (F ,V).
2. If t 'λ s ∈ P(A), then s 'λ t ∈ P(A).
3. If t1 'λ1 s1, . . . , tn 'λn sn ∈ P(A), λ1⊗ · · ·⊗λn = λ, and f ∈ F is an n-ary symbol, then f(t1, . . . , tn) 'λ

f(s1, . . . , sn) ∈ P(A).
4. For each axiom from A of the form f(x1, . . . , xn) 'δ g(y1, . . . , ym) ⇐ Def ∧ Res ∧ Deg, if there exist a

substitution σ and a degree variable mapping µ such that
(a) for each ui 'di

vi ∈ Def, we have µ(di) > 0 and there exists γi ≤ µ(di) such that uiσ 'γi viσ ∈ P(A),
(b) for each zj 'gj tj ∈ Res,

– if µ(gj) > 0, then there exists γj ≤ µ(gj) such that zjσ 'γj tjσ ∈ P(A),
– if µ(gj) = 0, then zjσ '0 tjσ /∈ P(A),

(c) for each D ∈ Deg, the formula µ(D) is valid, and

1 Strictly speaking, Deg is 0 ≤ d1 ≤ 1 ∧ 0 ≤ d2 ≤ 1 ∧ 0 ≤ d3 ≤ 1, which is a valid formula.

2

(d) µ(di) for each 1 ≤ i ≤ k and µ(gj) for each 1 ≤ j ≤ l are the smallest numbers satisfying the
properties (4a)–(4c),2

then f(x1, . . . , xn)σ 'µ(δ) g(y1, . . . , ym)σ ∈ P(A).

The proximity theory induced by A, denoted JP(A)K, is the set

JP(A)K := {t 'λ s | t 'λ s ∈ P(A) and λ ≥ λi for all t 'λi
s ∈ P(A)} .

Remark 2. The definition implies that if t 'λ s ∈ JP(A)K, then λ > 0.

Example 1. Let A1 and A2 be the sets of axioms:

A1 := {a '0.5 b, f(x1, x2) '0.6⊗ d1⊗ d2 f(y1, y2)⇐ x1 'd1 y2 ∧ x2 'd2 y1 ∧ 0.4 ≤ d1 ∧ 0.4 ≤ d2}
A2 := {a '0.5 b, a '0.6 c, b '0.7 d, c '0.8 d,

f(x) '0.7 g(y)⇐ x 'g1 a ∧ y 'g2 d ∧ 0.5 ≤ g1 ≤ 0.6 ∧ g2 ≥ 0.8}.

Then

– f(a, b) '0.5 f(a, b) ∈ P(A1) but f(a, b) '0.5 f(a, b) /∈ JP(A1)K, because f(a, b) '1 f(a, b) ∈ P(A1).
– On the other hand, f(a, b) '0.6 f(b, a) ∈ P(A1) and also f(a, b) '0.6 f(b, a) ∈ JP(A1)K.
– {a '0.5 b, a '0.6 c, b '0.7 d, c '0.8 d} ∪ {f(s) '0.7 g(t) | s ∈ {a, b, c}, t ∈ {c, d}} ⊂ JP(A2)K.

3 The Algorithm

The problem of matching t to a ground term s with the cut value λ with respect to the proximity theory
induced by A is to find a σ such that (tσ 'δ s) ∈ JP(A)K for some δ ≥ λ. To solve such a problem, we create
the tuple {t -?

d s}; ∅; {d ≥ λ}; Id ; d and apply the rules below. They work on tuples M ;R;D;σ;α, where M
is a set of matching equations to be solved, R is the set of restricting constraints to be satisfied, D is a set
of degree constraints to be satisfied, σ is the matching substitution computed so far, and α is the degree
expression that gives the proximity degree of the solution. Obviously, t and A are variable disjoint.

The matching rules are the following:

Dec-1: Decomposition 1
{f(t1, . . . , tn) -?

d f(s1, . . . , sn)}]M ;R;D;σ;α =⇒M ∪ {t1 -?
d1
s1, . . . , tn -?

dn
sn};R;µ(D);σ;µ(α),

where µ = {d 7→ d1⊗ · · ·⊗ dn}.

Dec-2: Decomposition 2
{f(t1, . . . , tn) -?

d g(s1, . . . , sm)}]M ;R;D;σ;α =⇒
M ∪ {ti -?

di
sj | xi 'di

yj ∈ Def};R ∪ {zϑ 'g rϑ | z 'g r ∈ Res};µ(D) ∪ Deg;σ;µ(α),

if f(x1, . . . , xn) ∼=δ g(y1, . . . , ym)⇐ Def∧Res∧Deg ∈ A,3 ϑ = {xi 7→ ti | 1 ≤ i ≤ n}∪{yj 7→ sj | 1 ≤ j ≤ m},
and µ = {d 7→ δ}.

Var-E-M: Variable elimination
{x -?

d s}]M ;R;D;σ;α =⇒Mσ;Rσ;µ(D);σϑ;µ(α),
where t 'λ s ∈ JP(A)K for some λ,4 µ = {d 7→ λ}, and ϑ = {x 7→ t}.

Solve-R: Solving restriction constraints, big step
∅;R;D;σ;α =⇒ ∅; ∅;D′;σ′;α, if R; ∅;D;σ; 1 =⇒∗ ∅; ∅;D′;σ′;_.
2 If µ(di), 1 ≤ i ≤ k, and µ(gj), 1 ≤ j ≤ l, satisfy (4a)–(4c), then we can select their smallest values because of the

nonstrict inequalities that constrain them in Deg.
3 s ∼=δ t is a meta-notation for s 'δ t or t 'δ s.
4 In variable elimination, one needs to consider only finitely many choices for t because ground terms have only
finitely many λ-proximal terms (since A is finite).

3

Valid-D: Valid degree constraint
∅;R; {dc}]D;σ;α =⇒ ∅;R;D;σ;α, if dc is a valid degree constraint.

Cla: Clash
{f(t1, . . . , tn) -? g(s1, . . . , sm)}]M ;R;D;σ;α =⇒ ⊥,
if f 6= g and no equation in A has the head of the form f(x1, . . . , xn) 'δ g(y1, . . . , ym).

Inc-R: Inconsistent restriction, big step
∅;R;D;σ;α =⇒ ⊥, if R; ∅;D;σ; 1 =⇒∗ ⊥.

Inc-D: Inconsistent degree constraint
M ;R;D;σ;α =⇒ ⊥, if D is inconsistent.

In the big steps of Solve-R and Inc-R, R can be treated as a matching problem because at each step
of its transformation there will be an equation with a ground side. The matching algorithm M uses these
rules to transform tuples as long as possible, returning either ⊥ (indicating failure), or ∅; ∅; ∅;ϑ;α (indicating
success). The theorem below shows that M is terminating, sound, and complete.
Theorem 1. Let t and s be two terms where s us ground, A be a set of proximity theory axioms, and λ be
a cut value. Let C be the starting configuration {t �?

d s}; ∅; {d ≥ λ}; Id ; d. Then
– Starting from C, the matching algorithm M terminates.
– If it terminates with ∅; ∅; ∅;ϑ;α, then ϑ is a proximal matcher of t to s wrt A with the degree α.
– If all derivations via M terminate with ⊥, then there is no substitution that would match t to s with

respect to A with the proximity degree at least λ.

4 Concluding Remarks

Proximity theories are counterparts of equational theories in the fuzzy setting, where equalities are replaced
by their quantitative approximations. They are generated by conditional proximal equations of a special form,
which can be also seen as a generalization of shallow collapse-free equations to proximities. The algorithm
proposed in this paper solves matching problems under such a background theory. A natural direction of
future work would be fuzzy (proximity- or similarity-based) constraint solving modulo theories, aiming at
their applications in approximate reasoning.

A version of this paper with an example illustrating the work of the matching algorithm can be found at
https://www.risc.jku.at/people/tkutsia/papers/mmp.pdf.

Acknowledgment. Supported by the Austrian Science Fund (FWF), project P 35530.

References
1. Julián-Iranzo, P., Rubio-Manzano, C.: Proximity-based unification theory. Fuzzy Sets and Systems 262, 21–43

(2015)
2. Julián Iranzo, P., Sáenz-Pérez, F.: Proximity-based unification: An efficient implementation method. IEEE Trans.

Fuzzy Syst. 29(5), 1238–1251 (2021)
3. Klement, E., Mesiar, R., Pap, E.: Triangular Norms, Trends in Logic, vol. 8. Springer (2000)
4. Kutsia, T., Pau, C.: Matching and generalization modulo proximity and tolerance relations. In: Özgün, A., Zinova,

Y. (eds.) Language, Logic, and Computation - 13th International Tbilisi Symposium, TbiLLC 2019, Batumi,
Georgia, September 16-20, 2019, Revised Selected Papers. Lecture Notes in Computer Science, vol. 13206, pp.
323–342. Springer (2019)

5. Kutsia, T., Pau, C.: A framework for approximate generalization in quantitative theories. In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) Automated Reasoning - 11th International Joint Conference, IJCAR 2022, Haifa,
Israel, August 8-10, 2022, Proceedings. Lecture Notes in Computer Science, vol. 13385, pp. 578–596. Springer
(2022)

6. Pau, C., Kutsia, T.: Proximity-based unification and matching for fully fuzzy signatures. In: 30th IEEE Interna-
tional Conference on Fuzzy Systems, FUZZ-IEEE 2021, Luxembourg, July 11-14, 2021. pp. 1–6. IEEE (2021)

4

https://www.risc.jku.at/people/tkutsia/papers/mmp.pdf

	Matching Modulo Proximity Theories

