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Artificial Intelligence (AI) has become ubiquitous in our everyday lives.
There has been intense research on tasks related to language generation and
understanding and, as a result of the improvements in these tasks (see e.g.
BERT [5], (chat)GPT [3], and Bard), AI has been applied to enhance user ex-
perience in household appliances, virtual personal assistants, search engines,
recommender systems, among others. A big portion of articles on machine
learning is based on experimental evaluations, where the goal is often to pro-
vide evidence of an improvement of accuracy results on benchmarks. There are
more and more of such papers being published every year, with authors in the
machine learning community going from one deadline to the next every two
months [2]. While the advance of application-driven research in AI at such a
pace is exciting, we also envision an urgent need of establishing and standard-
izing a formalization of certain notions used in the field, starting with basic
conceptual questions. What is a learning algorithm? What does it mean
(formally!) to say that it has learnt to perform a certain task? Ex-
citing research in AI needs to be complemented with theoretical developments,
which aim at long-term impact and can survive the test of time. The lack
of formal definitions and their consistent usage in machine learning can create
misunderstandings in the community and expectations in the society that AI
technologies have achieved capabilities that are later shown to be wrong [14, 22]
or unsuitable because of ethical issues [10].

Remark 1 To illustrate the issue regarding the lack of formal definitions and
their usage, consider a very intriguing question in AI which is whether algo-
rithms can learn by induction the ability of performing deductive (logical) rea-
soning. After multiple authors claimed that the BERT language model learnt to
emulate the correct function for performing deductive reasoning [4, 23] (based on
experimental evaluations with high accuracy prediction results on benchmarks),
further studies indicate that the model learnt statistical features present in de-
ductive reasoning problems, rather than learning to emulate the correct reason-
ing function. Their results point that BERT has not learnt to reason [25] and,
moreover, that this would not be fixable by feeding the model with more data as
the statistical features in this case are inherent to the reasoning function itself,
and therefore, they would be present in any kind of data distribution.

The presence of shortcut learning [6], as illustrated in Remark 1 (where
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the model learns statistical features instead of emulating the intended target
reasoning function), and its effects are yet to be understood. The solutions
may require more interaction between the communities working on Knowledge
Representation and Reasoning, Logic, and Machine Learning, to achieve models
that can perform both deductive and inductive reasoning adequately.

On a deeper level, what are the capabilities and limitations of AI?
Back in time, when researchers were trying to understand the capabilities and
limitations of computers, they found many answers to their questions by de-
veloping what is known today as the theory of computation [21]. Research
in the field clarifies which problems can be solved by computers, formalizing
computers using abstract computational models and analysing the decidability,
complexity, and potential reducibility of computational problems. The Theory
of Computation provides a solid and elegant foundation for computer science.
The well-defined models of computation create a mathematical abstraction that
allows the study of capabilities and limitations of computers independently of
taking into consideration the hardware resources of a particular computer.

However, the mode of operation of classical algorithms is fairly different
from the settings predominant in AI. Systems based on AI often include inter-
actions with external entities, which translates computationally into multiple
inputs and outputs during the computation [8]—a much less explored territory
in the literature of the theory of computation. Though, the challenges in AI
include not only analysing the amount of time and memory space required but
also investigating the capability of learning target functions, updating the learnt
concepts given new information, estimating the number of interactions needed
(in interactive scenarios), and estimating the amount of data needed for train-
ing (in non-interactive scenarios) so as to avoid overfitting [20]. There has been
a lot of interest in verifying whether AI models can be given formal guaran-
tees, such as robustness to adversarial attacks [12, 16, 19, 9], and establishing
the expressivity of widely applied machine learning architectures such as trans-
formers [18] and graph neural networks [15]. In the quest for a clear and solid
understanding of the capabilities and limitations of AI, some of the basic but
also fundamental questions to be addressed towards establishing a theory for AI
computation include: what are the underlying computational models of AI
systems? How can we formally define learnability? What is the complexity
of learning? Can we reduce one learning problem to another?

In Computational Learning Theory [11], there are well-known learning frame-
works such as the exact [1] and the classical probably approximately correct
(PAC) [24]. Within these frameworks, one can formalize a learning problem,
analyse learnability, complexity, reducibility, and under certain conditions, es-
timate an amount of training data (based on the notion of sample complexity)
that avoids overfitting within the model. Although research in Computational
Learning Theory produced a plethora of important results for traditional al-
gorithmic tasks, it is greatly underdeveloped when it comes to computational
settings and challenges predominant in AI.

Remark 2 To illustrate the mismatch between what is known in theory and
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what is required in practice, consider the assumptions made in well studied
computational models in Computational Learning Theory. The classical PAC
framework makes the assumption that examples in the training data are inde-
pendently and identically distributed (i.i.d) and uses this same—arbitrary but
fixed—distribution to establish the notion of probabilistic approximation w.r.t.
the target, the function that is intended to be learnt. However, the assumption
that the test data comes from the same distribution as the training data has
been called the big lie in machine learning [7]. The reason is because it
is convenient to make this assumption “in the lab”, though, this assumption
is rarely justified for real world applications and gives more opportunities for
(unintended) shortcut learning [6]. In the exact learning framework, the as-
sumption that the learner has access an oracle with perfect knowledge of the
target, in particular, an oracle that can provide counterexamples to equivalence
queries, is also difficult to fulfill in practice. Moreover, a big portion of works
in the field only consider supervised settings based on binary classification.

Starting from basic conceptual questions, what is a learning algorithm when
we now consider interactive systems that receive and return multiple inputs
and outputs? The theory of computation has a classical notion of algorithm
for decision problems, based on Turing Machines. There are also branches
of the Theory of Computation which resemble scenarios with interaction and
changes, as in many AI scenarios. For instance, Oracle Turing machines give
the possibility of interacting with an external system [13]. The work by Goldin,
Smolka, Wegner et al. provides foundational results for interactive computa-
tion [8]. Also, in the study of Dynamic Complexity Classes [17], one has to
consider modifications in the data. However, these formalisms are considerably
different from the idea of having computational models that can be employed
to explore notions associated with learning tasks such as learnability, sample
complexity, and query complexity (in interactive settings). The idea of having
for frameworks with a success criteria based on learning tasks, instead of deci-
sion tasks is not within the realms of such formalisms. In this extended abstract,
we cast light on abysmal literature gaps between AI and foundational research.
We motivate the need of developing a theory for AI computation, that builds on
Machine Learning, Knowledge Representation and Logic—the pillars of AI—as
well as Computational Learning Theory and the Theory of Computation.
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neural network architectures. In ICLR, 2019.

[19] Emilia Przybysz, Bimal Bhattarai, Cosimo Persia, Ana Ozaki, Ole-Christoffer Granmo,
and Jivitesh Sharma. Verifying properties of tsetlin machines. CoRR, abs/2303.14464,
2023. (to appear) ISTM.

[20] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory
to algorithms. Cambridge university press, 2014.

[21] Michael Sipser. Introduction to the Theory of Computation. Thomson Course Technology,
international edition of second edition, 2005.

[22] Jiawei Su, Danilo Vasconcellos Vargas, and Kouichi Sakurai. One pixel attack for fooling
deep neural networks. IEEE Trans. Evol. Comput., 23(5):828–841, 2019.

[23] Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Goldberg, and Jonathan Berant. Leap-
of-thought: Teaching pre-trained models to systematically reason over implicit knowl-
edge. In NeurIPS. Curran Associates Inc., 2020.

[24] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[25] Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang, and Guy Van den Broeck.
On the paradox of learning to reason from data. CoRR, abs/2205.11502, 2022.

4


