On Amounts and Measures

Stephanie Solt

14th Tbilisi Symposium on Logic, Language and Computation September 22, 2023

Degree constructions in natural language

- (1) Bart is 20 cm taller than Lisa. adjectival
- (2) The suitcase weighs 20 kilograms.

verbal

quantity

- (3) a. Mabel bought 40 sheep.
 - b. The aquarium holds 10 gallons of water.

ightarrow Require something like degrees as part of the ontology.

Points of debate

What are degrees?

- Numbers (Krifka, 1989)
- Points on a scale (Heim, 2000; Kennedy, 2007)
- Scalar intervals (Kennedy, 2001; Schwarzschild and Wilkinson, 2002)
- Equivalence classes (Cresswell, 1977; Bale, 2008)
- Kinds (Anderson and Morzycki, 2015; Scontras, 2017)

Points of debate

What is measured?

- Individuals (Heim, 2000; Kennedy, 2007, etc.)
- Extents or vectors (Zwarts and Winter, 2000; Faller, 2000; Schwarzschild, 2012)
- States (Wellwood, 2019)
- Tropes (Moltmann, 2009)
- \rightarrow Some of these require us to posit additional sorts of entities beyond individuals (type e) and degrees (type d).

Type 1: Numerical NP + much/many nominal

- (4) a. Ten kilos of chicken is too much food. (a) substance nominal
 - o. Ten kilos of chicken is **too much weight**. (b) property nominal
 - c. Ten kilos of chicken is **too much work**. (c) eventive nominal

Type 1: Numerical NP + much/many nominal

- (5) a. Five dogs is too many pets.
 - b. Five dogs is too much weight.
 - c. Five dogs is too much work.

- (a) substance nominal
 - (b) property nominal
 - (c) eventive nominal

Type 2: Measure expression + gradable adjective

- (6) a. 20 kilograms is **too heavy** (for a suitcase you have to carry). cf. The suitcase is too heavy.
 - b. \$500 is too expensive (for a coat).cf. The coat is too expensive.
 - c. Six feet (tall) is **too tall**. cf. Fred is too tall.

(Solt, 2008)

Type 3: Property nominal + gradable adjective

(7)

- a. I was worried about the heavy weight of the suitcase.
- b. Fred's tall height made him a natural for the basketball team.
- c. Mabel is wise despite her young age.
- d. Although the **size** of the stains was **small**, they were so obvious that I couldn't wear the shirt.

(Solt, 2008)

Today's question

What can amount and measure predication tell us about the semantics of degree in natural language?

Roadmap

- Amount predication type 1a
- Weight, height, size, . . .
- Back to amount predication
- Conclusions

- Amount predication type 1a
- Weight, height, size, . . .
- Back to amount predication
- 4 Conclusions

Amount predicates - type 1a

- (8) a. Ten kilos of chicken is **too much food**.
 - b. Five dogs is too many pets.

Joint work with Jon Ander Mendia (see also Mendia & Espinal ms.).

Singular form of copula:

- (9) a. Ten kilos of chicken is/are rotten.
 - b. Ten kilos of chicken is/??are too much food.
- (10) a. Five dogs *is/are barking.
 - b. Five dogs is/??are too many pets.

Lack of existential commitment:

- (11) a. Ten kilos of chicken are rotten. \rightarrow some particular 10-kg portion of chicken
 - b. Ten kilos of chicken is too much food.
 - \rightarrow 10 kg of chicken as an \boldsymbol{amount} of food
- (12) a. Five dogs are barking. \rightarrow some particular 5 dogs
 - b. Five dogs is too many pets.
 - \rightarrow 5 dogs as a **number** of pets

Lack of existential commitment:

- (13) a. Ten kilos of chicken are rotten.
 - ightarrow some particular 10-kg portion of chicken
 - b. Ten kilos of chicken is too much food.
 - ightarrow 10 kg of chicken as an **amount** of food
- (14) a. Five dogs are barking.
 - \rightarrow some particular 5 dogs
 - b. Five dogs is too many pets.
 - \rightarrow 5 dogs as a **number** of pets

Required presence of *much/many*:

- (15) a. Ten kilos of chicken is too much food.
 - b. ... is **more food** than we need.
 - c. ... is **less food** than we paid for.
 - d. ... is **as much food** as we ordered last year.
 - e. ... is **so much food** that we'll have leftovers.
 - f. ... isn't much food.
 - g. ...??is **food**. (cf. Chicken is food.)

Required presence of *much/many*:

- (16) a. Five dogs is **too many pets**.
 - b. ... is **more pets** than I could handle!
 - c. ... is **fewer pets** than my cousin has.
 - d. ... is **as many pets** as we can keep in the apartment.
 - e. ... is **so many pets** that the vet bills will make us go broke.
 - f. ... isn't **many pets**.
 - g. ...*is **pets**.

Presuppositional behavior:

- (17) Ten kilos of broccoli / #rocks is (not) too much food.
- (18) Five cats / #rocks is (not) too many pets.
 - Entities in extension of subject nominal presupposed to be in extension of predicate nominal.

Core idea

Type 1a amount predicates are (like they seem on the surface) predicative in their semantics – predicating a property of an amount or quantity:

- 10 kg of chicken as an amount of chicken
- 5 dogs as a quantity of dogs

But what are amounts / quantities?

→ Not simply numbers or points on a scale!

Amounts/degrees and kinds

Parallels between degrees and kinds:

- (19) Polish (Anderson and Morzycki, 2015):
 - a. taki piessuch-MASC dog'such a dog', 'a dog of that kind'
 - b. tak wysoki such tall'that tall' (degree)

Amounts/degrees and kinds

Scontras (2017): Amounts/degrees, like kinds, can be understood as nominalizations of properties, via 'down' operator $^{\cap}$ (Chierchia, 1998):

(20)
$$\lceil \operatorname{dog}_{kind} \rceil = \cap \lambda x. dogs(x)$$

a sort of entity

(21) [three kilos of apples
$$_{amount}$$
] = $^{\cap}\lambda x.\mu_{kg}(x) = 3 \land apples(x)$

→ Nominalization of a quantity-uniform property.

(see also Rothstein 2017; Anderson and Morzycki 2015)

Amounts/degrees and kinds

However:

 Nominalization operator ∩ originally applied to predicates with cumulative reference.

(22)
$$\mathsf{CUM}(P)$$
 iff $\forall x, y \in P, x \sqcup y \in P$

- Kind associated with maximal plurality in a world.
- Predicates such as three kilos of apples have quantized reference:

(23) QUA(
$$P$$
) iff $\forall x, y, x \in P \land y \in P \rightarrow \neg x \sqsubset y$

Amount formation

Amount-formation and amount-realization operators:

- ightarrow Here we assume amounts are a variety of individual, i.e. $D_a \subset D_e$

Amount formation

Predicative interpretation:

(24) [10 kilos of chicken
$$_{\langle e,t\rangle}$$
] = $\lambda x.chicken(x) \wedge \mu_{kg}(x) = 10$

Amount formation:

- (25) [10 kilos of chicken_a] = $^{\cap}\lambda x.chicken(x) \wedge \mu_{kg}(x) = 10$
 - The entity (amount) correlate of the property of being a 10-kg portion of chicken

On amounts

Based on a more basic notion of degree

(26) [10 kilos of chicken_a] =
$$^{\cap}\lambda x.chicken(x) \wedge \mu_{kg}(x) = 10$$

- More complex than simple degrees
 - 10 kilos of chicken vs. 10 kilos of rocks
- Underlying measurement scale can provide basis of ordering...
 - 10 kilos of chicken is more food than 5 kilos of chicken.
- ... but need not
 10 kilos of chicken is more food than 5 bags of chips.

Compositional analysis

(26) Ten kilos of chicken is too much food.

ten kilos of chicken amount

too much food predicate of amounts

Role of much

Creates predicates of amounts:

(26)
$$[\![too\ much]\!] = \lambda P_{\langle e,t\rangle} \lambda a_a : \exists X \subseteq P[\mathsf{QUA}(X) \land a = {}^{\cap}X]. \ a \succ_{DIM} \theta_P$$

(27)
$$[\![too\ much\ food]\!] =$$
 $= \lambda a_a : \exists X \subseteq [\![food]\!] [\mathsf{QUA}(X) \land a = \ ^{\cap}\!X]. \ a \succ_{DIM} \theta_{food}$

- predicate of amounts
- presupposed to be amounts of food
- ullet asserted to be greater wrt. dimension DIM than threshold θ_{food}

Role of much

Creates predicates of amounts:

(28)
$$[\![too\ much]\!] = \lambda P_{\langle e,t\rangle} \lambda a_a : \exists X \subseteq P[\mathsf{QUA}(X) \land a = {}^{\Cap}X]. \ a \succ_{DIM} \theta_P$$

(29)
$$\llbracket too \ much \ food \rrbracket = \\ = \lambda a_a : \exists X \subseteq \llbracket food \rrbracket [\mathsf{QUA}(X) \land a = \ ^{ ext{$^{\circ}$}} X]. \ a \succ_{DIM} \theta_{food}$$

- predicate of amounts
- presupposed to be amounts of food
- ullet asserted to be greater wrt. dimension DIM than threshold $heta_{food}$

Compositional analysis - putting it together

- (30) a. Ten kilos of chicken is too much food.
 - b. ${}^{\Cap}\lambda x.chicken(x) \wedge \mu_{kg}(x) = 10 \succ_{DIM} \theta_{food},$ where it is presupposed that ${}^{\Cap}\lambda x.chicken(x) \wedge \mu_{kg}(x) = 10$ is an amount of food.

An issue

We bought too much food. (31)

> we bought $\lambda x_e.bought(we, x)$ $\lambda a_a.a \succ_{DIM} \theta_{food}$ predicate of individuals

too much food predicate of amounts

 \rightarrow type clash!

Amount-to-individual shift

(32)
$$[SHIFT] = \lambda A_{\langle a,t \rangle} \lambda x_e . \exists a \in A[x \in U]a]$$

 Shifts predicate of amounts to predicate of individuals realizing those amounts

- (33) a. We bought SHIFT(too much food)
 - b. $\exists x \exists a [\mathsf{too-much-food}(a) \land x \in {}^{\ensuremath{\uplus}} a \land \mathsf{bought}(we, x)$

Amount-to-individual shift

(34)
$$[SHIFT] = \lambda A_{\langle a,t \rangle} \lambda x_e . \exists a \in A[x \in U]$$

 Shifts predicate of amounts to predicate of individuals realizing those amounts

- (35) a. We bought SHIFT(too much food).
 - $\text{b.} \quad \exists x \exists a [\mathsf{too\text{-}much\text{-}food}(a) \land x \in {}^{\, \uplus}a \land \mathsf{bought}(we, x)]$

Extending the account

30 / 61

- (36) a. Ten pounds of chicken is too much **weight**. type 1b
 - b. Five dogs is too much weight.
- (37) a. Ten pounds of chicken is too much work. type 1c
 - b. Five dogs is too much work.

Amount predication - type 1c

Event type can be made explicit:

- (38) a. Five dogs is too much work.
 - b. Grooming five dogs is too much work.
 - c. Walking five dogs . . .
 - d. Taking care of five dogs . . .
 - e. etc.

Amount predication - type 1c

Explicit event nominal:

applied to set of events

- (39) a. Grooming five dogs ...
 - b. $^{\cap}\lambda e.\mathsf{grooming}(e) \wedge \exists x [\mathsf{five-dogs}(x) \wedge PATIENT(e,x)]$

No explicit event nominal: contextually supplied event type $\it E$

- (40) a. Five dogs . . .
 - b. $^{\cap} \lambda e.E(e) \wedge \exists x [five-dogs(x) \wedge THEME(e,x)]$

Amount predication - type 1c

Explicit event nominal:

applied to set of events

- (41) a. Grooming five dogs ...
 - $\text{b.} \quad ^{\Cap}\lambda e.\mathsf{grooming}(e) \land \exists x [\mathsf{five-dogs}(x) \land PATIENT(e,x)]$

No explicit event nominal: contextually supplied event type E

- (42) a. Five dogs . . .
 - b. $^{ \bigcirc }\lambda e.E(e)\wedge \exists x[{\it five-dogs}(x)\wedge THEME(e,x)]$

Amount predication - type 1b

- (43) **Ten kilos of chicken** is too much food.
 - Entity correlate of set of 10-kg portions of chicken

- (44) Ten kilos of chicken is too much weight.
 - Entity correlate of set of 10-kg portions of weight??

- Amount predication type 1a
- Weight, height, size, . . .
- Back to amount predication
- Conclusions

Property nominals

- (45) a. weight
 - b. height
 - c. size
 - d. depth
 - e. length
 - f. etc.
- (46) a. beauty
 - b. wisdom
 - c. etc.

measurable dimension

non-measurable property

Observation

Property ascription via possessive + property nominal:

(47) <u>German</u>:

Ich habe Hunger.

I have hunger

'I am hungry.'

(48) Spanish:

Kim tiene sueño.

Kim has tiredness

'Kim is tired.'

(Francez and Koontz-Garboden, 2015)

Observations

Property ascription via possessive + property nominal:

(49) Hausa:

Munà dà ƙarfir.

We-CONT with strength

'We are strong.'

(Francez and Koontz-Garboden, 2015)

Property nominals as mass nouns

Compatibility with much:

- (50) a. With **so much height**, I found wherever I lay, I still felt the support of the double layered cushioning inside. . .
 - (www.telegraph.co.uk/recommended/home/best-pillows-luxurious-nights-sleep/)
 - b. How much depth is required to load a boat onto the dock? (www.wavearmor.com/blog/faqs)
 - Correct stall width ... helps horses to balance. ... Too much width can get them in trouble.
 - (equispirit.com/info/trailer-talk/trailer-size.htm)
 - See Francez and Koontz-Garboden (2017) for discussion of the cross-linguistic picture.

Property nominals as mass nouns

Divergence from ordinary mass nouns - fixed dimension:

- (51) How much water?
 - volume
 - weight
 - depth
 - etc.
- (52) How much height?
 - height

Property nominals as mass nouns

Divergence from ordinary mass nouns – dependent:

- (53) a. The height of the girl
 - b. The size of the stain
 - c. The weight of the suitcase
 - (cf. The hole in the bucket)

Semantics of property nominals

Property nominals denote **substances**, specifically **sets of portions** of abstract substances **associated with** individuals (Francez and Koontz-Garboden, 2015, 2017).

• Substances are a sort of individual, i.e. $D_m \subset D_e$

Semantics of property nominals

For a property nominal α associated with property prop:

(54)
$$[\alpha_{\langle m,t\rangle}] = \lambda m.prop(m)$$

- (55) $\llbracket \alpha \rrbracket$ is a join semilattice without bottom element, ordered by:
 - a. the inclusion relation \sqsubseteq
 - b. the ordering relation \succeq
 - transitive
 - reflexive
 - but not antisymmetric

Semantics of property nominals

For example:

(56)
$$[\![\operatorname{height}_{\langle m,t\rangle}]\!] = \lambda m.height(m)$$

- The set of 'portions' of height
- Mereologically structured via ⊑
- Ordered by height via ≥
- ullet Two distinct portions of height may be equivalent under \succeq

Substances and individuals

Abstract substances are related to the individuals that bear them via the relation B:

(57)
$$[Anna's height] = max(\lambda m.height(m) \land B(anna, m))$$

Related notions

- Tropes (Moltmann, 2009): particular instantiations of properties in individuals
- **States** (Wellwood, 2019): entities that individuals can participate in or instatiate; non-dynamic counterparts of events and processes

Substances and individuals

Abstract substances are related to the individuals that bear them via the relation B:

(58)
$$[Anna's height] = max(\lambda m.height(m) \wedge B(anna, m))$$

Related notions:

- Tropes (Moltmann, 2009): particular instantiations of properties in individuals
- **States** (Wellwood, 2019): entities that individuals can participate in or instatiate; non-dynamic counterparts of events and processes

- Amount predication type 1a
- Weight, height, size, . . .
- Back to amount predication
- 4 Conclusions

Back to amount predication

Having established a semantics for property nominals, we are in the position to extend the account of amount predication.

Amount predicates - type 3

- (59) a. the girl's **tall height**
 - b. the tall girl

- (60) a. the **heavy weight** of the suitcase
 - b. the **heavy suitcase**

- (61) a. The **size** of the stains was **small**.
 - b. The stains were small.

Individual-substance correspondences

We must posit that dimensional adjectives exhibit systematic polysemy:

(62)
$$[tall_{\langle e,t\rangle}] = \lambda x. \mu_{HEIGHT}(x) > d_{Std}$$

individual

(63)
$$[tall_{(m,t)}] = \lambda m : height(m).\mu(m) > d_{Std}$$

substance

Putting it together - type 3

- (64) a. Anna's tall height made her a natural for the basketball team.
 - b. $tall_{\langle m,t\rangle}(Anna's height)$
 - c. $\mu(max(\lambda m.height(m) \land B(anna, m))) > d_{Std}$
 - → NB: Full compositional analysis requires account of non-restrictive modification.

Amount predication - type 1b

- (64) Ten kilos of chicken is too much food.
 - Entity correlate of set of 10-kg portions of chicken

- (65) Ten kilos of chicken is too much weight.
 - Entity correlate of set of 10-kg portions of weight??

Extending the account

Begin with ordinary predicative interpretation:

(66) [10 kilos of chicken
$$\langle e,t \rangle$$
] = $\lambda x.chicken(x) \wedge \mu_{weight}(x) = 10kg$

Extend $\langle e,t \rangle - \langle m,t \rangle$ correspondence:

[10 kilos of chicken
$$\langle m,t\rangle$$
] =
$$= \lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x[chicken(x) \wedge B(x,m)]$$

Shift to amount (entity) correlate

(68) [10 kilos of chicken_a] =
$$= {}^{n}\lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x[chicken(x) \wedge B(x,m)]$$

Extending the account

Begin with ordinary predicative interpretation:

(69) [10 kilos of chicken
$$\langle e,t \rangle$$
] = $\lambda x.chicken(x) \wedge \mu_{weight}(x) = 10kg$

Extend $\langle e, t \rangle - \langle m, t \rangle$ correspondence:

(70) [10 kilos of chicken
$$\langle m,t\rangle$$
] =
$$= \lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x [chicken(x) \wedge B(x,m)]$$

Shift to amount (entity) correlate

(71) [10 kilos of chicken_a] =
$$= {}^{n}\lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x[chicken(x) \wedge B(x,m)]$$

Extending the account

Begin with ordinary predicative interpretation:

(72) [10 kilos of chicken
$$\langle e,t \rangle$$
] = $\lambda x.chicken(x) \wedge \mu_{weight}(x) = 10kg$

Extend $\langle e, t \rangle - \langle m, t \rangle$ correspondence:

(73) [10 kilos of chicken
$$\langle m,t\rangle$$
] =
$$= \lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x [chicken(x) \wedge B(x,m)]$$

Shift to amount (entity) correlate:

(74) [10 kilos of chicken_a] =
$$= {}^{\tiny{\bigcirc}} \lambda m.weight(m) \wedge \mu(m) = 10kg \wedge \exists x [chicken(x) \wedge B(x,m)]$$

Putting it together – type 1b

(75) Ten kilos of chicken is too much weight.

ten kilos of chicken too much weight amount of weight predicate of amounts of weight

A complication

Mass vs. count uses:

(75) a. How much height . . .

MASS

b. The heights of the girls (cf. *stone/stones* etc.)

COUNT

• Which of these involved in *Anna's tall height* (type 3)?

See also McNally (2022)

A complication

Non-extensive dimensions:

- (76) a. The warm temperature (cf. the warm day) type 3
 - b. The temperatures of the lab samples
 - c. #How much temperature ... type 1b

→ Maybe not all properties can be construed as abstract 'stuff'.

Amount predicates - type 2

Can the same analysis be extended to type 2 amount predicates?

(77) 20 kilograms is too heavy.

Note however:

- (78) ??20 kilograms of baggage is too heavy
 - Suggests 20 kilograms and 20 kilograms of baggage are sortally distinct.
 - Do we require an additional sort of entity?

Amount predicates - type 2

Can the same analysis be extended to type 2 amount predicates?

(79) 20 kilograms is too heavy.

Note however:

- (80) ??20 kilograms of baggage is too heavy.
 - Suggests 20 kilograms and 20 kilograms of baggage are sortally distinct.
 - Do we require an additional sort of entity?

- Amount predication type 1a
- Weight, height, size, . . .
- Back to amount predication
- Conclusions

- Amount predication (or at least some of its varieties) can be analyzed as predication.
- Doing so requires positing entities beyond (ordinary) individuals and degrees:
 - amounts (entity correlates of quantized properties)
 - abstract dimensional substances
- - quantized property ⇔ amount
 - amoumt ⇔ individual
 - abstract substance ⇔ individua
- > There's still a lot of work to do

- Amount predication (or at least some of its varieties) can be analyzed as predication.
- Doing so requires positing entities beyond (ordinary) individuals and degrees:
 - amounts (entity correlates of quantized properties)
 - abstract dimensional substances
- - quantized property
 ⇔ amount
 - amoumt ⇔ individua
 - abstract substance ⇔ individual
- There's still a lot of work to do!

- Amount predication (or at least some of its varieties) can be analyzed as predication.
- Doing so requires positing entities beyond (ordinary) individuals and degrees:
 - amounts (entity correlates of quantized properties)
 - abstract dimensional substances
- A consequence is systematic polysemy:
 - quantized property ⇔ amount
 - amoumt ⇔ individual
 - abstract substance ⇔ individual

- Amount predication (or at least some of its varieties) can be analyzed as predication.
- Doing so requires positing entities beyond (ordinary) individuals and degrees:
 - amounts (entity correlates of quantized properties)
 - abstract dimensional substances
- A consequence is systematic polysemy:
 - quantized property ⇔ amount
 - amoumt ⇔ individual
 - abstract substance ⇔ individual

- Amount predication (or at least some of its varieties) can be analyzed as predication.
- Doing so requires positing entities beyond (ordinary) individuals and degrees:
 - amounts (entity correlates of quantized properties)
 - abstract dimensional substances
- A consequence is systematic polysemy:
 - quantized property ⇔ amount
 - amoumt ⇔ individual
 - abstract substance ⇔ individual
- There's still a lot of work to do!

Thank you!

References I

- Anderson, C. and Morzycki, M. (2015). Degrees as kinds. *Natural Language and Linguistic Theory*, 33(3):791–828.
- Bale, A. C. (2008). A universal scale of comparison. *Linguistics and Philosophy*, 31(1):1–55.
- Chierchia, G. (1998). Plurality of mass nouns and the notion of 'semantic parameter'. In Rothstein, S., editor, *Events and Grammar*, pages 53–103. Kluwer, Dordrecht.
- Cresswell, M. J. (1977). The semantics of degree. In Partee, B. H., editor, *Montague Grammar*, pages 261–292. Academic Press, New York.
- Faller, M. (2000). Dimensional adjectives and measure phrases in Vector Space Semantics. In Faller, M., Kaufmann, S., and Pauly, M., editors, Formalizing the Dynamics of Information. CSLI Publications.
- Francez, I. and Koontz-Garboden, A. (2015). Semantic variation and the grammar of property concepts. *Language*, 91(3):115–152.
- Francez, I. and Koontz-Garboden, A. (2017). Semantics and morphosyntactic variation: Qualities and the grammar of property concepts. Oxford University Press, Oxford.

References II

- Heim, I. (2000). Degree operators and scope. In Jackson, B. and Matthews, T., editors, *Proceedings of the 10th Semantics and Linguistic Theory Conference (SALT10)*, pages 40–64, Ithaca, NY. CLC Publications.
- Kennedy, C. (2001). Polar opposition and the ontology of 'degrees'. *Linguistics and Philosophy*, 24:33–70.
- Kennedy, C. (2007). Vagueness and grammar: The semantics of relative and absolute gradable adjectives. *Linguistics and Philosophy*, 30:1–45.
- Krifka, M. (1989). Nominal reference, temporal constitution and quantification in event semantics. In Bartsch, R., van Benthem, J., and van Emde Boas, P., editors, *Semantics and contextual expressions*, pages 75–115. Foris, Dordrecht.
- McNally, L. (2022). Representing measurement: The view from nominal polysemy. In Gotzner, N. and Sauerland, U., editors, *Measurements, Numerals and Scales*, pages 187–210. Palgrave Macmillan, Cham.
- Moltmann, F. (2009). Degree structure as trope structure: a trope-based analysis of positive and comparative adjectives. *Linguistics and Philosophy*, 32:51–94.

References III

- Rothstein, S. (2017). Semantics for counting and measuring. Key Topics in Semantics and Pragmatics. Cambridge University Press, Cambridge.
- Schwarzschild, R. (2012). Directed scale segments. In Chereches, A., editor, Proceedings of the 22nd Semantics and Linguistic Theory Conference, pages 65–82, Ithaca, NY. CLC Publications.
- Schwarzschild, R. and Wilkinson, K. (2002). Quantifiers in comparatives: A semantics of degree based on intervals. *Natural Language Semantics*, 10:1–41.
- Scontras, G. (2017). A new kind of degree. Linguistics and Philosophy, 40(2):165–205.
- Solt, S. (2008). Many and diverse cases: Q-adjectives and conjunction. In Grønn, A., editor, *Sinn und Bedeutung 12*, pages 597–612. Dept. of Literature, Area Studies and European Languages, University of Oslo.
- Wellwood, A. (2019). The meaning of more, volume 12 of Oxford Studies in Semantics and Pragmatics. Oxford University Press.
- Zwarts, J. and Winter, Y. (2000). Vector space semantics: a model-theoretic analysis of locative prepositions. *Journal of Logic, Language and Information*, 9:169–211.