
Homomorphism Counts, Logics &
Query Algorithms

Balder ten Cate

ILLC, University of Amsterdam

TbiLLC 2023

Based on joint work with Victor Dalmau, Phokion Kolaitis, and Wei-Lin Wu

Many slides borrowed from a recent presentation by Phokion Kolaitis

What Mathematicians Do

Mathematicians study not objects, but relations be-
tween objects; the replacement of these objects by oth-
ers is therefore indifferent to them, provided the rela-
tions do not change. The matter is for them unimpor-
tant, the form alone interests them.

2 / 39

What Mathematicians Do
Mathematicians study not objects, but relations be-
tween objects; the replacement of these objects by oth-
ers is therefore indifferent to them, provided the rela-
tions do not change. The matter is for them unimpor-
tant, the form alone interests them.

Science and Hypothesis - 1902

Henri Poincaré

3 / 39

Isomorphism

I In mathematics, we study objects up to isomorphism.

Definition:
Let G = (V (G),E(G)) and H = (V (H),E(H)) be two graphs.
An isomorphism from G to H is a function h : V (G)→ V (H)
such that

1. h is 1-1 and onto;
2. for all u, v ∈ V (G),

(u, v) ∈ E(G) if and only if (h(u),h(v)) ∈ E(H).

I Analogously for isomorphism between relational structures.

4 / 39

Isomorphism

I In mathematics, we study objects up to isomorphism.

Definition:
Let G = (V (G),E(G)) and H = (V (H),E(H)) be two graphs.
An isomorphism from G to H is a function h : V (G)→ V (H)
such that

1. h is 1-1 and onto;
2. for all u, v ∈ V (G),

(u, v) ∈ E(G) if and only if (h(u),h(v)) ∈ E(H).

I Analogously for isomorphism between relational structures.

4 / 39

Algorithmic Aspects of Graph Isomorphism

The Graph Isomorphism Problem:
Given two finite graphs G and H, are they isomorphic?

Open Problem:
What is the exact computational complexity of the
Graph Isomorphism Problem?

5 / 39

Algorithmic Aspects of Graph Isomorphism

The Graph Isomorphism Problem:
Given two finite graphs G and H, are they isomorphic?

Open Problem:
What is the exact computational complexity of the
Graph Isomorphism Problem?

5 / 39

Algorithmic Aspects of Graph Isomorphism

The Graph Isomorphism Problem
I is in NP;
I is unlikely to be NP-complete (else, PH collapses);
I is not known to be solvable in polynomial time;
I is solvable in quasi-polynomial time 2O((log n)c), for some

fixed c > 0 (Babai - 2017);
I is solvable in polynomial time on restricted classes of

graphs:
I planar graphs (Hopcroft and Wong - 1974);
I graphs of bounded degree (Lucs - 1982);
I . . .

The Graph Isomorphism Disease

6 / 39

Algorithmic Aspects of Graph Isomorphism

The Graph Isomorphism Problem
I is in NP;
I is unlikely to be NP-complete (else, PH collapses);
I is not known to be solvable in polynomial time;
I is solvable in quasi-polynomial time 2O((log n)c), for some

fixed c > 0 (Babai - 2017);
I is solvable in polynomial time on restricted classes of

graphs:
I planar graphs (Hopcroft and Wong - 1974);
I graphs of bounded degree (Lucs - 1982);
I . . .

The Graph Isomorphism Disease

6 / 39

Brief digression: Graph Classification

Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a “embedding vector”
vG ∈ Rk .

We would like isomorphic graphs to be indistinguishable for the
ML model.

7 / 39

Brief digression: Graph Classification

Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a “embedding vector”
vG ∈ Rk .

We would like isomorphic graphs to be indistinguishable for the
ML model.

7 / 39

Brief digression: Graph Classification

Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a “embedding vector”
vG ∈ Rk .

We would like isomorphic graphs to be indistinguishable for the
ML model.

7 / 39

Brief digression: Graph Classification

Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a “embedding vector”
vG ∈ Rk .

We would like isomorphic graphs to be indistinguishable for the
ML model.

7 / 39

Brief digression: Graph Classification

Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a “embedding vector”
vG ∈ Rk .

We would like isomorphic graphs to be indistinguishable for the
ML model.

7 / 39

Beyond Isomorphism

I In mathematics, we also study objects up to some other
equivalence relation.

Examples:
1. Homeomorphism in Topology
2. Diffeomorphism in Differential Geometry
3. Logical Equivalence in First-Order Logic
4. . . .

I Here, we will focus on equivalence relations that arise from
homomorphisms.

8 / 39

Beyond Isomorphism

I In mathematics, we also study objects up to some other
equivalence relation.

Examples:
1. Homeomorphism in Topology
2. Diffeomorphism in Differential Geometry
3. Logical Equivalence in First-Order Logic
4. . . .

I Here, we will focus on equivalence relations that arise from
homomorphisms.

8 / 39

Homomorphism

Definition:
Let G = (V (G),H(E)) and H = (V (H),E(H)) be two graphs.
A homomorphism from G to H is a function h : V (G)→ V (H)
such that for all u, v ∈ V (G),

if (u, v) ∈ E(G), then (h(u),h(v)) ∈ E(H).

Example: Let G be a graph and let K3 be the triangle graph.
I There is a homomorphism from K3 to G if and only if G

contains a triangle.
I There is a homomorphism from G to K3 if and only if G

is 3-colorable.

9 / 39

Homomorphism

Definition:
Let G = (V (G),H(E)) and H = (V (H),E(H)) be two graphs.
A homomorphism from G to H is a function h : V (G)→ V (H)
such that for all u, v ∈ V (G),

if (u, v) ∈ E(G), then (h(u),h(v)) ∈ E(H).

Example: Let G be a graph and let K3 be the triangle graph.
I There is a homomorphism from K3 to G if and only if G

contains a triangle.
I There is a homomorphism from G to K3 if and only if G

is 3-colorable.

9 / 39

→
6←

10 / 39

→
←

11 / 39

Homomorphism Equivalence

Definition:
Two graphs G and H are homomorphically equivalent if there is
a homomorphism from G and H, and a homomorphism from H
and G.

Example:
I If G and H are 2-colorable graphs with at least one edge

each, then G and H are homomorphically equivalent.

I In particular, C4 and C6 are homomorphically equivalent
(where Cn is the cycle with n nodes).

12 / 39

Homomorphism Equivalence

Definition:
Two graphs G and H are homomorphically equivalent if there is
a homomorphism from G and H, and a homomorphism from H
and G.

Example:
I If G and H are 2-colorable graphs with at least one edge

each, then G and H are homomorphically equivalent.

I In particular, C4 and C6 are homomorphically equivalent
(where Cn is the cycle with n nodes).

12 / 39

13 / 39

14 / 39

Complexity of Homomorphism Equivalence

Fact:
I Homomorphism Equivalence is an equivalence relation

that is coarser than isomomorphism.

I Homomorphism Equivalence is NP-complete.

Proof: Reduction from 3-Colorability:
G is 3-colorable if and only if G ⊕ K3 is homomorphically
equivalent to K3.

15 / 39

Homomorphism Counts

Notation:
Let G and H be two graphs.

hom(G,H) = the number of homomorphisms from G to H.

Example:
Let G be a graph and let K3 be the triangle graph.
I hom(K3,G) = the number of triangles in G.
I hom(G,K3) = the number of 3-colorings of G (times 6).

16 / 39

Homomorphism Counts

Notation:
Let G and H be two graphs.

hom(G,H) = the number of homomorphisms from G to H.

Example:
Let G be a graph and let K3 be the triangle graph.
I hom(K3,G) = the number of triangles in G.
I hom(G,K3) = the number of 3-colorings of G (times 6).

16 / 39

Two Interpretations of Homomorphism Counts

I Each H, gives rise to the constraint satisfaction problem

CSP(H) = {G : there is a homomorphism from G to H}

Thus,
hom(G,H) = # solutions of CSP(H) on input G.

I Each G, gives rise to a conjunctive query QG

Example: QK3 : ∃x , y , z(E(x , y) ∧ E(y , z) ∧ E(z, x))

Thus,
hom(G,H) = # satisfying assignments from QG to input H.
(this is the bag semantics of SQL)

17 / 39

Two Interpretations of Homomorphism Counts

I Each H, gives rise to the constraint satisfaction problem

CSP(H) = {G : there is a homomorphism from G to H}

Thus,
hom(G,H) = # solutions of CSP(H) on input G.

I Each G, gives rise to a conjunctive query QG

Example: QK3 : ∃x , y , z(E(x , y) ∧ E(y , z) ∧ E(z, x))

Thus,
hom(G,H) = # satisfying assignments from QG to input H.
(this is the bag semantics of SQL)

17 / 39

Visualization of Homomorphism Counts

G = {G1,G2, . . .} is the class of all graphs (up to isomorphism).

hom(·, ·) G1 G2 · · ·
G1 hom(G1,G1) hom(G1,G2) · · ·
G2 hom(G2,G1) hom(G2,G2) · · ·
...

...
...

. . .

18 / 39

Left and Right Profiles

Definition: Let G be a graph.
I The left profile of G is the vector

hom(G ,G) := (hom(G1,G), hom(G2,G), . . .).
I The right profile of G is the vector

hom(G,G) := (hom(G,G1), hom(G,G2), . . .).

hom(·, ·) G1 G2 · · · G · · ·
G1 hom(G1,G1) hom(G1,G2) · · · hom(G1,G) · · ·
G2 hom(G2,G1) hom(G2,G2) · · · hom(G2,G) · · ·
...

...
...

. . .
...

. . .
G hom(G,G1) hom(G,G2) · · · hom(G,G) · · ·
...

...
...

. . .
...

. . .

19 / 39

Left/Right Profiles and Isomorphism

Lovász’s Theorem (1967):
For all graphs G and H:

G and H are isomorphic iff hom(G ,G) = hom(G ,H).

I No two columns are equal.

Chaudhuri-Vardi Theorem (1993):
For all graphs G and H:

G and H are isomorphic iff hom(G,G) = hom(H,G).

I No two rows are equal.

20 / 39

Left/Right Profiles and Isomorphism

Lovász’s Theorem (1967):
For all graphs G and H:

G and H are isomorphic iff hom(G ,G) = hom(G ,H).

I No two columns are equal.

Chaudhuri-Vardi Theorem (1993):
For all graphs G and H:

G and H are isomorphic iff hom(G,G) = hom(H,G).

I No two rows are equal.

20 / 39

Graph Classification Again
Suppose we wish to predict if a protein is an enzyme.

We need to encode a graph G as a embedding vector.

We would like isomorphic graphs to be indistinguishable for the
ML model.

The left profile of G (i.e., hom(G ,G)) provides an embedding
vector which captures precisely the isomorphism type of G. The
only problem is that it is infinite (and expensive to compute).

21 / 39

Restricted Profiles

Definition:
Let F = {F1,F2, . . .} be a class of graphs and let G be a graph.

I The left profile of G restricted to F is the vector
hom(F ,G) := (hom(F1,G), hom(F2,G), . . .)

(keep only the rows arising from graphs in F).

I The right profile of G restricted to F is the vector
hom(G,F) := (hom(G,F1), hom(G,F2), . . .)

(keep only the columns arising from graphs in F).

22 / 39

Equivalence Relations from Profiles

Each class F of graphs gives rise to two equivalence relations:

I G ≡L
F H if G and H have the same left profile restricted to F .

I G ≡R
F H if G and H have the same right profile restricted to F .

Note:
These equivalence relations are relaxations of isomorphism.

Question:

I Which equivalence relations ≡ on graphs are of the form
≡L

F or of the form ≡R
F ?

23 / 39

Equivalence Relations from Profiles

Each class F of graphs gives rise to two equivalence relations:

I G ≡L
F H if G and H have the same left profile restricted to F .

I G ≡R
F H if G and H have the same right profile restricted to F .

Note:
These equivalence relations are relaxations of isomorphism.

Question:

I Which equivalence relations ≡ on graphs are of the form
≡L

F or of the form ≡R
F ?

23 / 39

Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
I FOk : First-order logic FO with at most k distinct variables.

I Ck : FOk + Counting Quantifiers (∃i y), i ≥ 2
(∃i y)ϕ(y): there are are at least i nodes y such that ϕ(y) holds.

Example: G is 7-regular is C2-definable:
∀x((∃7 y)E(x , y) ∧ ¬(∃8 y)E(x , y))

Theorem (Cai, Fürer, Immerman - 1992):
For every two graphs G and H, and for every k ≥ 2, TFAE:

1. G ≡Ck H (i.e., G and H satisfy the same Ck -sentences).

2. G and H are indistinguishable by the (k − 1)-dimensional
Weisfeiler-Leman algorithm.

24 / 39

Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
I FOk : First-order logic FO with at most k distinct variables.

I Ck : FOk + Counting Quantifiers (∃i y), i ≥ 2
(∃i y)ϕ(y): there are are at least i nodes y such that ϕ(y) holds.

Example: G is 7-regular is C2-definable:
∀x((∃7 y)E(x , y) ∧ ¬(∃8 y)E(x , y))

Theorem (Cai, Fürer, Immerman - 1992):
For every two graphs G and H, and for every k ≥ 2, TFAE:

1. G ≡Ck H (i.e., G and H satisfy the same Ck -sentences).

2. G and H are indistinguishable by the (k − 1)-dimensional
Weisfeiler-Leman algorithm.

24 / 39

Counting Logics with Finitely Many Variables

Definition: Let k be a positive integer.
I FOk : First-order logic FO with at most k distinct variables.

I Ck : FOk + Counting Quantifiers (∃i y), i ≥ 2
(∃i y)ϕ(y): there are are at least i nodes y such that ϕ(y) holds.

Example: G is 7-regular is C2-definable:
∀x((∃7 y)E(x , y) ∧ ¬(∃8 y)E(x , y))

Theorem (Cai, Fürer, Immerman - 1992):
For every two graphs G and H, and for every k ≥ 2, TFAE:

1. G ≡Ck H (i.e., G and H satisfy the same Ck -sentences).

2. G and H are indistinguishable by the (k − 1)-dimensional
Weisfeiler-Leman algorithm.

24 / 39

Restricted Left Profiles and Counting Logics

Theorem (Dvořák - 2010):
For every two graphs G and H, and for every k ≥ 2, TFAE:

1. G ≡Ck H (i.e., G and H satisfy the same Ck -sentences).

2. hom(Tk ,G) = hom(Tk ,H), where Tk is the class of all
graphs of treewidth < k.

Note: The treewidth of a graph is a positive integer that
measures how far from being a tree the graph is.

I Every tree has treewidth 1
I Every cycle has treewidth 2
I The clique Kn with n nodes has treewidth n − 1

In particular, G ≡C2 H iff hom(trees,G) = hom(trees,H).

25 / 39

Restricted Left Profiles and Counting Logics

Theorem (Dvořák - 2010):
For every two graphs G and H, and for every k ≥ 2, TFAE:

1. G ≡Ck H (i.e., G and H satisfy the same Ck -sentences).

2. hom(Tk ,G) = hom(Tk ,H), where Tk is the class of all
graphs of treewidth < k.

Note: The treewidth of a graph is a positive integer that
measures how far from being a tree the graph is.

I Every tree has treewidth 1
I Every cycle has treewidth 2
I The clique Kn with n nodes has treewidth n − 1

In particular, G ≡C2 H iff hom(trees,G) = hom(trees,H).

25 / 39

Restricted Left Profiles and Co-Spectrality

Definition:
Two graphs G,H are co-spectral if their adjacency matrices
have the same spectrum, i.e., the same multiset of eigenvalues.

Example: C4 ⊕ K1 and the star S5 have spectrum {−2,03,2}.

Theorem (Dell-Grohe-Rattan 2018):
For every two graphs G and H, the following are equivalent:

1. G and H are co-spectral.

2. hom(C ,G) = hom(C ,H), where C is the class of all cycles.

26 / 39

Restricted Left Profiles and Co-Spectrality

Definition:
Two graphs G,H are co-spectral if their adjacency matrices
have the same spectrum, i.e., the same multiset of eigenvalues.

Example: C4 ⊕ K1 and the star S5 have spectrum {−2,03,2}.

Theorem (Dell-Grohe-Rattan 2018):
For every two graphs G and H, the following are equivalent:

1. G and H are co-spectral.

2. hom(C ,G) = hom(C ,H), where C is the class of all cycles.

26 / 39

Restricted Left Profiles vs. Restricted Right Profiles

I Restricted left profiles can capture interesting relaxations
of isomorphism, such as Ck -equivalence and co-spectrality.

I Atserias-Kolaitis-Wu (2021): what about restricted right
profiles?

27 / 39

Restricted Left Profiles vs Restricted Right Profiles

G : all graphs Tk : all graphs of treewidth < k (k ≥ 2)
C : all cycles K : all cliques

≡ hom(F , ·) hom(·,F)

isomorphism G G
Ck -equivalence (k ≥ 2) Tk none

co-spectrality C none
chromatic equivalence none K

FOk -equivalence (k ≥ 1) none none
QDk -equivalence (k ≥ 1) none none

Note:
I FOk : first-order sentences with at most k variables.
I QDk : first-order sentences of quantifier depth at most k .

28 / 39

Modal Equivalence Relations
Jesse Comer (MSc Thesis 2023):
I Performed a similar analysis for modal equivalence

relations between pointed labeled transition systems Ma
I Considers both homB(·, ·) and homN(·, ·) — following

Atserias-Kolaitis-Wu (2021)

homB(F ,G) =

{
1, if F → G
0, if F 6→ G.

See also: Barceló et al (2020). The logical expressiveness of
graph neural networks.

29 / 39

Homomorphism Counts and Query Algorithms

Chen, Flum, Liu, and Xun - 2022
Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.

Definition: A class C of structures admits a left query algorithm
over N, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk
and a set X ⊆ Nk such that for every structure G,

G ∈ C ⇐⇒ (hom(F1,G), hom(F2,G), . . . , hom(Fk ,G)) ∈ X .

Fact: The following are equivalent:
1. C admits a left query algorithm over N.
2. There is a finite class F = {F1, . . . ,Fk} such that for all

structures G and H, if hom(F ,G) = hom(F ,H), then
G ∈ C ⇐⇒ H ∈ C.

30 / 39

Homomorphism Counts and Query Algorithms

Chen, Flum, Liu, and Xun - 2022
Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.

Definition: A class C of structures admits a left query algorithm
over N, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk
and a set X ⊆ Nk such that for every structure G,

G ∈ C ⇐⇒ (hom(F1,G), hom(F2,G), . . . , hom(Fk ,G)) ∈ X .

Fact: The following are equivalent:
1. C admits a left query algorithm over N.
2. There is a finite class F = {F1, . . . ,Fk} such that for all

structures G and H, if hom(F ,G) = hom(F ,H), then
G ∈ C ⇐⇒ H ∈ C.

30 / 39

Homomorphism Counts and Query Algorithms

Chen, Flum, Liu, and Xun - 2022
Introduced a framework for testing membership in a class of
structures using finitely many homomorphism counts.

Definition: A class C of structures admits a left query algorithm
over N, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk
and a set X ⊆ Nk such that for every structure G,

G ∈ C ⇐⇒ (hom(F1,G), hom(F2,G), . . . , hom(Fk ,G)) ∈ X .

Fact: The following are equivalent:
1. C admits a left query algorithm over N.
2. There is a finite class F = {F1, . . . ,Fk} such that for all

structures G and H, if hom(F ,G) = hom(F ,H), then
G ∈ C ⇐⇒ H ∈ C.

30 / 39

Homomorphism Counts and Query Algorithms

Definition: A class C of structures admits a left query algorithm
over N, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk
and a set X ⊆ Nk such that for every structure G,

G ∈ C ⇐⇒ (hom(F1,G), hom(F2,G), . . . , hom(Fk ,G)) ∈ X .

Theorem: (Chen, Flum, Liu, and Xun - 2022)
I Every class of graphs definable by a Boolean combination

of universal FO-sentences admits a left query algorithm
over N.

I The class of all K3-free graphs does not admit a right query
algorithm over N.

31 / 39

Homomorphism Counts and Query Algorithms

tC-Dalmau-Kolaitis-Wu (to appear in ICDT 2024):
I studied query algorithms over the Boolean semiring B;
I compared query algorithms over B to those over N.

homB(F ,G) =

{
1, if F → G
0, if F 6→ G.

Definition: A class C of structures admits a left query algorithm
over B, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk and
a set X ⊆ {0,1}k such that for every structure G,
G ∈ C ⇐⇒ (homB(F1,G), homB(F2,G), . . . , homB(Fk ,G)) ∈ X .

32 / 39

Homomorphism Counts and Query Algorithms

tC-Dalmau-Kolaitis-Wu (to appear in ICDT 2024):
I studied query algorithms over the Boolean semiring B;
I compared query algorithms over B to those over N.

homB(F ,G) =

{
1, if F → G
0, if F 6→ G.

Definition: A class C of structures admits a left query algorithm
over B, if for some k ≥ 1, there are structures F1,F2, . . . ,Fk and
a set X ⊆ {0,1}k such that for every structure G,
G ∈ C ⇐⇒ (homB(F1,G), homB(F2,G), . . . , homB(Fk ,G)) ∈ X .

32 / 39

Left Query Algorithms over B

Theorem (tCDKW - 2023) Let C be a class of structures. TFAE:
1. C admits a left query algorithm over B.
2. C is definable by a Boolean combination of conjunctive

queries.
3. C is FO-definable and closed under homomorphic

equivalence.

Proof Hint: (3) =⇒ (1) use tools by Rossman to prove the
Homomorphism Preservation Theorem in the finite.

Corollary: If C is closed under homomorphism equivalence,
then TFAE:

1. C admits a left query algorithm over B.
2. C is FO-definable.

Special Cases: CSP(H) and [H]↔, for every structure H.

33 / 39

Left Query Algorithms over B

Theorem (tCDKW - 2023) Let C be a class of structures. TFAE:
1. C admits a left query algorithm over B.
2. C is definable by a Boolean combination of conjunctive

queries.
3. C is FO-definable and closed under homomorphic

equivalence.

Proof Hint: (3) =⇒ (1) use tools by Rossman to prove the
Homomorphism Preservation Theorem in the finite.

Corollary: If C is closed under homomorphism equivalence,
then TFAE:

1. C admits a left query algorithm over B.
2. C is FO-definable.

Special Cases: CSP(H) and [H]↔, for every structure H.

33 / 39

Existence vs. Counting (B vs. N)

Fact: Let C be a class of structures.
I If C admits a left query algorithm over B, then C admits a

left query algorithm over N.

I C may admit a left query algorithm over N, but not over B.
For example, take C to be the class of all graphs with at
least 7 edges.

However, this is an unfair comparison:
If C admits a left query algorithm over B, then C is closed under
homomorphic equivalence.

34 / 39

Existence vs. Counting (B vs. N)

Fact: Let C be a class of structures.
I If C admits a left query algorithm over B, then C admits a

left query algorithm over N.

I C may admit a left query algorithm over N, but not over B.
For example, take C to be the class of all graphs with at
least 7 edges.

However, this is an unfair comparison:
If C admits a left query algorithm over B, then C is closed under
homomorphic equivalence.

34 / 39

Existence vs. Counting (B vs. N)

Question:
I Is there a class C of structures that is closed under

homomorphic equivalence, admits a left query algorithm
over N, but it does not admit a left query algorithm over B?

In other words, is counting more powerful than existence as
regards homomorphic-equivalence closed classes?

35 / 39

Existence vs. Counting (B vs. N)
Theorem (tCDKW - 2023) Let C be a class of structures that is
closed under homomorphic equivalence. TFAE:

1. C admits a left query algorithm of the form (F ,X) over N,
for some set X ⊆ Nk .

2. C admits a left query algorithm of the form (F ,X ′) over B,
for some set X ′ ⊆ {0,1}k .

Proof Outline: (1) =⇒ (2)

I Write X as the disjoint union X =
⋃m

j=1 Xj of basic sets Xj ,
i.e.,
if t, t′ ∈ Xj , then t(i) = 0⇐⇒ t′(i) = 0, for all i ≤ k .

I Show that if C is closed under homomorphic equivalence
and admits a left query algorithm (F ,X) over N where X is
a basic set, then C is definable by

ψ : (
∧

t(i)6=0 QFi) ∧ (
∧

t(i)=0 ¬QFi).

36 / 39

Existence vs. Counting (B vs. N)
Theorem (tCDKW - 2023) Let C be a class of structures that is
closed under homomorphic equivalence. TFAE:

1. C admits a left query algorithm of the form (F ,X) over N,
for some set X ⊆ Nk .

2. C admits a left query algorithm of the form (F ,X ′) over B,
for some set X ′ ⊆ {0,1}k .

Proof Outline: (1) =⇒ (2)

I Write X as the disjoint union X =
⋃m

j=1 Xj of basic sets Xj ,
i.e.,
if t, t′ ∈ Xj , then t(i) = 0⇐⇒ t′(i) = 0, for all i ≤ k .

I Show that if C is closed under homomorphic equivalence
and admits a left query algorithm (F ,X) over N where X is
a basic set, then C is definable by

ψ : (
∧

t(i)6=0 QFi) ∧ (
∧

t(i)=0 ¬QFi).

36 / 39

Existence vs. Counting (B vs. N)

Goal: Show that if C is closed under homomorphic equivalence
and admits a left query algorithm (F ,X) over N where X is a
basic set, then C is definable by

ψ : (
∧

t(i)6=0 QFi) ∧ (
∧

t(i)=0 ¬QFi).

Given B such that B |= ψ, show B ∈ C.
I Take A ∈ C, construct A′ and B′ such that

1. A′ is a disjoint union of “many” copies of A and a disjoint
union of direct products of members of F and substructures
of members of F ; similarly for B′ and B.

2. A′ ↔ A and B′ ↔ B.
3. hom(F ,A′) = hom(F ,B′)

(this uses an interpolation lemma for multivariate integer
polynomials).

I By (2), A′ ∈ C; by (3), B′ ∈ C; by (2), B ∈ C.

37 / 39

Existence vs. Counting (B vs. N)

Goal: Show that if C is closed under homomorphic equivalence
and admits a left query algorithm (F ,X) over N where X is a
basic set, then C is definable by

ψ : (
∧

t(i)6=0 QFi) ∧ (
∧

t(i)=0 ¬QFi).

Given B such that B |= ψ, show B ∈ C.
I Take A ∈ C, construct A′ and B′ such that

1. A′ is a disjoint union of “many” copies of A and a disjoint
union of direct products of members of F and substructures
of members of F ; similarly for B′ and B.

2. A′ ↔ A and B′ ↔ B.
3. hom(F ,A′) = hom(F ,B′)

(this uses an interpolation lemma for multivariate integer
polynomials).

I By (2), A′ ∈ C; by (3), B′ ∈ C; by (2), B ∈ C.

37 / 39

Synopsis

I Homomorphism counts capture interesting relaxations of
isomorphism.

I Sharp differences in expressive power exist between
restricted left profiles and restricted right profiles.

I Homomorphism counts give rise to algorithms for testing
for membership in a class of structures.

I For left query algorithms and homomorphic-equivalence
closed classes, counting homomorphisms is not more
powerful than existence of homomorphisms.

38 / 39

Open Problems

I For right query algorithms and homomorphic-equivalence
closed classes, is counting homomorphisms more powerful
than existence of homomorphisms?

I Characterize the logics L for which L-equivalence ≡L is
captured by a restricted left or by a restricted right profile.

Tarski’s Program: Characterize notions of
"metamathematical origin" in "purely mathematical terms".

39 / 39

Open Problems

I For right query algorithms and homomorphic-equivalence
closed classes, is counting homomorphisms more powerful
than existence of homomorphisms?

I Characterize the logics L for which L-equivalence ≡L is
captured by a restricted left or by a restricted right profile.

Tarski’s Program: Characterize notions of
"metamathematical origin" in "purely mathematical terms".

39 / 39

