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Abstract

We establish the correctness of the AKS primality testing algorithm
within a formal mathematical framework known as bounded arithmetic.
Specifically, we prove its correctness within the theory T count

2 , which cor-
responds to the first-order consequences of another well-known theory,
VTC0, when expanded with an additional mathematical function (which
we call VTC0

2).
Our approach follows two key steps:

1. Intermediate Proof in a Simpler System: We first show that the AKS
algorithm works within a weaker arithmetic system, S1

2 ` iWPHP,
but with two extra mathematical assumptions:

• A generalized version of Fermat’s Little Theorem.

• A principle that ensures certain polynomial roots in finite fields
can be mapped to small numbers in a structured way.

2. Final Proof in VTC0
2: We then show that these two extra assump-

tions can themselves be proved within VTC0
2, completing the proof.

To achieve this, we also develop new formalizations of key number-
theoretic and algebraic results, including:

• Legendre’s Formula, combinatorial number systems, and cyclotomic
polynomials over finite fields, all within a framework called PV1.

• A proof of the inequality lcmp1, . . . , 2nq ě 2n in a weaker system,
S1
2 .

• A verification of the Kung–Sieveking algorithm for polynomial divi-
sion within VTC0.

1 Introduction

This work explores the feasibility of formally proving the correctness of the
AKS primality testing algorithm within bounded arithmetic, a framework in
proof complexity that studies the strength of formal proofs relative to computa-
tional complexity classes. In 2002, Agrawal, Kayal, and Saxena introduced the
AKS algorithm [1], marking a historic breakthrough: it was the first determin-
istic polynomial-time primality test that relied on no unproven assumptions.
This established the result that Primes P P, meaning primality testing is in-
herently feasible from a computational perspective. However, the formal proof
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of the AKS algorithm’s correctness introduces its own complexity, raising a fun-
damental question: How feasible is a proof of this result within a formal logical
system?

The study of such formal proofs has deep roots in bounded arithmetic,
which are in depth treated in [6, 3]. A growing body of research has formal-
ized complexity-theoretic results within PV1 and its extensions, including the
work of [8, 7, 5, 2, 4]. Notably, Jeřábek previously proved the correctness of the
Rabin–Miller primality test within the theory S2

2 ` iWPHPpPVq ` PHPpPVq,
demonstrating that probabilistic primality tests can be formally verified in re-
stricted arithmetic. Building upon this tradition, the present work establishes
that the AKS algorithm’s correctness can be proved within the bounded arith-
metic theory T count

2 .
The proof strategy follows a two-step approach: first, the correctness of AKS

is established in S1
2`iWPHP with two additional algebraic axioms: a generalized

Fermat’s Little Theorem and an injectivity principle for polynomial roots. Then,
these axioms are shown to be provable within VTC0

2, completing the proof.
Along the way, the study formalizes important mathematical results, including
Legendre’s theorem, the existence of cyclotomic extensions over finite fields,
a bound on least common multiples, and the Kung–Sieveking algorithm for
polynomial division. These results not only strengthen our understanding of the
formal proof complexity of primality testing but also contribute to the broader
goal of characterizing computational mathematics within logical systems.

2 Main result

Let us start with a theorem, which is a generalization of Fermat’s Little Theo-
rem.

Theorem 2.1. If a P Z, n P N, n ě 2 and gcdpa, nq “ 1, then

n is a prime ðñ pX ` aqn ” Xn ` a pmod nq. (1)

This suggests a basic primality test: given an input n, pick a and check if
the congruence holds. However, this requires evaluating n coefficients, leading
to a runtime of Ωpnq in the worst case. To improve efficiency, we can reduce the
number of coefficients by evaluating both sides of (1) modulo a polynomial of
the form Xr ´ 1, where r is a suitably small value. In other words: If we find r
such that ordrpnq ą log 2pnq and for enough a:

pX ` aqn ” Xn ` a pmod n,Xr ´ 1q,

then n is a power of a prime. The proof mostly involves elementary results
about finite fields.

2.1 Proof of Correctness of the AKS Algorithm

The proof of correctness comprises three parts. First, we need to prove the
existence of r.
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Theorem 2.2. Let n P N, then there exists r ď maxt3, rplognqOp1qsu such that
ordrpnq ą log 2n.

Proof sketch. We use the fact that in S1
2 that

lcmp1, . . . ,mq ě 2tm{2u.

Second, we need to show that primality is recognized.

Theorem 2.3. If n is a prime then the AKS algorithm outputs PRIME.

This follows immediately from generalized Fermat’s theorem. Moreover, we
show in VTC0

2:

Theorem 2.4 (VTC0
2). If a P Z, n P N a prime, p ě 2 and gcdpa, nq “ 1, then

n is a prime ùñ pX ` aqn ” Xn ` a pmod n,Xr ´ 1q.

The provability in turn follows from Jeřábek’s formalization of iterated mul-
tiplication in VTC0 [5].

Finally, we show that compositeness is recognized.

Theorem 2.5. If the AKS algorithm outputs PRIME on n, then n is a prime.

The proof comprises several lemmas formalizing various algebraic and num-
ber theoretic notions.
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