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Gödel logics GV , (where set of truth values V is a closed subset of r0, 1s containing 0 and 1) form an essential class
of intermediate logics, those that are stronger than intuitionistic logic yet weaker than classical logic. The language is
standard (propositional, first-order) with countably infinite propositional variables Ai, connectives ^, _,Ñ, and the
constants K for "false" and J for "true’; Atomic formulas include propositional variables, and truth constants.

Definition 1. A valuation I based on V is a function from the set of propositional variables into V given as follows:

p1q IpKq “ 0, p2q IpJq “ 1, p3q IpA^Bq “ mintIpAq, IpBqu,
p4q IpA_Bq “ maxtIpAq, IpBqu, p5q Ip@xApxqq “ inftIpApuqq u P UIu,

p6q IpDxApxqq “ suptIpApuqq u P UIu, p7q IpA Ą Bq “

#

IpBq, IpAq ą IpBq,
1, IpAq ď IpBq.

A formula in Gödel logic is valid iff the formula evaluates to 1 under every interpretation. The Gödel logic GV is
defined as the set of valid formulas. Note that the validity and 1-satisfiability are not dual in Gödel logic.

The asymmetry between the truth values 0 and 1 in Gödel logics, stemming from continuity conditions at 1,
motivates the introduction of the absoluteness operator ∆ [1], which precisely identifies formulas evaluating to 1

Ip△Aq “

#

1 if IpAq “ 1,
0 otherwise.

Proposition 1. There is no connective △ definable with other connectives and variables

Proof. There are a finite number of 1-variable functions in Gödel logic.

J,K, A,␣A,␣A_A,␣A Ą A

Assume that △ is definable by some of the function F , i.e., △pAq Ø F pAq. Now we look at the F in G3, because if △
is not definable in G3 then it is not definable in all larger Propositional Gödel logics.
The following truth table shows that none of them defines △ and they are closed under composition by all connectives:

A ␣A J K A_␣A ␣AÑ A △A
0 1 1 0 1 0 0

1/2 1/2 1 0 1/2 1 0
1 0 1 0 1 1 1

Therefore we introduce the connective △ extending the language.
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Existing literature [1] establishes that △ is generally non-eliminable, aligning closely with modal logic S4 augmented
by tertium non datur. Here, we demonstrate that △ can be entirely eliminated under a novel restricted semantics
characterized by interpreting all propositional atoms, except the logical constant for truth (J), strictly below 1. To
indicate the use of such semantics, we denote Gödel logics by G´

V . The valuation remains the same as defined above.

Proposition 2. The formula F px1 . . . xnq in Gödel logic G´
△ is valid in the restricted semantics iff p␣△x1 ^ ¨ ¨ ¨ ^

␣△xnq Ñ F is valid in Gödel logics G△ with △ in the usual semantics .

We achieve this elimination by systematically transforming formulas containing △ into chain normal forms,
decomposing complex expressions into linear chains devoid of the absoluteness operator.

Definition 2. A chain C over the set of propositional variables x “ rx1, ...xns is an expression

K Ź1 XΠp1q Ź2 J Ź1 XΠp2q Ź3 ¨ ¨ ¨ Źn XΠpnq Źn`1 J

where Π is permutation on r1 . . . ns and ŹiP tă,Øu. We denote a chain in the restricted semantics by C´. A chain
C´ does not provide the equivalence of an form aØ J for any variable a.

Proposition 3. In standard semantics, the full disjunction of chains
Ž

C is valid in all Gödel logics. Similarly, the
disjunction of chains in the restricted semantics

Ž

C´ is valid in all Gödel logics under the restricted semantics.

Definition 3. The chain normal form without △ for a formula with △ in the restricted semantics is obtained from the
expression

Ž

C´^ψcpaq where
Ž

C´ are all chains without △ in the restricted semantics and ψcpaq is an evaluation
over the chain C´ of a with variables among the variables of the chain, after the following steps:
1) If the evaluation of a is false we delete the chain,
2) If the evaluation of a is true, we leave the chain as it is,
3) if the evaluation of a is an atom and is not 1 we delete the whole chain.

Propositional Gödel logics can be identified through well-founded linear Kripke structures. The △-operator in
Gödel logics can be interpreted as a stability operator, meaning: △A holds if and only if A is true in all future and past
worlds. In restricted semantics it means that all atoms besides J are assigned 0 in the "downmost world".

It is important to note that the so-called equivalence principle A Ø B ñ EpAq Ø EpBq for a given context E
generally hold for Gödel logics without △ even in first-order language because of the full deduction theorem. But it
does not hold when △ is presented also for the restricted semantics.

Example 1. The specific case AØ B ñ △pAq Ø △pBq for the △ operator also fails in the restricted semantics. To
illustrate, let assign to A value 1 and to B some value strictly between 0 and 1. In this case, △A is 1 and △B is 0, yet
AØ B is not 0. This contradiction demonstrates why the principle does not hold universally.

Consequently, we must modify the evaluation process for △ to accommodate this limitation. First, we show that

Lemma 1. For any formulas A,B,C,D, and any context function E, the following implication holds: from A_B ^
pC Ø Dq we derive A_B ^ pEpCq Ø EpDqq

This lemma holds for both standard and restricted semantics. Moreover, in standard Gödel logics without △, it
ensures full equivalence, as these logics satisfy the full deduction theorem.

Lemma 2. The transitive closure of equivalence in the restricted semantics holds, i.e., for any formulas C,D,L:

pA_ pB ^ pC Ø Dqqq ^ pD Ø Lq ñ pA_B ^ pC Ø Lqq.

Lemma 3. Given any expression △pC _ pD ^ aqq for some variable a in the restricted semantics where C,D are
valid expressions we can eliminate △ obtaining C

△pC _ pD ^ aqq
C
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Theorem 1. In the restricted semantics each formula F with △ is equivalent to a disjunction of chains without △.

Proof. We proceed by expressing the given formula F in terms of its chain decomposition. Consider the disjunction of
chains C1 _ ¨ ¨ ¨ _Cn corresponding to the variables in F under the assumption that no atoms besides J are interpreted
at 1. Distributing F over this disjunction yields C1 ^ F _ ¨ ¨ ¨ _Cn ^ F . Since each chain evaluates to 1 or 0 based on
the fact that △A is 0 for a variable A. The elimination process follows from the properties of chain decomposition and
validity preservation in the restricted semantics.

By reformulating formulas into chain normal forms, we ensure that △ can be systematically removed while
preserving the validity of equivalence. The final form is a disjunction of chains without △, which evaluates to 1. We
illustrate elimination method through explicit example:

Example 2. Given a simple formula F :“ a_△pa_ aÑ Kq, the corresponding chain decomposition yields three
chains in standard semantics:

pK Ø aq ă J, pK ă aq ă J, pK ă 1Ø aq

for some variable a. Note that by definition the last chain is not valid in restricted semantics. Therefore, we have the
following disjunction of chains in restricted semantics pK Ø aq ă J _ pK ă aq ă J. Now we construct the chain
normal form in the restricted semantics pK Ø aq ă J ^ F _ pK ă aq ă J ^ F . Note that we evaluate from inner
most first.

Evaluation of the first chain: Evaluation of the second chain:
a_△pa_Jq a_△pa_Kq
a_△J a_△a
a_J a_K
J a

K

and we get

a_△pa_ aÑ Kq Ø ␣a.

This example also illustrates the fact that the restricted semantics is not closed under substitution. Assume we
substitute J for a, we obtain J_△pJ _ J Ñ Kq Ø ␣J and consequently J Ø K.

The argument used for the propositional case does not extend to the first-order case. For example, when 1 is not
isolated and does not belong to a perfect set, however 0 is isolated or does belong to a perfect set, the first-order Gödel
logic with △ is not recursively enumerable, while the first-order logic without △ is. This holds both for standard and
restricted semantics. Therefore there is not even an effective validity equivalence elimination of △, and obviously no
valid equivalence as in the propositional case.

Motivation for eliminating △ is multifaceted. Primarily, it simplifies the study of prenex fragments, facilitating
clearer semantic interpretations, quantifier manipulations, and decision procedures. Additionally, elimination clarifies
precisely when △ affects logical validity of a formula, and it reveals how △ influences logic completeness, especially
at the first-order level, especially in contexts where the truth value 1 is neither isolated nor part of a perfect set. This
insight directly informs complexity-theoretic classifications of first-order Gödel logics and contributes to identifying
completeness conditions.

Our introduction of restricted semantics, yields notable consequences, including axiomatization without △, recursive
inseparability of certain first-order sentences under these semantics, and restoration of the unlimited deduction theorem,
typically restricted in standard Gödel logics incorporating △. Furthermore, this framework suggests broader applications,
inviting investigation into similar semantic restrictions in related intermediate and modal logics, potentially influencing
logical properties analogous to those found in S4-like structures.
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