Gödel Logics: On the Elimination of the Absoluteness Operator Matthias Baaz¹ and Mariami Gamsakhurdia¹ ¹Technische Universität Wien, Institut für Algebra und Diskrete Mathematik, A-1040 Vienna, Austria, baaz@logic.at, mariami@logic.at Gödel logics G_V , (where set of truth values V is a closed subset of [0, 1] containing 0 and 1) form an essential class of intermediate logics, those that are stronger than intuitionistic logic yet weaker than classical logic. The language is standard (propositional, first-order) with countably infinite propositional variables A_i , connectives \land , \lor , \rightarrow , and the constants \perp for "false" and \top for "true'; Atomic formulas include propositional variables, and truth constants. **Definition 1.** A valuation \mathcal{I} based on V is a function from the set of propositional variables into V given as follows: (1) $$\mathcal{I}(\perp) = 0$$, (2) $\mathcal{I}(\top) = 1$, (3) $$\mathcal{T}(A \wedge B) = \min{\{\mathcal{T}(A), \mathcal{T}(B)\}}$$ $$(4) \mathcal{I}(A \vee B) = \max{\{\mathcal{I}(A), \mathcal{I}(B)\}}.$$ (5) $$\mathcal{I}(\forall x A(x)) = \inf\{\mathcal{I}(A(u)) \ u \in U_{\mathcal{I}}\}\$$ (6) $$\mathcal{I}(\exists x A(x)) = \sup \{ \mathcal{I}(A(u)) \ u \in U_{\mathcal{I}} \}$$ $$(1) \mathcal{I}(\bot) = 0, \quad (2) \mathcal{I}(\top) = 1,$$ $$(3) \mathcal{I}(A \wedge B) = \min\{\mathcal{I}(A), \mathcal{I}(B)\},$$ $$(4) \mathcal{I}(A \vee B) = \max\{\mathcal{I}(A), \mathcal{I}(B)\},$$ $$(5) \mathcal{I}(\forall x A(x)) = \inf\{\mathcal{I}(A(u)) \ u \in U_{\mathcal{I}}\},$$ $$(6) \mathcal{I}(\exists x A(x)) = \sup\{\mathcal{I}(A(u)) \ u \in U_{\mathcal{I}}\},$$ $$(7) \mathcal{I}(A \supset B) = \begin{cases} \mathcal{I}(B), \quad \mathcal{I}(A) > \mathcal{I}(B), \\ 1, \quad \mathcal{I}(A) \leqslant \mathcal{I}(B). \end{cases}$$ A formula in Gödel logic is valid iff the formula evaluates to 1 under every interpretation. The Gödel logic G_V is defined as the set of valid formulas. Note that the validity and 1-satisfiability are not dual in Gödel logic. The asymmetry between the truth values 0 and 1 in Gödel logics, stemming from continuity conditions at 1, motivates the introduction of the absoluteness operator Δ [1], which precisely identifies formulas evaluating to 1 $$\mathcal{I}(\triangle A) = \begin{cases} 1 & \text{if } \mathcal{I}(A) = 1, \\ 0 & \text{otherwise.} \end{cases}$$ **Proposition 1.** There is no connective \triangle definable with other connectives and variables *Proof.* There are a finite number of 1-variable functions in Gödel logic. $$\top, \bot, A, \neg A, \neg A \lor A, \neg A \supset A$$ Assume that \triangle is definable by some of the function F, i.e., $\triangle(A) \leftrightarrow F(A)$. Now we look at the F in G_3 , because if \triangle is not definable in G_3 then it is not definable in all larger Propositional Gödel logics. The following truth table shows that none of them defines \triangle and they are closed under composition by all connectives: | A | $\neg A$ | T | 1 | $A \vee \neg A$ | $\neg A \rightarrow A$ | $\triangle A$ | |-----|----------|---|---|-----------------|------------------------|---------------| | 0 | 1 | 1 | 0 | 1 | 0 | 0 | | 1/2 | 1/2 | 1 | 0 | 1/2 | 1 | 0 | | 1 | 0 | 1 | 0 | 1 | 1 | 1 | Therefore we introduce the connective \triangle extending the language. Existing literature [1] establishes that \triangle is generally non-eliminable, aligning closely with modal logic S4 augmented by tertium non datur. Here, we demonstrate that \triangle can be entirely eliminated under a novel *restricted semantics* characterized by interpreting all propositional atoms, except the logical constant for truth (\top) , strictly below 1. To indicate the use of such semantics, we denote Gödel logics by G_V^- . The valuation remains the same as defined above. **Proposition 2.** The formula $F(x_1 ... x_n)$ in Gödel logic G_{\triangle}^- is valid in the restricted semantics iff $(\neg \triangle x_1 \land \cdots \land \neg \triangle x_n) \to F$ is valid in Gödel logics G_{\triangle} with \triangle in the usual semantics. We achieve this elimination by systematically transforming formulas containing \triangle into chain normal forms, decomposing complex expressions into linear chains devoid of the absoluteness operator. **Definition 2.** A chain C over the set of propositional variables $x = [x_1, ...x_n]$ is an expression $$\bot \rhd_1 X_{\Pi(1)} \rhd_2 \top \rhd_1 X_{\Pi(2)} \rhd_3 \cdots \rhd_n X_{\Pi(n)} \rhd_{n+1} \top$$ where Π is permutation on [1...n] and $\triangleright_i \in \{<, \leftrightarrow\}$. We denote a chain in the restricted semantics by C^- . A chain C^- does not provide the equivalence of an form $a \leftrightarrow \top$ for any variable a. **Proposition 3.** In standard semantics, the full disjunction of chains $\bigvee C$ is valid in all Gödel logics. Similarly, the disjunction of chains in the restricted semantics $\bigvee C^-$ is valid in all Gödel logics under the restricted semantics. **Definition 3.** The chain normal form without \triangle for a formula with \triangle in the restricted semantics is obtained from the expression $\bigvee C^- \wedge \psi_c(a)$ where $\bigvee C^-$ are all chains without \triangle in the restricted semantics and $\psi_c(a)$ is an evaluation over the chain C^- of a with variables among the variables of the chain, after the following steps: - 1) If the evaluation of a is false we delete the chain, - 2) If the evaluation of a is true, we leave the chain as it is, - 3) if the evaluation of a is an atom and is not 1 we delete the whole chain. Propositional Gödel logics can be identified through well-founded linear Kripke structures. The \triangle -operator in Gödel logics can be interpreted as a stability operator, meaning: $\triangle A$ holds if and only if A is true in all future and past worlds. In restricted semantics it means that all atoms besides \top are assigned 0 in the "downmost world". It is important to note that the so-called equivalence principle $A \leftrightarrow B \Rightarrow E(A) \leftrightarrow E(B)$ for a given context E generally hold for Gödel logics without \triangle even in first-order language because of the full deduction theorem. But it does not hold when \triangle is presented also for the restricted semantics. **Example 1.** The specific case $A \leftrightarrow B \Rightarrow \triangle(A) \leftrightarrow \triangle(B)$ for the \triangle operator also fails in the restricted semantics. To illustrate, let assign to A value 1 and to B some value strictly between 0 and 1. In this case, $\triangle A$ is 1 and $\triangle B$ is 0, yet $A \leftrightarrow B$ is not 0. This contradiction demonstrates why the principle does not hold universally. Consequently, we must modify the evaluation process for \triangle to accommodate this limitation. First, we show that **Lemma 1.** For any formulas A, B, C, D, and any context function E, the following implication holds: from $A \vee B \wedge (C \leftrightarrow D)$ we derive $A \vee B \wedge (E(C) \leftrightarrow E(D))$ This lemma holds for both standard and restricted semantics. Moreover, in standard Gödel logics without \triangle , it ensures full equivalence, as these logics satisfy the full deduction theorem. **Lemma 2.** The transitive closure of equivalence in the restricted semantics holds, i.e., for any formulas C, D, L: $$(A \lor (B \land (C \leftrightarrow D))) \land (D \leftrightarrow L) \Rightarrow (A \lor B \land (C \leftrightarrow L)).$$ **Lemma 3.** Given any expression $\triangle(C \lor (D \land a))$ for some variable a in the restricted semantics where C, D are valid expressions we can eliminate \triangle obtaining C $$\frac{\triangle(C\vee(D\wedge a))}{C}$$ **Theorem 1.** In the restricted semantics each formula F with \triangle is equivalent to a disjunction of chains without \triangle . *Proof.* We proceed by expressing the given formula F in terms of its chain decomposition. Consider the disjunction of chains $C_1 \vee \cdots \vee C_n$ corresponding to the variables in F under the assumption that no atoms besides \top are interpreted at 1. Distributing F over this disjunction yields $C_1 \wedge F \vee \cdots \vee C_n \wedge F$. Since each chain evaluates to 1 or 0 based on the fact that $\triangle A$ is 0 for a variable A. The elimination process follows from the properties of chain decomposition and validity preservation in the restricted semantics. By reformulating formulas into chain normal forms, we ensure that \triangle can be systematically removed while preserving the validity of equivalence. The final form is a disjunction of chains without \triangle , which evaluates to 1. We illustrate elimination method through explicit example: **Example 2.** Given a simple formula $F := a \lor \triangle (a \lor a \to \bot)$, the corresponding chain decomposition yields three chains in standard semantics: $$(\bot \leftrightarrow a) < \top, (\bot < a) < \top, (\bot < 1 \leftrightarrow a)$$ for some variable a. Note that by definition the last chain is not valid in restricted semantics. Therefore, we have the following disjunction of chains in restricted semantics $(\bot \leftrightarrow a) < \top \lor (\bot < a) < \top$. Now we construct the chain normal form in the restricted semantics $(\bot \leftrightarrow a) < \top \land F \lor (\bot < a) < \top \land F$. Note that we evaluate from inner most first. ## Evaluation of the first chain: Evaluation of the second chain: | $a \vee \triangle (a \vee \top)$ | $a \vee \triangle (a \vee \bot)$ | |----------------------------------|----------------------------------| | $a \vee \triangle \top$ | $a \vee \triangle a$ | | $a \vee \top$ | $a \vee \bot$ | | Т | a | | | 1 | and we get $$a \vee \triangle (a \vee a \to \bot) \leftrightarrow \neg a$$. This example also illustrates the fact that the restricted semantics is not closed under substitution. Assume we substitute \top for a, we obtain $\top \vee \triangle(\top \vee \top \to \bot) \leftrightarrow \neg \top$ and consequently $\top \leftrightarrow \bot$. The argument used for the propositional case does not extend to the first-order case. For example, when 1 is not isolated and does not belong to a perfect set, however 0 is isolated or does belong to a perfect set, the first-order Gödel logic with \triangle is not recursively enumerable, while the first-order logic without \triangle is. This holds both for standard and restricted semantics. Therefore there is not even an effective validity equivalence elimination of \triangle , and obviously no valid equivalence as in the propositional case. Motivation for eliminating \triangle is multifaceted. Primarily, it simplifies the study of prenex fragments, facilitating clearer semantic interpretations, quantifier manipulations, and decision procedures. Additionally, elimination clarifies precisely when \triangle affects logical validity of a formula, and it reveals how \triangle influences logic completeness, especially at the first-order level, especially in contexts where the truth value 1 is neither isolated nor part of a perfect set. This insight directly informs complexity-theoretic classifications of first-order Gödel logics and contributes to identifying completeness conditions. Our introduction of restricted semantics, yields notable consequences, including axiomatization without \triangle , recursive inseparability of certain first-order sentences under these semantics, and restoration of the unlimited deduction theorem, typically restricted in standard Gödel logics incorporating \triangle . Furthermore, this framework suggests broader applications, inviting investigation into similar semantic restrictions in related intermediate and modal logics, potentially influencing logical properties analogous to those found in S4-like structures. ## References - [1] Matthias Baaz. Infinite-valued Gödel logic with 0-1-projections and relativisations. In Petr Hájek, editor, *Gödel'96: Logical Foundations of Mathematics, Computer Science, and Physics*, volume 6 of *Lecture Notes in Logic*, pages 23–33. Springer-Verlag, Brno, 1996. - [2] Matthias Baaz and Norbert Preining. Quantifier elimination for quantified propositional logics on Kripke frames of type omega. *Journal of Logic and Computation*, 18:649–668, 2008. - [3] Matthias Baaz, Norbert Preining, Gödel–Dummett logics, in: Petr Cintula, Petr Hájek, Carles Noguera (Eds.) *Handbook of Mathematical Fuzzy Logic* vol.2, College Publications, 2011, pp.585–626, chapterVII. - [4] Matthias Baaz and Norbert Preining. On the classification of first order Goedel logics. *Ann. Pure Appl. Log* 170:36–57, 2019. - [5] Matthias Baaz, Norbert Preining, and Richard Zach. Completeness of a hypersequent calculus for some first-order Göde logics with delta. In 36th International Symposium on Multiple-valued Logic (ISMVL 2006). IEEE Computer Society, 2006. - [6] Arnold Beckmann and Norbert Preining. Linear Kripke frames and Gödel logics. *Journal of Symbolic Logic*, 72(1):26–44, 2007. - [7] Michael Dummett. A propositional calculus with denumerable matrix. *Journal of Symbolic Logic*, 24(2): 97–106, 1959. - [8] Kurt Gödel. Zum intuitionistischen Aussagenkalkül. *Anzeiger Akademie der Wissenschaften Wien*, 69: 65–66, 1932. - [9] Hiroakira Ono. Kripke models and intermediate logics. *Publications of the Research Institute for Mathematical Sciences Kyoto University*, 6:461–476, 1971.