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Abstract

The modal p-calculus is a fixpoint logic for the specification of w-regular properties
over labelled transition systems. It is known that alternation-free p-calculus formulas —
not having interdependent nesting of least and greatest fixpoints — generally correspond
to co-Biichi automata. Existing satisfiability checking algorithms for unguarded p-calculus
formulas however rely on using full parity automata to detect activity of formulas along
local evaluation cycles and hence do not exploit the correspondence to co-Biichi automata.
Rather they incorporate full Safra-Piterman determinization for Biichi automata to reduce
the satisfiabiliy problem to the solution of parity games. We propose an alternative con-
struction that does mot assume guardedness, yet reduces satisfiability of alternation-free
p-calculus formulas to Biichi games, sidelining the Safra-Piterman construction by using
the simpler Miyano-Hayashi construction for co-Biichi automata instead.

1 Introduction

The modal p-calculus is an expressive specification language that allows for expressing safety,
reachability, and general fairness properties over transition systems [7]. Its main decision prob-
lems — model checking and satisfiability checking — are closely related [12, 10] to parity games,
which have seen particular attention in recent research [1]. In the current work, we are inter-
ested in the satisfiability problem for (a fragment of) the u-calculus. The standard procedure
to solve this problem is by reduction to parity games [4, 6]. Crucially, the existence of least
fixpoint formulas in the p-calculus introduces the requirement that models must not contain in-
finite evaluation sequences for least fixpoints. Game reductions typically use non-deterministic
w-automata (tracing automata) to detect such sequences. The reduction to games then deter-
minizes the tracing automaton and uses the determinized automaton as a game arena.

Alternation-free p-calculus formulas do not have nested least and greatest fixpoints. For
such formulas, the associated tracing automata are known to be co-Biichi automata (rather
than parity or Biichi automata) which allow for simpler determinization [5]. However, this
approach assumes that fixpoint variables in formulas are guarded by modal operators, ruling
out infinite sequences of formula evaluations at a single state in the system. Existing methods
that can deal with unguarded formulas rely on determinizing full parity automata via the more
involved Safra-Piterman construction [11], and reduce satisfiability to parity games.

In the current work, we propose an algorithm that checks the satisfiability of alternation-
free formulas, but does not assume guardedness. To this end, we adapt ideas from [3] to the
alternation-free case, using co-Biichi tracing automata for global traces and treating local traces
separately. This enables reduction to Biichi games via Miyano-Hayashi determinization [9],
thereby enabling usage of the simpler methods for alternation-free formulas also without the
assumption of guardedness. This improves the upper runtime bound on satisfability checking
for the unguarded, alternation-free fragment. Furthermore, it shows that the correspondence
betweeen alternation-free p-calculus formulas and co-Biichi automata (and Biichi games, re-
spectively) does not hinge on guardedness.
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2 Automata, Games, and the u-Calculus

We begin be recalling notions and results on w-regular automata and infinite duration games.
An automaton is a tuple A = (X, Q, 6, F'), where ¥ is a finite alphabet, @ is a finite set of
states, 0 : Q x ¥ — 29 is a transition function, and F C Q induces an acceptance condition
a C @Q¥. In this work, we use Biichi and co-Biichi conditions; the former demand that some
element of F' is visited infinitely often, while the latter require that no element of F' is visited
infinitely often. If |6(q,a)| < 1 for all ¢ € Q and a € X, then we say that A is deterministic
(and non-deterministic otherwise). A run of A on an infinite word is an infinite path through
the automaton that is labelled with the word. A run of A on w is accepting if it is contained
in . The language accepted by A is L(A) = {w € X | there is an accepting run of A on w}.

Lemma 1 ([9]). Let A= (%,Q,6,F) be a co-Biichi automaton. Then there is a deterministic
co-Biichi automaton A’ with at most 371 - 21Q1=IF| states such that L(A) = L(A’).

A Biichi game is an infinite-duration game played by two antagonistic players 3 and V, given
as a tuple G = (V, E, F), where V = V3 U V4 is a set of nodes, partitioned into the sets V3
of existential nodes and Vi of universal nodes, E C V x V is a set of moves, and I C V is a
set of winning nodes. We put E(v) = {v € V | (v,v') € E}. A play is a (finite or infinite)
path through the graph (V, E). The existential player wins finite plays that end in v, € Vg
and infinite plays that visit some node from F' infinitely often; all other plays are won by the
universal player. The problem of solving a Biichi game consists in computing the set of game
nodes for which the existential player has a strategy to win all plays starting at such a node.

Lemma 2 ([2]). Biichi games with n nodes can be solved in time O(n?).

Next, we briefly introduce the modal p-calculus, and its alternation-free fragment. Formulas
of the p-calculus are generated by the grammar

o, =plplent |V |Op|Op | X | uX. 0| vX.@ p € At, X € Var

where At and Var are countable sets of propositional atoms and fixpoint variables, respectively.
Fixpoint operators give rise to standard notions of free and bound occurrences of fixpoint
variables. We refer to fixpoint variables that are bound by a least fixpoint expression as u-
variables and to the remaining fixpoint variables as v-variables.

Alternation-free formulas do not contain dependent nesting of least and greatest fix-
point expressions; formally, a formula is alternation-free if none of its subformulas contains
free occurrences of both some p-variable and some v-variable. For instance the formula
pX. (VY. pAOY)VOX is alternation-free while pX. vY. ((pAOY) vV $X) is not alternation-free.

Guardedness of fixpoint variables requires that any free occurrence of a fixpoint variable
X within a fixpoint expression 7X. ¢ is in the scope of at least one modal operator (¢ or O).
In this work, we do not assume guardedness of formulas, that is, the satisfiability algorithm
presented below works for unguarded formulas such as for instance uX. pY. (X V O(Y A p)).

We define the (Fisher-Ladner) closure FL(p) of a closed formula ¢ to be the least set of
formulas that contains ¢ and is closed under taking subformulas and under fizpoint unfolding
(which transforms formulas of shape nX. ¢ to ¢[X — nX. |, where n € {v,u}). The size |¢|
of a formula ¢ is the size |FL(y)| of its closure.

More details on these syntactic notions can be found, e.g., in [8].

Formulas are evaluated over Kripke structures in the standard way (cf. [7]) and a formula
is satisfiable if it has a model, that is, if there is a Kripke structure that satisfies the formula.
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3 Satisfiability of Unguarded Alternation-free Formulas

We fix an alternation-free but not necessarily guarded formula x and denote its closure by FL.

We first define the tracing automaton for y and then use it to devise an algorithm that
checks whether there is a Kripke structure on which there is no p-trace of x, that is, no trace
of x that infinitely often unfolds a least fixpoint.

Definition 3 (Tracing automaton). A local strategy is a function s that assigns a choice s(g V
1) € {0, 1} to each disjunction 1o V1 € FL. We let loc denote the set of all local strategies and
put X = locU {Op | Op € FL}. The tracing automaton for x is the nondeterministic co-Biichi
automaton A, = (3,FL,d, F) defined by putting F' = {vX.¢ | vX.¢ € FL}. The transition
function is defined, for ¢ € FL and s € loc C ¥, by

S(o Ath1,s) = {0, 1} 6(o VU1, 8) = {Wsovun)t X1, s) = {¥nX. ./ X]}
6(01, Op) = {v} 5(0p, 0v) = {p}

In all other cases, we put 6(¢, s) = {¢} and §(p, O1) = 0. Therefore, the only non-deterministic
transitions in § arise at formulas of the shape 1 A o when reading a letter s € loc.

Let D, = (%,5,A,B) be the determinized version of A, with |S| < 3l¢l obtained by
Lemma 1. States ¢ € S are of the shape ¢ = (U, W) for W C U C FL. We write ¢ € qif ¢ € U.

A local strategy s is admissible for a set U C FL of formulas, if there is no formula uX. € FL
such that s reproduces pX. v, starting from U. Intuitively, a local strategy is admissible for
U if it does not determine a local cycle (not involving any modal steps) in ¢ that contains a
least fixpoint formula. Given ¢ = (U, W) € S, we let H(q) denote the set of all admissible local
strategies for U.

Next we reduce the satisfiability check for y to the solution of a Biichi game played over
D,. The existential player provides admissible local strategies for a state while the universal
player picks one existential modal formula from a given state and applies the according modal
step. A play is winning for the existential player if and only if the according run of D, is not
accepting, that is, does not contain a u-trace.

Definition 4. The satisfiability game for x is the Biichi game G, = (S x {0,1}, E, (S \ B) x
{0,1}), having 2 - |S| < 2- 3¢l nodes. The following table completes the definition of G .

node owner moves to
(¢,0) 3 [ {(Ag,5%),1) | s € H(q)}
(¢,1) \ {(A(g,09),0) | Oy € q}

The game G, alternates between propositional stages (¢,0) and modal stages (¢,1). In
propositional stages, player 3 picks a local strategy s that is admissible for ¢ and repeatedly
applies this strategy to ¢ (denoted by s*), resulting in a move to the modal stage (A(g, s*),1).
In a modal stage, player V picks a diamond formula from ¢ and moves on to (A(g, Oy),0).

Lemma 5. The existential player wins Gy if and only if x is satisfiable.

The proof of Lemma 5 constructs models over S, showing that satisfiable alternation-free
(but not necessarily guarded) formulas ¢ have models of size at most 31¥l. We sum up the
results of the current work as follows.

Corollary 6. The satisfiability of alternation-free p-calculus formulas ¢ can be checked in time
O(32191). If o is satisfiable, then it has a model of size at most 3!¢l.
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