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Abstract

Logics such as dependence logic [22] and inquisitive logic [8] are usually interpreted using
team semantics [13, 14]: formulas are evaluated with respect to sets of evaluation points
(valuations/assignments/possible worlds) called teams, rather than single evaluation points
as in the usual Tarskian semantics. In the propositional setting we focus on, teams are sets
of propositional valuations. Team semantics allows for the introduction of non-classical
connectives such as the inquisitive or global disjunction

⩾

:

for a team t: t |= ϕ

⩾

ψ ⇐⇒ t |= ϕ or t |= ψ;

cf. the split disjunction ∨: t |= ϕ ∨ ψ ⇐⇒ ∃s, u : t = s ∪ u, s |= ϕ, and u |= ψ,

where it is the split rather than the inquisitive disjunction which generalizes the usual
disjunction of single valuation-based semantics in the team-based setting. These team-
semantic connectives provide for a natural way to formalize notions such as question
meaning (‘p or not p?’ can be formalized as p

⩾ ¬p, as done in inquisitive logic) and
dependence (‘the value of q functionally depends on the value of p’ can be formalized as
(p ∧ (q

⩾ ¬q)) ∨ (¬p ∧ (q

⩾ ¬q)), as essentially done in dependence logic).
While there are a great number of natural deduction- and Hilbert-style axiomatizations

of propositional team logics in the literature [8, 19, 17, 25, 6, 26, 15, 7, 23], the development
of sequent calculus systems and of proof theory in general for these logics has been slower.
The sequent calculi that have been constructed have all been for variants of propositional
inquisitive logic; these include multiple labelled systems [5, 16, 1] as well as the multi-type
display calculus in [10].

One of the main difficulties in providing standard sequent calculi for team logics is
that usually these logics are not closed under uniform substitution. For instance, the
entailment p ∨ p |= p holds, but substitution instances of the entailment might not:
(p

⩾ ¬p)∨(p ⩾ ¬p) ̸|= (p

⩾ ¬p). Due to this failure, axiomatizations for team logics typically
feature rules that may only be applied to some subclass of formulas, and these axiomati-
zations do not admit the usual uniform substitution rule. Many proof-theoretic techniques
depend on the universal applicability of the rules, so it is not immediately obvious how to
apply these techniques to most team logics—often some specialized machinery has to be
introduced to handle this issue. For instance, the construction of the multi-type display
calculus in [10] involves the introduction of a new language featuring two types of formulas
for the team logic axiomatized, with closure under substitution holding within each of these
types. It is also not even immediate how a sequent should be interpreted in the setting
of team semantics—for instance, one may interpret the commas in the succedent ∆ of a
sequent Γ ⇒ ∆ using the split disjunction ∨ or the inquisitive disjunction

⩾

.
We propose a novel way of addressing these difficulties by way of introducing a sequent

calculus featuring some deep-inference-style rules (see, e.g., [20, 18, 11, 4]) for the proposi-
tional team logic CPL(

⩾

) with both the split disjunction ∨ and the inquisitive disjunction
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⩾

(this logic, essentially a modest extension of propositional dependence logic, is stud-
ied in, e.g., [25, 19, 6, 24]). Our calculus consists of a standard Gentzen-style system (a
variant of G3cp [21]) for the fragment of the logic which corresponds to classical propo-
sitional logic CPL (the

⩾

-free fragment), with some syntactic restrictions to the effect
that certain active formulas and context sets must be classical (

⩾

-free); together with
deep-inference-style rules for the inquisitive disjunction

⩾

—that is, rules which allow one
to introduce the inquisitive disjunction (almost) anywhere within a formula, rather than
only as its main connective:

Γ, χ{ϕ1} ⇒ ∆ Γ, χ{ϕ2} ⇒ ∆
L

⩾

Γ, χ{ϕ1

⩾

ϕ2} ⇒ ∆

Γ ⇒ χ{ϕi},∆
R

⩾

Γ ⇒ χ{ϕ1
⩾

ϕ2},∆

(Here ϕ1 is a subformula occurrence of the formula χ{ϕ1} that does not occur in the
scope of a negation, χ{ϕ2} is χ{ϕ1} with ϕ2 replacing ϕ1, and similarly for χ{ϕ1

⩾

ϕ2}.)
The deep-inference-style rules allow for cutfree completeness of the system (cut is ad-

missible in the cutfree fragment of the system) and for many standard proof-theoretic
techniques to be applied despite the limited applicability of the restricted rules: essen-
tially, cutfree proofs can be constructed by first constructing cutfree classical proofs, and
then introducing inquisitive disjunctions as required; and procedures involving the per-
muting of sequents which depend on the universal applicability of the rules (such as cut
elimination) can be conducted in such a way that they only involve permuting sequents in
the classical part of the calculus, in which the rules are universally applicable.

The resulting system departs minimally from a Gentzen-style calculus. Our approach
avoids both importing the semantics into the system in the form of labels (like the labelled
systems in [5, 16, 1]) and extending the syntax of the logic (like the multi-type display
calculus in [10]). Our system also consists of only a single pair of rules for each connective—
this is in contrast with the frequently complex natural deduction systems for team logics,
including the natural deduction system for the logic we focus on [25].

Furthermore, given that the system is a natural extension of a well-known Gentzen-
style system for CPL with rules for the inquisitive disjunction

⩾

, the fact that CPL(

⩾

) is
an extension of CPL with

⩾

is directly reflected in a straightforward way in the calculus,
and the calculus allows us to see immediately and transparently exactly what is required to
be added to an axiomatization of CPL to axiomatize CPL(

⩾

). This structure is possible
due to a key design decision: instead of interpreting a sequent Γ ⇒ ∆ as

∧
Γ |= \\/∆ (i.e.,

taking the sequent Γ ⇒ ∆ to be valid just in case whenever each formula in Γ is true in
a team t, at least one formula of ∆ is true in t), we interpret Γ ⇒ ∆ as

∧
Γ |=

∨
∆ (i.e.,

Γ ⇒ ∆ is valid just in case whenever each formula in Γ is true in a team t, there is, for
each ϕ ∈ ∆, a tϕ such that tϕ |= ϕ; and t =

⋃
ϕ∈∆ tϕ). That is, we interpret the comma in

the succedent of a sequent not as the inquisitive disjunction

⩾

(as is done in the labelled
systems in [5, 16, 1]), but, rather, as the split disjunction ∨.

Given that our calculus extends G3cp in a straightforward manner, we are able to
show many proof-theoretic results for our system as extensions or corollaries of the anal-
ogous results for G3cp. These results include the height-preserving admissibility (with
some restrictions) of weakening, contraction and inversion; a G3cp-style proof of cutfree
completeness and countermodel construction; a cut-elimination procedure that relies on
a normal form theorem for derivations to the effect that any cutfree derivation can be
converted into one in which one first applies only G3cp-rules, following which one only
applies the

⩾

-rules (cf. the decomposition theorems in, e.g., [11, 12, 2]); and a sequent
interpolation theorem.

The system also allows us to prove—via the interpolation theorem—some novel results
concerning the logic CPL(

⩾

). The literature on interpolation in propositional team logics
[9, 7, 23] has mainly focused on uniform interpolation—there are (as far as we know) no
results on constructing Craig’s interpolants that are not also uniform interpolants, and no
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results on Lyndon’s interpolation. Our sequent interpolation theorem yields as corollaries
both a Lyndon’s interpolation theorem as well as a Craig’s interpolation theorem that does
not rely on the construction of (the comparatively more complex) uniform interpolants.

One further interesting feature of the system is that due to the decision to interpret
the succedent comma as the split disjunction, there is a correspondence between certain
structural rules of the calculus and certain team-semantic closure properties—semantic
properties of formulas which play an important role in the study of team logics. The
closure properties which have structural correspondents in our system are the empty team
property and union closure. The logic CPL(

⩾

) has the empty team property (meaning
that the empty team satisfies all CPL(

⩾

)-formulas), and its classical fragment is union
closed (meaning that the truth of a classical formula in a collection of teams implies its
truth in the union of the collection); CPL(

⩾

) as a whole is not union closed. The empty
team property corresponds to the soundness of weakening on the right, and union closure
corresponds to the soundness of contraction on the right; accordingly, weakening on the
right is sound (and admissible in the cutfree fragment of our system) for all CPL(

⩾

)-
formulas, whereas contraction on the right is only guaranteed to be sound (and admissible
in the cutfree fragment) for classical formulas.

The formulation of our system as an extension of G3cp minimizes the amount of proof-
theoretic machinery required, but we also provide a similar system for CPL(

⩾

) in the
calculus of structures [11], a deep-inference formalism that allows for all rules to be ap-
plied at any depth in a formula. This alternative system in the calculus of structures is
an extension of the system SKSg [3] for classical propositional logic with structures that
translate the inquisitive disjunction

⩾

, and with rules governing the behaviour of these
structures.
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[17] Vı́t Punčochář. Weak negation in inquisitive semantics. J. Log. Lang. Inf., 24(3):323–355, 2015.

[18] David J. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications. Springer,
2002.

[19] Katsuhiko Sano and Jonni Virtema. Axiomatizing propositional dependence logics. In Stephan
Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), vol-
ume 41 of Leibniz International Proceedings in Informatics (LIPIcs), pages 292–307, Dagstuhl,
Germany, 2015. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
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