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Team semantics is a generalization of Tarski semantics in which logical formulae are not evaluated
for single assignments, but for sets of assignments called teams. This opens new avenues to reason
about interdependencies between assignments, which are relevant e.g. for large sets of data. In fact, most
prominent team logics feature notions that have been studied in database theory like dependence [3],
independence [11], inclusion [4] or exclusion [5]. Other applications include linguistics [7] or quantum
logics [1, 16].

Team semantics was originally conceived by Hodges [14] to provide a compositional model-theoretic
semantics for independence-friendly logic [13]. Since then, it has been established as a basis for logics
of imperfect information. Here, it is prevalent to augment basic first-order team logic (FOT) with team
atoms that correspond to interdependencies between assignments. This approach emerged with Väänä-
nen’s dependence logic FOT(dep) [22] and includes (conditional) independence logic [12] FOT(indep)
and inclusion/exclusion logic FOT(inc,exc) [8].

A significant effort has been made to analyse the expressive power of these logics. Mostly, this is
done by comparison to (fragments of) existential second order logic (ESO) in the sense that we find a
correspondence between a set of team atoms ∗ and a semantic property P of ESO(R)-sentences:

Theorem (a typical classification result). For all ϕ(R) ∈ ESO with property P there is a ϕ# ∈ FOT(∗)
(and vice versa) such that

A [T (y)/R] |= ϕ ⇐⇒ A,T |= ϕ
#

for all structures A and teams T with dom(T ) = y.1

An example for such a semantic property is downward closure: a formula ϕ(R) ∈ ESO is downward
closed if for all interpretations RA

1 ⊆ RA
2 of R, we have A

[
RA

2 /R
]
|= ϕ implies A

[
RA

1 /R
]
|= ϕ . Depen-

dence logic is equivalent to the downward closed fragment of ESO [17]. Further, independence logic
and inclusion/exclusion logic are both equivalent to full ESO [8]. Inclusion logic is union closed, but
only equivalent to the so-called myopic fragment of νFO+ [9]. The union closed fragment of ESO has
been established as equivalent to FOT with “∪-game”-atoms that correspond to winning strategies in
specific model checking games [15]. For sentences, dependence, independence and exclusion logic are
all equivalent to ESO [22, 8] and inclusion logic is equivalent to positive greatest fixpoint logic νFO+

[9].
The main contribution of the paper consist of two parts.

1Here, T (y) = {(t(y1), . . . , t(yn)) | t ∈ T,y = (y1, . . . ,yn)} is the relational encoding of T and A [T (y)/R] is the expansion of
A by this encoding.
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Part 1: A general approach to the classification of ESO-fragments. In the first part, we analyse the
proofs of the existing theorems, in particular the equivalence between FOT(dep) and downward closed
ESO. We notice that there is a systematic approach to translate ϕ(R) ∈ ESO with property P into a
ϕ# ∈ FOT(∗) that consists of four steps:

1. We find a P-specific normal form ϕ1 for ϕ that isolates R in a small subformula β .

2. Using a process from [22], we skolemise ϕ1 to get a formula of the form

ϕ2 = ∃ f1 . . . fn∀x1 . . .xn(β
′∧ψ

′)

with ψ ′ ∈ FO and a simple β ′(R) ∈ FO. Further, fi only occurs as fixi in ϕ2.

3. We construct ϕ3 ∈ FOT(∗) by replacing all fixi by fresh variables zi and supplement the inner
formula by an auxiliary γ ∈ FOT(∗) that is supposed to guarantee that any interpreting team is
function-like, i.e. factoring in P, it is related to a product of graphs of functions. Overall, ϕ3 has
the form

ϕ3 = ∀x1 . . .xn∃z1 . . .zn(γ ∧β
∗∧ψ

∗),

where β ∗(R) ∈ FOT and ψ∗ ∈ FOT.

4. We find a β # ∈ FOT(∗) that does not contain R and is equivalent to β ∗ relative to the property P
and function-like teams. We then get

ϕ
# := ∀x1 . . .xn∃z1 . . .zn(γ ∧β

# ∧ψ
∗).

While this may serve as a general approach to classification results, several points depend on the specifics
of P and ∗, namely the normal form in step 1, the construction of γ in step 3 and the nature of the
equivalence in step 4. In particular, γ provides a guideline regarding the atoms in ∗, dependent on P.
For example, if P is “downward closure”, we can express in FOT(dep) that a team T is a subset of a
product of graphs of functions, which is exactly function-likeness up to downward closure. In this spirit,
we introduce the union closed function atom F and upward closed function atom F, defined by

• A,T |= F(x1,y1| . . . |xn,yn) if and only if there are functions f1, . . . , fn in A with graphs g1, . . . ,gn

such that g1 × . . .×gn ⊆ T (x1,y1, . . . ,xn,yn), and

• A,T |= F(x1,y1| . . . |xn,yn) if and only if there is a family of tuples of functions ( f i
1, . . . , f i

n)i ∈ I
with graphs (gi

1, . . . ,g
i
n)i ∈ I such that

⋃
i∈I

(
gi

1 × . . .×gi
n
)
= T (x1,y1, . . . ,xn,yn).

In words, these atoms guarantee function-like behaviour that is adequate for union closure and upward
closure, respectively (a more general approach to the definition of new team atoms can be found in [18]).
Using the strategy above, we show the following theorems:

Theorem 1. For sentences, ESO ≡ FOT(F)≡ FOT(F).

Theorem 2. Every union closed ϕ(R) ∈ ESO is equivalent to a formula in FOT(F), and vice versa.

Theorem 3. Every upward closed ϕ(R) ∈ ESO is equivalent to a formula in FOT(F).

Note that theorem 3 only asserts one direction. The reason is that even first-order literals are not up-
ward closed, and it is therefore impossible to find an straightforward extension of FOT that is equivalent
to the upward closed fragment.
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Part 2: The convex fragment of ESO. In the second part, we find a team logic corresponding to the
convex fragment of ESO. Convexity is of special interest in linguistics, where it arises as a natural feature
in the context of lexicalizations (e.g. [21, 10, 19, 20]). In particular, [6] provided an explanation for the
non-existence of specific indefinites using a team-semantic convexity argument. There are expressive
completeness results for convex extensions of propositional and modal team logics [2]), but the convex
fragment of ESO has remained an open question.

More formally, ϕ(R) ∈ ESO is quasi-convex2 if for all non-empty interpretations RA
l ⊆ RA ⊆ RA

u ,
if A

[
RA

l /R
]
|= ϕ and A

[
RA

u /R
]
|= ϕ , then also A

[
RA/R

]
. As such, it is a refinement of downward

and upward closure, and therefore FOT is quasi-convex, as are dependence atoms and upward closed
function atoms. FOT(dep,F), however, is not quasi-convex because neither existential quantification nor
disjunction preserves quasi-convexity. We define FOTcvx by replacing these operators by convex versions
C∃ and C∨. This is a conservative replacement in the sense that every ϕ ∈ FOT is equivalent to its convex
version.

FOTcvx(dep,F) is quasi-convex and therefore contained in the convex fragment of ESO. For the
other direction, we again employ the strategy of part 1. For the normal form in step 1, we notice that for
every convex ϕ ∈ ESO, there is an upward closed ϕu and a downward closed ϕd such that ϕ ≡ ϕu ∧ϕd ,
and we find separate normal forms for the two parts of the formula. Then ϕd is translated into a ϕ#

d ∈
FOTcvx(dep), and for ϕu, we find a ϕ#

u ∈ FOTcvx(F).

Theorem 4. Every quasi-convex ϕ(R)∈ESO is equivalent to a formula in FOcvx(dep,F), and vice versa.
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