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1 Introduction

A logic L is Kripke-complete if L is the logic of some class of Kripke-frames. Thomason [11] estab-

lished the existence of Kripke-incomplete tense logics. Fine [7] and van Benthem [12] gave examples of

Kripke-incomplete modal logics. To study Kripke-completeness at a higher level, Fine [7] introduced

the degree of Kripke-incompleteness of logics. For any lattice L of logics and L ∈ L, the degree of

Kripke-incompleteness degL(L) of L in L is defined as:

degL(L) = |{L′ ∈ L : Fr(L′) = Fr(L)}|.1

In general, studying the degree of Kripke-incompleteness in L amounts to analyzing the equivalence

relation ≡Fr on L, where L1 ≡Fr L2 iff L1 shares the same class of frames as L2, i.e., Fr(L1) = Fr(L2).

The degree of Kripke-incompleteness of L is the cardinality of the equivalence class [L]≡Fr
in L.

A celebrated result in this field is the dichotomy theorem for the degree of Kripke-incompleteness in

NExt(K) by Blok [2]: every modal logic L ∈ NExt(K) is of the degree of Kripke-incompleteness 1 or 2ℵ0 .

This theorem was proved in [2] algebraically by showing that union splittings in NExt(K) are exactly the

consistent normal modal logics of the degree of Kripke-incompleteness 1 and all other consistent logics

have the degree 2ℵ0 . A proof based on relational semantics was given later in [3]. This characterization of

the degree of Kripke-incompleteness indicates locations of Kripke-complete logics in the lattice NExt(K).

Generally, one can always replace the class Fr of all Kripke frames with some proper class C of

mathematical structures, for example, the class MA of all modal algebras or the class Fin of all finite

frames. Let L = NExt(K). Then we see that ≡MA is the identity relation on L and the equivalence

relation ≡Fin is a superset of ≡Fr. Bezhanishvili et al. [1] introduced the notion of the degree of finite

model property (FMP) of L in L, which is in fact the cardinality of the equivalence class [L]≡Fin
. The

anti-dichotomy theorem for the degree of FMP for extensions of the intuitionistic propositional logic IPC

was proved in [1]: for each cardinal κ with 0 < κ ≤ ℵ0 or κ = 2ℵ0 , there exists L ∈ Ext(IPC) such that

the degree of FMP of L in Ext(IPC) is κ. It was also shown in [1] that the anti-dichotomy theorem of the

degree of FMP holds for NExt(K4) and NExt(S4). Degrees of FMP in bi-intuitionistic logics were studied

in [6]. Given close connections between bi-intuitionistic logics and tense logics, it is natural to study the

degree of Kripke-incompleteness in lattices of tense logics.

Tense logics are bi-modal logics that include a future-looking necessity modality 2 and a past-looking

possibility modality ♦, of which the lattices are substantially different from those of modal logics (see

[8, 11, 10]). As far as we are aware, there are currently only few results concerning the degree of Kripke-

incompleteness in lattices of tense logics. We proved in our recent work [5] that Blok’s dichotomy theorem

can be generalized to NExt(Kt) and NExt(K4t). In this work, we provide a full characterization of the

degree of Kripke-incompleteness and the degree of FMP in NExt(S4t). By the characterization, we show

that every tense logic L ∈ NExt(S4t) is of the degree of Kripke-incompleteness 1 or 2ℵ0 . It turns out

1We denote by Fr(L) the class of frames validating L.



that in NExt(S4t), iterated splittings, rather than union splittings, are exactly those of the degree of

Kripke-incompleteness 1. For more on iterated splittings of lattices of tense and subframe logics, we

refer the readers to [13, 9].

2 Main Results

In what follows, we focus on the lattice NExt(S4t) and write deg(L) and df(L) for the degree of Kripke-

incompleteness and the degree of FMP of L in NExt(S4t), respectively. Let L0 ∈ NExt(S4t) and L2 ⊇ L0.

Then L2 is called a splitting in NExt(L0) if there exists L1 ∈ NExt(L0) such that for all L′ ∈ NExt(L0),

exactly one of L′ ⊆ L1 and L′ ⊇ L2 holds. In this case, we write L0/L1 for L2. We call L an iterated

splitting if L = S4t/L1/ · · · /Ln for some L1, · · · , Ln ∈ NExt(S4t). Specially, we count S4t also as an

iterated splitting. Our main result is the following theorem:

Theorem 1. Let L ∈ NExt(S4t). If L is an iterated splitting, then df(L) = 1. Otherwise deg(L) = 2ℵ0 .

Note that deg(L) ≤ df(L), dichotomy theorems for both the degree of FMP and the degree of

Kripke-incompleteness for NExt(S4t) follows from Theorem 1. By [8, Theorem 21], ⟨Log(Ch2),S5t⟩ and
⟨Log(Ch1),Lt⟩ are the only two splitting pairs in NExt(S4t).

2 Since the logic S4t/Log(Ch2)/Log(Cl3) is not

a union splitting, Theorem 1 indicates that logics of the degree of Kripke-incompleteness 1 are not nec-

essary union splittings, which shows that Blok’s characterization of the degree of Kripke-incompleteness

for NExt(K) can not be generalized to NExt(S4t) directly.

3 Proof Idea

In what follows, we report on the proof idea of Theorem 1 and the main technique used. For definitions

of the notations used in the proof, we refer the reader to [4].

Definition 2. A Kripke frame is a pair F = (X,R) where X ̸= ∅ and R ⊆ X ×X. The inverse of R is

defined as R̆ = {⟨v, w⟩ : wRv}. For every w ∈ X, let R[w] = {u ∈ X : wRu} and R̆[w] = {u ∈ X : uRw}.
For every U ⊆W , we define R[U ] =

⋃
x∈U R[x] and R̆[U ] =

⋃
x∈U R̆[x].

Let Rn♯ [w] be the set of all points which can be reached from w by an (R∪ R̆)-path of length no more

than n. Models, truth and validity of tense formulas are defined as usual.

For each n ∈ ω and φ,ψ ∈ Lt, we define the formula ∆n
ψφ by:

∆0
ψφ = ψ ∧ φ and ∆k+1

ψ φ = ∆k
ψφ ∨3(ψ ∧∆k

ψφ) ∨ ♦(ψ ∧∆k
ψφ).

Then the readers can verify that M, w |= ∆nφ if and only if there is an (R ∪ R̆)-path ⟨wi : i < n⟩ such
that w0 = w, M, wn−1 |= φ and M, wi |= ψ for all i < n. We write ∆kφ for ∆k

⊤φ.

Lemma 3. Let L ∈ NExt(S4t). Then L is an iterated splitting if and only if L ∈ NExt(S5t) ∪ {S4t}.

Proof. The key observation is that Log(Cln) = S4t/Log(Ch2)/Log(Cln+1) for each n > 0.

Lemma 4. Let L ∈ NExt(S5t). Then df(L) = 1.

Proof. Take any L′ ∈ NExt(S4t) with Fin(L′) = Fin(L). Then Ch2 ̸|= L′. Since ⟨Log(Ch2),S5t⟩ is a

splitting pair in NExt(S4t), we have L′ ∈ NExt(S5t). Note that S5t has the FMP and is pretabular (see

[4]), every extension of S5t enjoys the FMP and so L = L′ = Log(Fin(L)).

2For each n > 0, We denote the chain of length n and the frame (n, n× n) by Chn and Cln, respectively.
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To show the second-half of Theorem 1, let L ∈ NExt(S4t) be an arbitrarily fixed logic such that

L ̸∈ NExt(S5t) ∪ {S4t}. Take any φL ∈ L \ S4t. By the book-construction given in [5], we have

Lemma 5. There is FL ∈ Fin and wL, uL ∈ XL such that FL, wL ̸|= φL and uL ̸∈ R
md(φ)
♯ [wL].

For each I ∈ P(Z+), we define the general frame FI = (XI , RI , PI), where the underlying frame

FI = (XI , RI) is as depicted in Fig.1, and PI is the tense algebra generated by P(XL).
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Figure 1: The frame FI where 1 ̸∈ I and 2, 3, i ∈ I

Let LI = L∩ Log(FI). To show that I ̸= J implies LI ̸= LJ , it suffices to prove the following lemma:

Lemma 6. Let U = {ai : i ∈ ω} ∪ {bi : i ∈ ω} ∪ {x0, x1, x2, y0, y1}. For all u ∈ U and v ∈ XI ,

(1) FI , u ̸|= φu → ∇kφL,

(2) FI |= ¬φcj1 for any j ̸∈ I.

The formulas φu are defined inductively. Due to limited space, we show only the definition of φx0

and φa3 . Let k > |FL|+ 5. Assume also that p, p0, · · · , pk ̸∈ Prop(φL). Then we define

φx0
:= ∆k¬φL ∧∆4

pφ0 ∧∇3¬φ0 and φa3 := φAB ∧3φa2 ∧3φb2 ∧2¬φb3 ,

where φ0 := ¬bdk ∧■¬p, φAB = 2(φb0 ∨φb1 ∨3♦3♦φx0) and the formula bdk is defined in [4, Def.4.3].

By Lemma 6, we see that φci1 → ∇kφL ∈ LJ \ LI , given i ∈ I \ J . Thus I ̸= J implies LI ̸= LJ .

The final step is to show Fr(L) = Fr(LI) for all I ∈ Z+. Key lemmas are as follows:

Lemma 7. Let L1, L2 ∈ NExt(Kt). Then Frr(L1 ∩ L2) = Frr(L1) ∪ Fr(L2).
3

Lemma 8. Frr(Log(FI)) = Iso({Ch1,Ch2}) for all I ∈ Z+.

3We denote by Frr(L) the class of all rooted frames of L.
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The key observation for proving Lemma 7 is that if a rooted frame F refutes φ1(p⃗) ∈ L1 and φ2(q⃗) ∈
L2, then F refutes ∆nφ1 ∧ φ2 for some n ∈ ω. For Lemma 8, suppose there exists G ∈ Frr(Log(FI)) \
Iso({Ch1,Ch2}). Let k > |FL|+ 5. Then G validates grz+, grz−, bw+

k , bw
+
k and bzk, which entails that G

is finite. Let J k(G) be the Jankov-formula of G. Then FI ̸|= ¬J k(G) and so G is a t-morphic image

of FI . Let f : FI ↠ G. Since G ̸∈ Iso({Ch1,Ch2}), we claim that f does not identify x0 with other

points, i.e., f−1[f(x0)] = {x0}. The proof of this claim will be tedious, so we shall only show here that

x1 ̸∈ f−1[f(x0)]. Suppose f(x0) = f(x1). Then for all y′ ∈ R[f(x0)], there exists y ∈ R[x1] such that

f(y) = y′, which entails y′ = f(x1) = f(x0). Thus R[f(x0)] = {f(x0)}. Similarly R̆[f(x0)] = {f(x0)}.
So G ∼= Ch1, which contradicts the assumption. We can further claim that f does not identify a0, b0 and

b1 with any other point. Then by the property of Rieger-Nishimura ladder, we can check that G contains

an infinite descending chain, which contradicts G |= grz−. Hence Frr(Log(FI)) = Iso({Ch1,Ch2}).
Finally we are ready to show Frr(L) = Frr(LI). Since L ̸∈ NExt(S5t) and ⟨Log(Ch2),S5t⟩ is a

splitting pair in NExt(S4t), we have Ch2 |= L and so Iso({Ch1,Ch2}) ⊆ Frr(L). By Lemmas 7 and 8,

Frr(LI) = Frr(L) ∪ Frr(Log(FI)) = Frr(L). Hence Fr(L) = Fr(LI) for all I ∈ Z+.

Note that I ̸= J implies LI ̸= LJ for all I, J ⊆ Z+, we conclude that deg(L) = 2ℵ0 . Note that

L ̸∈ NExt(S5t) ∪ {S4t} is also chosen arbitrarily, the proof of Theorem 1 is concluded.
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