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1 Introduction

A logic L is Kripke-complete if L is the logic of some class of Kripke-frames. Thomason [11] estab-
lished the existence of Kripke-incomplete tense logics. Fine [7] and van Benthem [12] gave examples of
Kripke-incomplete modal logics. To study Kripke-completeness at a higher level, Fine [7] introduced
the degree of Kripke-incompleteness of logics. For any lattice £ of logics and L € L, the degree of
Kripke-incompleteness deg,(L) of L in L is defined as:

deg, (L) = |{L' € £ : Fr(L') = Fr(L)}|.!

In general, studying the degree of Kripke-incompleteness in £ amounts to analyzing the equivalence
relation =g, on £, where Ly =, Lo iff Ly shares the same class of frames as Lo, i.e., Fr(Ly) = Fr(Ls).
in L.

A celebrated result in this field is the dichotomy theorem for the degree of Kripke-incompleteness in
NExt(K) by Blok [2]: every modal logic L € NExt(K) is of the degree of Kripke-incompleteness 1 or 2%0.
This theorem was proved in [2] algebraically by showing that union splittings in NExt(K) are exactly the

The degree of Kripke-incompleteness of L is the cardinality of the equivalence class [L]

=Fr

consistent normal modal logics of the degree of Kripke-incompleteness 1 and all other consistent logics
have the degree 2%, A proof based on relational semantics was given later in [3]. This characterization of
the degree of Kripke-incompleteness indicates locations of Kripke-complete logics in the lattice NExt(K).

Generally, one can always replace the class Fr of all Kripke frames with some proper class C of
mathematical structures, for example, the class MA of all modal algebras or the class Fin of all finite
frames. Let £ = NExt(K). Then we see that =pya is the identity relation on £ and the equivalence
relation =g, is a superset of =g,. Bezhanishvili et al. [1] introduced the notion of the degree of finite
The
anti-dichotomy theorem for the degree of FMP for extensions of the intuitionistic propositional logic IPC
was proved in [1]: for each cardinal k with 0 < kK < Rg or k = 20 there exists L € Ext(IPC) such that
the degree of FMP of L in Ext(IPC) is k. It was also shown in [1] that the anti-dichotomy theorem of the
degree of FMP holds for NExt(K4) and NExt(S4). Degrees of FMP in bi-intuitionistic logics were studied
in [6]. Given close connections between bi-intuitionistic logics and tense logics, it is natural to study the

model property (FMP) of L in £, which is in fact the cardinality of the equivalence class [L]

=Fin "

degree of Kripke-incompleteness in lattices of tense logics.

Tense logics are bi-modal logics that include a future-looking necessity modality O and a past-looking
possibility modality 4, of which the lattices are substantially different from those of modal logics (see
[8, 11, 10]). As far as we are aware, there are currently only few results concerning the degree of Kripke-
incompleteness in lattices of tense logics. We proved in our recent work [5] that Blok’s dichotomy theorem
can be generalized to NExt(K;) and NExt(K4;). In this work, we provide a full characterization of the
degree of Kripke-incompleteness and the degree of FMP in NExt(S4;). By the characterization, we show
that every tense logic L € NExt(S4;) is of the degree of Kripke-incompleteness 1 or 2%, It turns out

'We denote by Fr(L) the class of frames validating L.



that in NExt(S4;), iterated splittings, rather than union splittings, are exactly those of the degree of
Kripke-incompleteness 1. For more on iterated splittings of lattices of tense and subframe logics, we
refer the readers to [13, 9].

2 Main Results

In what follows, we focus on the lattice NExt(S4;) and write deg(L) and df (L) for the degree of Kripke-
incompleteness and the degree of FMP of L in NExt(S4;), respectively. Let Ly € NExt(S4;) and La O Ly.
Then Ly is called a splitting in NExt(Lg) if there exists L; € NExt(Lg) such that for all L' € NExt(Lo),
exactly one of I’ C L; and L' O Ly holds. In this case, we write Lo/L; for Ly. We call L an iterated
splitting if L = S4;/Ly/--- /L, for some Ly,---,L, € NExt(S4;). Specially, we count S4; also as an
iterated splitting. Our main result is the following theorem:

Theorem 1. Let L € NExt(S4;). If L is an iterated splitting, then df(L) = 1. Otherwise deg(L) = 2%0.

Note that deg(L) < df(L), dichotomy theorems for both the degree of FMP and the degree of
Kripke-incompleteness for NExt(S4;) follows from Theorem 1. By [8, Theorem 21], (Log(€h,),S5;) and
(Log(€h,), %) are the only two splitting pairs in NExt(S4;).? Since the logic S4;/Log(€h,)/Log(€l3) is not
a union splitting, Theorem 1 indicates that logics of the degree of Kripke-incompleteness 1 are not nec-
essary union splittings, which shows that Blok’s characterization of the degree of Kripke-incompleteness
for NExt(K) can not be generalized to NExt(S4;) directly.

3 Proof Idea
In what follows, we report on the proof idea of Theorem 1 and the main technique used. For definitions

of the notations used in the proof, we refer the reader to [4].

Definition 2. A Kripke frame is a pair § = (X, R) where X # @ and R C X x X. The inverse of R is
defined as R = {{v,w) : wRv}. For everyw € X, let Rlw] = {u € X : wRu} and Rlw] = {u € X : uRw}.
For every U C W, we define R[U| = J, ¢y Rlz] and R[U] = Useu R[z].

Let R} [w] be the set of all points which can be reached from w by an (RU R)-path of length no more
than n. Models, truth and validity of tense formulas are defined as usual.
For each n € w and ¢, 9 € %, we define the formula Af ¢ by:

Al =19 Apand Ao = AEov Oy A AE) v 81 A ALY).

Then the readers can verify that 9, w = A" if and only if there is an (R U R)-path (w; : i < n) such
that wo = w, M, w,—1 | ¢ and M, w; |= 1 for all i < n. We write APy for Ak

Lemma 3. Let L € NExt(S4;). Then L is an iterated splitting if and only if L € NExt(S5;) U {S4:}.
Proof. The key observation is that Log(€l,,) = S4;/Log(€h,)/Log(€l,,4+1) for each n > 0. O
Lemma 4. Let L € NExt(S5;). Then df(L) = 1.

Proof. Take any L’ € NExt(S4;) with Fin(L') = Fin(L). Then ¢h, = L’. Since (Log(Ch,),S5:) is a
splitting pair in NExt(S4;), we have L’ € NExt(S5¢). Note that S5; has the FMP and is pretabular (see
[4]), every extension of S5; enjoys the FMP and so L = L’ = Log(Fin(L)). O

2For each n > 0, We denote the chain of length n and the frame (n,n x n) by ¢h,, and €ly,, respectively.
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To show the second-half of Theorem 1, let L € NExt(S4;) be an arbitrarily fixed logic such that
L & NExt(S5;) U {S4,}. Take any o1 € L\ S4,. By the book-construction given in [5], we have

Lemma 5. There is §1, € Fin and wr,ur, € X1, such that Fr,wr = pr and ug, & R?d(w)[wL].

For each I € P(Z"), we define the general frame F; = (X1, Ry, Pr), where the underlying frame
&1 = (X1, Ry) is as depicted in Fig.1, and Py is the tense algebra generated by P(Xp).
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Figure 1: The frame §; where 1 € I and 2,3,i € [

Let L; = LNLog(Fy). To show that I # J implies L; # Ly, it suffices to prove the following lemma:
Lemma 6. Let U = {a; :i € w}U{b; : i € w} U {xo,x1,22,Y0,y1}. For allu € U and v € X,
(1) Fr,u lE pu — VEor,
(2) Fr E TP forany j & 1.

The formulas ¢,, are defined inductively. Due to limited space, we show only the definition of ¢,

and @g,. Let k > |§1| + 5. Assume also that p,po,--- ,pr & Prop(¢r). Then we define
Oy = AF—op A A;‘)goo A V300 and pu; = pap A CQay A Opp, A O=pp,,

where ¢g := —bd; AB=p, ap = O(pp, V b, VOO, ) and the formula bdy, is defined in [4, Def.4.3].
By Lemma 6, we see that ¢ — V¥prp € Ly\ Ly, given i € I\ J. Thus I # J implies L; # L.
The final step is to show Fr(L) = Fr(L;) for all I € Z*. Key lemmas are as follows:

Lemma 7. Let Ly, Ly € NExt(K;). Then Fr.(L; N Lg) = Fr,.(L1) UFr(Ly).?

Lemma 8. Fr,.(Log(F;)) = Iso({€h,,€hy}) for all T € ZT.

3We denote by Fr,.(L) the class of all rooted frames of L.



The key observation for proving Lemma 7 is that if a rooted frame § refutes ¢1(p) € L1 and p2(q) €
Lo, then § refutes A™p; A o for some n € w. For Lemma 8, suppose there exists & € Fr.(Log(Fr)) \
Iso({€hy,Ch,}). Let k > |Fr| + 5. Then & validates grzt, grz—, bw,, bw; and bz, which entails that &
is finite. Let J%(&) be the Jankov-formula of &. Then F; £ -J%(®) and so & is a t-morphic image
of F;. Let f:F; — &. Since & ¢ Iso({Chy,Chy}), we claim that f does not identify xg with other
points, i.e., f71[f(z0)] = {xo}. The proof of this claim will be tedious, so we shall only show here that
1 € f7f(x0)]. Suppose f(zo) = f(z1). Then for all y' € R[f(z0)], there exists y € R[x1] such that
f(y) = o/, which entails i/ = f(x1) = f(x0). Thus R[f(x0)] = {f(20)}. Similarly R[f(z0)] = {f(x0)}.
So & = €h,, which contradicts the assumption. We can further claim that f does not identify ag, by and
b1 with any other point. Then by the property of Rieger-Nishimura ladder, we can check that & contains
an infinite descending chain, which contradicts & = grz—. Hence Fr,.(Log(F;)) = Iso({€h;, €hy}).

Finally we are ready to show Fr.(L) = Fr,.(L;). Since L ¢ NExt(S5;) and (Log(€h,),S5;) is a
splitting pair in NExt(S4;), we have €h, = L and so Iso({€h,,€h,}) C Fr.(L). By Lemmas 7 and 8,
Fr.(Lr) = Fr,(L) UFr,.(Log(F;)) = Fr,.(L). Hence Fr(L) = Fr(Ly) for all I € Z*.

Note that I # J implies Ly # Ly for all I,J C Z*, we conclude that deg(L) = 2%°. Note that
L & NExt(S5,) U {S4,} is also chosen arbitrarily, the proof of Theorem 1 is concluded.
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