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In investigations on exact computations with continuous objects such as the real numbers,
objects are usually represented by streams of finite data. This is true for theoretical studies
in the Type-Two Theory of Effectivity approach (cf. e.g. [16]) as for practical research, where
prevalently the signed digit representation is used (cf. [2, 5, 9]), but also others [6, 7, 15].

For an infinite sequence p “ ppiqiăω of signed digits pi P t´1, 0, 1u set

rrpss
Def
“

ÿ

iăω

pi2
´i P r´1, 1s.

If x “ rrpss, then p is called a signed digit representation of x P r´1, 1s.
In [1] Berger shows how to use the method of program extraction from proofs to extract

certified algorithms working with the signed digit representation in a semi-constructive logic al-
lowing inductive and co-inductive definitions. To this end a predicate S is defined co-inductively
expressing the property that, if x P r´1, 1s then there are d P t´1, 0, 1u and y P r´1, 1s such
that x “ py ` dq{2. Classically, S “ r´1, 1s, but in Berger’s approach it replaces the interval
r´1, 1s when working inside the logic.

In addition to producing correct algorithms, this approach allows reasoning in a representa-
tion-free way, as in usual mathematical practice. Concrete representations of the objects needed
in computations are generated automatically by the extraction procedure.

A detailed description of the logic (i.e. Intuitionistic Fixed Point Logic (IFP)) and the
realisability approach used for extracting programs can be found in [4].

Realisers can be thought of a being (idealised, but executable) functional programs. For-
mally, they are elements of an appropriately constructed Scott domain. In the following condi-
tions a rA means that a is a realiser of A:

a rA “ a “ Nil ^ A pA disjunction-freeq

a r pA _ Bq “ pDbq pa “ Leftpbq ^ b rAq _ pDcq pa “ Rightpcq ^ c rBq

a r pA ^ Bq “ pr0paq rA ^ pr1paq rB
a r pDxqApxq “ pDxqa rApxq.

There are similar conditions for implication and the universal quantifier. Note that quantifiers
are treated uniformly in this version of realisability. Realisers of (co-)inductively defined predi-
cates are defined (co-)inductively again. Thus, if a r Spxq, then there are d, y with x “ py`dq{2
so that pr0paq r ppd “ ´1 _ d “ 1q _ d “ 0q and pr1paq r Spyq.

Although IFP is based on intuitionistic logic a fair amount of classical logic is available.
For example, soundness of the realisability interpretation used for program extraction holds
in the presence of any disjunction-free axioms that are classically true. In case of the reals
e.g., one uses a disjunction-free formulation of the axioms of real-closed fields, equations for
exponentiation and the defining axiom for max.

In order to generalise from the different finite objects used in the various stream representa-
tions, Berger and the present author [3] used the abstract framework of what was coined digit
space, that is, a bounded complete non-empty metric space X enriched with a finite set D of
contractions on X, called digits, that cover the space, that is

X “
ď

t drXs | d P D u,
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where drXs “ t dpxq | x P X u. In case of the reals with the signed digit representation X “

r´1, 1s and D “ t avi | i “ ´1, 0, 1 u, where avipxq “ px ` iq{2.
Spaces of this kind were studied by Hutchinson [8] in his basic theoretical work on self-similar

sets and used later also by Scriven [13] in the context of exact real number computation.
A central aim of the joint research was to lay the foundation for computing with non-empty

compact sets and for extracting algorithms for such computations from mathematical proofs.
It is a familiar fact that the set KpXq of non-empty compact subsets of a bounded complete
metric space X is a bounded and complete space again with respect to the Hausdorff metric.
However, as was shown in [3], in general, there is no finite set of contractions that covers the
hyperspace. Therefore, the hyperspace of all non-empty subsets of a digit space is not a digit
space.

On the other hand, non-empty compact subsets can be represented in a natural way by
finitely branching infinite trees of digits. Moreover, all characterisations in [3] derived for the
stream representation of the elements of a digit space hold true for the tree representation of the
non-empty compact subsets of the space. In particular it was demonstrated that the approach
is of the same computational power as Weihrauch’s Type-Two Theory of Effectivity.

In [14] it was shown by the present author that a uniform treatment of both cases—points
and non-empty compact subsets—is possible, if the contractions of a digit space are allowed to
be multi-ary, leading to the class of extended digit spaces. Points are then no longer represented
by digit streams but by finitely branching infinite trees. As was shown, not only a uniform
version of the results in [3] can be derived but also an analogue of Berger’s nested co-inductive
inductive characterisation of the (constructively) uniformly continuous endofunctions on the
unit interval [1], which allows representing also such functions as finitely branching infinite
digit trees.

As we will see next, there is still another obstacle. For compact metric spaces X, Y and
finite sets F of contractions f : X Ñ Y we write

X
F

ÝÑ Y (1)

to mean that for every y P Y there are f P F and x P X with y “ fpxq.
Now, let pX,Dq be a digit space. As in the example r´1, 1s, instead of X we deal with the

co-inductively largest predicate CX with

CXpxq Ñ pDdq d P D ^ pDyqCXpyq ^ x “ dpyq.

By unfolding this definition we obtain the following co-chain

X
D

ÐÝ X
D

ÐÝ X
D

ÐÝ X ÐÝ ¨ ¨ ¨ (2)

.
For X,Y and F as in (1) let KpF q be the finite set of maps rf1, . . . , fns : KpXqn Ñ KpY q

where the f1, . . . , fn P F are pairwise distinct and rf1, . . . , fnspK1, . . . .Knq “
Ťn

ν“1 fνrKνs.
These maps are contractions again with respect to the Hausdorff metric. Moreover, n ď }F },
because of the distinctness condition. Thus, the arity of the maps in KpF q is not larger than
}F }. By introducing redundant arguments we let all maps in KpF q have this arity.

Now, apply K to the situation in (2). Then we obtain the co-chain

KpXq
KpDq

ÐÝÝÝ KpXq}D} KpDq
}D}

ÐÝÝÝÝÝ pKpXq}D}q}D} ÐÝ ¨ ¨ ¨

This is the case where we have to consider extended digit spaces: The maps in KpDq are no
longer unary, in general.

One more application of K leads to the following co-chain

K2pXq
KpKpDqq

ÐÝÝÝÝÝÝ KpKpXq}D}q}KpDq} KpKpDq
}D}

q
}KpDq}

ÐÝÝÝÝÝÝÝÝÝÝÝÝ KpKpXqp}D}
2

qqp}KpDq}
2

q ÐÝ ¨ ¨ ¨

Note here that the maps in KpKpDqq have compact subsets of KpXq}D} as input, not just
compact subsets of KpXq. Hence, they are no longer self-maps of K2pXq.
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This shows that the concept of extended digit spaces is still too narrow to deal with the
higher compact hyperspaces. The picture we just used, however, opens up a promising way to
follow.

For each co-chain pYi`1
Fi

ÝÑ YiqiPN let

• Y “
ř

iPN Yi be the topological sum of the Yi and

• F “
Ť

iPNtiu ˆ Fi be the disjoint union of the Fi.

Then pY,Fq is an infinite extended iterated function system (IFS). The maps in F operate
only locally on the components, i.e., for pi, fq P F and pjκ, yκq P Y.

pi, fqppj1, y1q, . . . , pjarpfq, yarpfqqq “

$

’

&

’

%

pi, fpy1, . . . , yarpfqqq

if jκ “ i ` 1, (1 ď κ ď arpfq),

undefined otherwise.

Note that Y carries a canonical 8-metric coinciding with the given metrics on the components.
Let CY be the co-inductively largest subset of Y such that

pi, yq P CY Ñ pDfq f P Fi ^ pDz1, . . . , zarpfqq

ľarpfq

κ“1
pi ` 1, zκq P CY ^ pi, yq “ pi, fqppi ` 1, z1q, . . . , pi ` 1, zarpfqqq.

Then (classically) Y “ CY. Observe that we are only interested in the points in C
x0y

Y “

t y | p0, yq P CY u. The elements in the other components of Y appear only as part of the
approximation. Note further that though F is infinite, the local sets Fi are finite. Moreover, as
we have seen in the above consideration, in case we start from a digit space pX,Dq and want

to deal with sets in KnpXq, the local components KnpDqi in the co-chain pKnpXqi`1
Kn

pDqi
ÝÝÝÝÝÑ

KnpXqiqiPN depend recursively on i, n.
As mentioned above, the nested co-inductive inductive characterisation of the (construc-

tively) uniformly continuous functions on the unit interval given by Berger [1] was lifted to
the general case of extended digit spaces by the present author [14]. The result can be further
generalised to the infinite extended IFS introduced above. Let CFpX,Yq be the class of func-

tions thus obtained and C
pmq

FpXx0y,Yx0yq
be the subset of those functions of arity m P N that map

component CXx0y to component CYx0y . These functions will be the morphisms of our category.
Among others the following results are obtained:

Theorem 1. 1. The structure CDS with

• Objects: C
x0y

X , for co-chains pXi`1
Di

ÝÝÑ XiqiPN of bounded compact metric spaces Xi

and finite sets Di of contractions d : Xi`1 Ñ Xi

• Morphisms: C
p1q

FpXx0y,Yx0yq
, the subset of unary f P CFpX,Y with f rCXx0y s Ď CYx0y

is a category and K : CDS Ñ CDS is a monad with unit and multiplication analogous to
the case of the power set monad.

2. Let pXi`1
Di

ÝÝÑ XiqiPN and pYi`1
Ei

ÝÑ YiqiPN be co-chains and pX,Dq, pY,Eq the associated

infinite IFS. Then for all f P C
p1q

FpXx0y,Yx0yq
and K P C

x0y

KpXq
,

(a) f rKs P C
x0y

KpYq
,

(b) Kpfq P C
p1q

FpKpXqx0y,KpYqx0yq
.

Here, pKpXq,KpDqq is the infinite extended IFS associated with the co-chain that is obtained

by applying K to pXi`1
Di

ÝÝÑ XiqiPN.

Classically, the functions in C
p1q

FpXx0y,Yx0yq
and C

p1q

FpKpXqx0y,KpYqx0yq
are uniformly continuous

and the sets in C
x0y

KpXq
are compact. In this case the results are well known [10, 11, 12]. Now,

they are formally derived by co-induction, respectively nested induction and co-induction, from
which algorithms for computing f rKs and Kpfq can be extracted.
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