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In investigations on exact computations with continuous objects such as the real numbers,
objects are usually represented by streams of finite data. This is true for theoretical studies
in the Type-Two Theory of Effectivity approach (cf. e.g. [16]) as for practical research, where
prevalently the signed digit representation is used (cf. [2, 5, 9]), but also others [6, 7, 15].

For an infinite sequence p = (p;)i<. of signed digits p; € {—1,0,1} set

Il =Y pi2ie [-1,1].
<w
If = [[p], then p is called a signed digit representation of x € [—1,1].

In [1] Berger shows how to use the method of program extraction from proofs to extract
certified algorithms working with the signed digit representation in a semi-constructive logic al-
lowing inductive and co-inductive definitions. To this end a predicate S is defined co-inductively
expressing the property that, if € [—1,1] then there are d € {—1,0,1} and y € [—1,1] such
that = (y + d)/2. Classically, S = [—1,1], but in Berger’s approach it replaces the interval
[—1,1] when working inside the logic.

In addition to producing correct algorithms, this approach allows reasoning in a representa-
tion-free way, as in usual mathematical practice. Concrete representations of the objects needed
in computations are generated automatically by the extraction procedure.

A detailed description of the logic (i.e. Intuitionistic Fixed Point Logic (IFP)) and the
realisability approach used for extracting programs can be found in [4].

Realisers can be thought of a being (idealised, but executable) functional programs. For-
mally, they are elements of an appropriately constructed Scott domain. In the following condi-
tions ar A means that a is a realiser of A:

ar A = a=Nilrn A (A disjunction-free)
ar(Av B) = (3b)(a=Left(d) AbrA)v (Ic) (a = Right(c) A cr B)

ar(AAB) = pryla)rAApr(a)rB

ar (Iz)A(z) = (x)ar A(x).

There are similar conditions for implication and the universal quantifier. Note that quantifiers
are treated uniformly in this version of realisability. Realisers of (co-)inductively defined predi-
cates are defined (co-)inductively again. Thus, if ar S(z), then there are d,y with = (y+d)/2
so that pry(a)r ((d = -1 vd=1) vd=0)and pr,(a)rS(y).

Although IFP is based on intuitionistic logic a fair amount of classical logic is available.
For example, soundness of the realisability interpretation used for program extraction holds
in the presence of any disjunction-free axioms that are classically true. In case of the reals
e.g., one uses a disjunction-free formulation of the axioms of real-closed fields, equations for
exponentiation and the defining axiom for max.

In order to generalise from the different finite objects used in the various stream representa-
tions, Berger and the present author [3] used the abstract framework of what was coined digit
space, that is, a bounded complete non-empty metric space X enriched with a finite set D of
contractions on X, called digits, that cover the space, that is

X =|Jtdix1 e py,



where d[X] = {d(z) | x € X }. In case of the reals with the signed digit representation X =
[-1,1] and D = {av; | i = —1,0,1}, where av,(z) = (z + )/2.

Spaces of this kind were studied by Hutchinson [8] in his basic theoretical work on self-similar
sets and used later also by Scriven [13] in the context of exact real number computation.

A central aim of the joint research was to lay the foundation for computing with non-empty
compact sets and for extracting algorithms for such computations from mathematical proofs.
It is a familiar fact that the set K(X) of non-empty compact subsets of a bounded complete
metric space X is a bounded and complete space again with respect to the Hausdorff metric.
However, as was shown in [3], in general, there is no finite set of contractions that covers the
hyperspace. Therefore, the hyperspace of all non-empty subsets of a digit space is not a digit
space.

On the other hand, non-empty compact subsets can be represented in a natural way by
finitely branching infinite trees of digits. Moreover, all characterisations in [3] derived for the
stream representation of the elements of a digit space hold true for the tree representation of the
non-empty compact subsets of the space. In particular it was demonstrated that the approach
is of the same computational power as Weihrauch’s Type-Two Theory of Effectivity.

In [14] it was shown by the present author that a uniform treatment of both cases—points
and non-empty compact subsets—is possible, if the contractions of a digit space are allowed to
be multi-ary, leading to the class of extended digit spaces. Points are then no longer represented
by digit streams but by finitely branching infinite trees. As was shown, not only a uniform
version of the results in [3] can be derived but also an analogue of Berger’s nested co-inductive
inductive characterisation of the (constructively) uniformly continuous endofunctions on the
unit interval [1], which allows representing also such functions as finitely branching infinite
digit trees.

As we will see next, there is still another obstacle. For compact metric spaces X, Y and
finite sets F' of contractions f: X — Y we write

x 5By (1)

to mean that for every y € Y there are f € F and « € X with y = f(z).
Now, let (X, D) be a digit space. As in the example [—1,1], instead of X we deal with the
co-inductively largest predicate Cx with

Cx(z) > (3d)de D A (Jy) Cx(y) A z = d(y).
By unfolding this definition we obtain the following co-chain

XExExLx ... 2)

For X,Y and F as in (1) let K(F) be the finite set of maps [f1,..., fn]: K(X)"* — K(Y)
where the fi,...,f, € F are pairwise distinct and [f1,..., fo](Ki1,....K,) = UL _; oK. ]
These maps are contractions again with respect to the Hausdorff metric. Moreover, n < |F|,
because of the distinctness condition. Thus, the arity of the maps in K(F') is not larger than
|F|. By introducing redundant arguments we let all maps in K(F') have this arity.

Now, apply K to the situation in (2). Then we obtain the co-chain

DI
K(x) &2 ke x)ipl Ko

(K(X)IPHIPE ..
This is the case where we have to consider extended digit spaces: The maps in (D) are no
longer unary, in general.

One more application of X leads to the following co-chain

K(K(D)) D)IPHIED)

K2(X) K (x)IPhix@) LK KOC(X) 1PN ARMDI) .
Note here that the maps in K(K(D)) have compact subsets of K(X)I?l as input, not just

compact subsets of K(X). Hence, they are no longer self-maps of X2(X).



This shows that the concept of extended digit spaces is still too narrow to deal with the
higher compact hyperspaces. The picture we just used, however, opens up a promising way to
follow.

For each co-chain (Y;11 iR Y:)ien let

e 9 = >..nY; be the topological sum of the Y; and
o § = U;enti} x F; be the disjoint union of the Fj.

Then (9),F) is an infinite extended iterated function system (IFS). The maps in § operate
only locally on the components, i.e., for (i, f) € § and (jx, yx) €Y.

(i7f(y1>"'ayar £ ))
(ivf)((j1»y1)7"'7(jar(f)7yar(f))): lij:Z+1 ( SKES (f)))
undefined otherwise.

Note that ) carries a canonical co-metric coinciding with the given metrics on the components.
Let Cg be the co-inductively largest subset of ) such that

(Zay) € CEZ) - (Elf)fEF A (Hzla"'azar(f))
AP 1,20 € Cy a () = (L G+ 122), (4 Lozag).

Then (classically) 9 = Cg. Observe that we are only interested in the points in C%D =
{y|(0,y) e Cy}. The elements in the other components of ) appear only as part of the
approximation. Note further that though § is infinite, the local sets F; are finite. Moreover, as
we have seen in the above consideration, in case we start from a digit space (X, D) and want

to deal with sets in K™(X), the local components K"(D); in the co-chain (K™(X);11 K7(D),
K™(X);)ien depend recursively on i, n.

As mentioned above, the nested co-inductive inductive characterisation of the (construc-
tively) uniformly continuous functions on the unit interval given by Berger [1] was lifted to
the general case of extended digit spaces by the present author [14]. The result can be further
generalised to the infinite extended IF'S introduced above. Let Cpg(x g) be the class of func-

tions thus obtained and CIF(3€<0> 20
component Cxwy to component Cgyo,. These functions will be the morphisms of our category.
Among others the following results are obtained:

Theorem 1. 1. The structure CDS with

be the subset of those functions of arity m € N that map

o Objects: Cg?, for co-chains (X;11 D, X.)ien of bounded compact metric spaces X;
and finite sets D of contractions d: X;11 — X;

e Morphisms: c! the subset of unary f € Cpx g with f[Cxw ] S Cy

]F(35<0> 2)<0>)

is a category and K: CDS — CDS is a monad with unit and multiplication analogous to
the case of the power set monad.

2. Let (X;41 D, x, i)ien and (Y; l+1 B, > Yi)ien be co-chains and (X,D), (), €) the associated
infinite IFS. Then for all f € c! and K € C%

]F(BE<0> <) R(x)’
<0>
(a) f[ ] Cﬁ(g}

(1)

(b) k() € Cra)o seyo)
Here, (R(X), R(D)) is the infinite extended IFS associated with the co-chain that is obtained

by applying K to (Xip1 =5 X;)ien.

Classically, the functions in CI(Fl()3€<0> 20 and CI(F(?Q(%)@ R()©)

and the sets in Cé?(;) are compact. In this case the results are well known [10, 11, 12]. Now,

are uniformly continuous

they are formally derived by co-induction, respectively nested induction and co-induction, from
which algorithms for computing f[K] and K(f) can be extracted.
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