
Observation algebras:
Heyting algebra over coherence spaces

Paul Brunet
Université Paris‐Est Créteil
paul.brunet-zamansky.fr
paul@brunet-zamansky.fr

I – Introduction

When designing formal semantics for program verification, one needs a language (logic) to describe states: such a
language forms the static side of an otherwise dynamic framework. Inmany cases, boolean algebras (BA), i.e. classical
propositional logic, are used for this purpose. Examples include the KAT family of models [6], as well as (concurrent)
Kleene algebras with boolean observations [5, 4]. However, as discussed in [7], this is not the most useful model
in the presence of concurrent behaviour. Indeed, in op. cit. it was argued that a more general class of logics, namely
pseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive latticespseudo‐complemented distributive lattices or PCDL, were more appropriate. A tailor‐made instance of this logic was
presented then, and used to model weak memory properties. In this paper, we study a class of distributive lattices
that may be used as alternative models of partial observations. This model generalises the PCDL model of [7] in two
ways: we add an implication operator, and abstract over the atomic predicates of the language. We intend this work
to be used to define purpose‐built models to tackle various verification or modelling tasks in concurrent settings.

To get intuitions about our model, consider a situation where a system is being monitored by an observer. We
are given a (possibly infinite) set of atomic propositions, called observations in the following, that describe static
properties of the system. We also know which pairs of observations are coherent, i.e. may hold simultaneously, and
which pairs are incompatible, meaning they are mutually exclusive. The observer may report a set of observations
that they witnessed. This set need not be exhaustive: the fact that an atomic proposition does not appear in a report
means that the observer failed to evaluate its veracity, not that they saw it to be false. To establish the falsity of
an observation o, the observer has to witness some other observation, incoherent with o. This gives the model an
intuitionist flavour (existence of witness), as well as an epistemic one: knowledge may be partial, and is obtained
by positive observations. The experiment may be repeated, for instance observing each possible state of the system
during an execution, or tying the observer to a program point and checking the system at this point for various runs
with different inputs. This way we obtain a set of reports, one for each experiment, each describing partially some
possible state of the system.

Formally, this situation is modeled by an undirected graph, whose nodes are the atomic propositions, and whose
adjacency relation is interpreted as coherence. A single report, containing a set of pairwise coherent nodes, is simply
a clique of the graph. Non‐exhaustivity is represented by an ordering between cliques. We say that c2 is more general
than c1 if c1 contains c2: every observation made in the report c2 is also present in c1, but the latter also deals with
properties left unspecified by c2. A sentence in our model is then interpreted as a set of cliquesX such that if c belongs
to X, then any clique less general than c also belongs to X. This way, we capture all partial states that are compatible
with the report we received.

This abstract is structured as follows. First we describe the syntax and semantics of Observation Algebra, and
provide some sound (but incomplete) axiomatisation. We then study classes of graphs for which a complete set
of axioms is available. Finally, we discuss how this formalism can be used to model memory states before a brief
overview of future work.

All the proofs in this paper have been formalized in Rocq, and are available online [2]. Additionally, an extended
version of this abstract can be found on arxiv and hal [1].

II – Syntax and semantics of observation algebra

Wefix a so‐called coherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graphcoherence graph [3], i.e. a pairG = ⟨O(G),¨G⟩ consisting of a setO(G) equippedwith a symmetric
and reflexive relation ¨G. In other words, a possibly infinite undirected graph. a, b, . . . will range over O(G). We
will be interested in cliques of this graphs (x, y, . . . will range over cliques), whose set is called the coherence space
generated by G, and written C (G) := {x ⊆ O(G) | ∀a, b ∈ x, a ¨G b}.

– 1 –

https://paul.brunet-zamansky.fr
mailto:paul@brunet-zamansky.fr


P. Brunet Observation algebra June 17, 2025

Terms s, t ∈ Tobs(G) are built out of the connectives ∨, ∧ and →, the constants ⊤ and ⊥, as well as predicates a
for each a ∈ O(G). A clique x is said to satisfy a term t when x ⊨ t, where ⊨ is defined inductively:

x ⊨ ⊤ x ⊨ s or x ⊨ t ⇔ x ⊨ s ∨ t
a ∈ x ⇔ x ⊨ a x ⊨ s and x ⊨ t ⇔ x ⊨ s ∧ t
(∀y ∈ C (G), y ⊨ s and x ∪ y ∈ C (G) ⇒ x ∪ y ⊨ t) ⇔ x ⊨ s→ t.

This yields an interpretation function J−K : Tobs(G) → P(C (G)), defined as JtK := {x ∈ C (G) | x ⊨ t}. Notice that
the interpretation of any term is upwards‐closed for containment: if x ⊆ y and x ⊨ t, then y ⊨ t.

The question we address in the paper is finding a set of axioms that define a syntactic equivalence relation ≡ on
terms that is sound and complete, i.e. such that s ≡ t ⇔ JsK = JtK.

The axioms of bounded distributive lattices (BDL), which we omit here for space reasons, form a suitable starting
point: they are obviously all sound with respect to our interpretation. In fact, if we augment them with axiom (A1)
below, we obtain a relation ≡1 which is sound and complete when we remove → from our set of term formers (i.e.
for the signature of BDL).

∀a ˇ b, a ∧ b ≡ ⊥ (A1)

If we want to add the implication, we need to add the axioms of Heyting algebras, which we do not recall for
space reasons. We supplement them with axioms that deal with the effect of putting a clique as the left argument of
an implication. We write Cf(G) for the set of finite cliques of G, and for a finite set x = {x1, . . . , xn}, we write

∧
x

for the term x1 ∧ · · · ∧ xn.

∀x ∈ Cf,
(∧

x
)
→ (s ∨ t) ≡

(∧
x→ s

)
∨
(∧

x→ t
)

(B1)

∀x ∈ Cf, ∀a /∈ x,
(∧

x
)
→ a ≡

(∧
x→⊥

)
∨ a. (B2)

All these axioms are sound, but fail to be complete. In fact we haven’t been able to find one generic axiomatisation
for all graphs. Instead, we focus on specific graphs or classes of graphs to derive complete axiomatisations.

III – Tractable graphs

FAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphsFAN graphs The first class we consider consists of all graphs that have the finite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhoodfinite anti‐neighbourhood (FAN)
property: for any vertex a ∈ O(G), the set {b ∈ O(G) | a ˇG b} should be finite. This class obviously includes all
finite graphs. For such graphs, we can formulate the following axiom scheme:

∀x ∈ Cf,
(∧

x
)
→⊥ ≡

∨
{a ∈ O(G) | ∃b ∈ x : a ˇG b} (C1)

This yields an sound and complete axiomatisation, when we take the axioms of Heyting algebra, as well as (B1),
(B2), and (C1) to define the relation ≡fan.

Infinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticliqueInfinite anticlique To go beyond FAN graphs we consider an extreme opposite case: an infinite graph with
no edge, so that the anti‐neighbourhood of any vertex is the rest of the graph. A first important observation is that
cliques in this graphs are either empty or singleton, and that for any vertex a the term a∨ (a→⊥) is interpreted as the
set of all singleton cliques. As such, this set does not depend on a, which motivates axiom (D1). In Heyting algebras,
double negation is different from the identity. However here it does hold partially as stated in (D2).

∀a, b ∈ O(G), a ∨ (a→⊥) ≡ b ∨ (b→⊥) (D1)

∀x ∈ Pf (O(G)) ,
((∨

x
)
→⊥

)
→⊥ ≡

∨
x (D2)

In fact, augmenting the axioms ofHeyting algebraswith (B1), (B2), (D1), and (D2) yields a sound and complete relation
≡ω . The proof relies on the fact that terms are always interpreted as either finite or cofinite sets of cliques.

ProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProductsProducts Let (Gi)i∈I be a collection of pairwise‐disjoint graphs indexed by a (possibly infinite) set of dimensions
I . The graph P =

⊗
i∈I Gi is defined as the union of the graphs Gi (all vertices and edges are imported), with extra

edges added to connect to one another the vertices of the different graphs. In other words:

a ¨P b ⇔ (∃i, a ¨Gi b) or
(
∃i ̸= j : a ∈ O(Gi) and b ∈ O

(
Gj
))

– 2 –



P. Brunet Observation algebra June 17, 2025

•

•

•

• •

•

•

Figure 1: Example of coherence graph based on a 2‐dimensional distance

The question here is the following: if we are given axiomatisations (or indeed any sound and complete syntactic
relations) for each of the Gis, can we build one of the composite graph?

The first observation we make is that for any i ∈ I , the terms over Gi can be seen as being terms over P , and that
this shift in perspective preserves semantic equivalence, so that the following axiom is sound:

∀s, t ∈ Tobs(Gi), s ≡i t ⇒ s ≡P t (E1)

The second axiom is more subtle, and requires the notion of term vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectorsterm vectors, crucially used in the proofs. A term vector
v is a partial function mapping a finite set of dimensions i ∈ I to component terms vi ∈ Tobs(Gi). They can be
mapped to terms in two ways: either take the conjunction of all components (

∏
v), or their disjunction (

⨿
v). The

three binary operations ∨, ∧, and→ can be defined coordinate‐wise on term vectors so we can state the following:

(
∏

u)→ (
⨿

v) ≡P
⨿

(u→ v) (E2)

With these two new axioms as well as the Heyting algebra axioms and (B1)‐(B2), we obtain a sound and complete
equivalence relation ≡P .

IV – A short example

We can represent a infinite memory with two types of cells, containing either a boolean or a natural number value.
Indeed, take a copy of the binary (FAN) graph Bx = ⟨{0x, 1x} , ∅⟩ for each boolean variable x, and a copy Ny of the
infinite anticlique over natural numbers for each numeric variable y. Their product

⊗
x Bx ⊗

⊗
y Ny is a graph whose

vertices correspond to predicates var == val with var a variable and val a value of the appropriate type.
In this model, the semantics of a predicate ¬(x == v) = (x == v) → ⊥ is the set of cliques that contain an

observation incoherent with x == v, i.e. some x == v′ with v′ ̸= v.
Predicates x == y can be added for boolean variables, as a macro for the formula (x == 1 ∧ y == 1) ∨ (x ==

0 ∧ y == 0) but not for numeric ones as it would entail an infinite disjunction. On the other hand a predicate x ⩽ n
for n ∈ N can be encoded as the formula x == 0 ∨ · · · ∨ x == n. Therefore a predicate like n < x may be added
as the negation of the previous one. Some data structures may also be added to the language as syntactic sugar. For
example, arrays of fixed size are easily encoded as sets of variables. In Figure 1 another finite graph is drawn that can
be interpreted as the value space of a 2‐dimensional variable. Observations (i.e. atomic propositions) check whether
the value belongs to some disc. Two observations are coherent if their discs overlap.

V – Future work

One direction for future research is to capture more refined memory models, for instance with more datatypes such
as lists. This means populating the class of Observation algebras with more coherence graphs. One would then need
to check whether these are instances of our constructions (products of FAN graphs and anticliques). In the negative
case, hopefully graphs of use would still allow for some reasonnable axiomatisation.

Another obvious direction to explore is the study of concurrent processes using this model inside Concurrent
Kleene Algebra with Hypotheses [4]. On paper this should work exactly like partially observable CKA [7], except
with a more expressive specification logic for memory states. An investigation into the sort of properties that such a
system can capture might yield some interesting results.

– 3 –



P. Brunet Observation algebra June 17, 2025

References

[1] Paul Brunet.. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces. Observation algebras: Heyting algebra over coherence spaces.Mar. 2025. doi: 10.48550/arXiv.2503.
07130.

[2] Paul Brunet.. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. Repository of Rocq proofs: github.com/monstrencage/obs-alg-proofs/. 2022.

[3] Jean‐Yves Girard. “Linear logic”. In: . Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science. Theoretical Computer Science 50.1 (Jan. 1987). Publisher: Elsevier. doi:
10.1016/0304-3975(87)90045-4.

[4] Tobias Kappé et al. “Concurrent Kleene Algebra with Observations: From Hypotheses to Completeness”. In:
. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. FoSSaCS. Lecture Notes in Computer Science. 2020. doi: 10.1007/978-3-030-45231-5_20.

[5] Tobias Kappé et al. “Kleene Algebra with Observations”. In:. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. Vol. 140. LIPIcs. 2019. doi: 10.4230/
LIPIcs.CONCUR.2019.41.

[6] Dexter Kozen and Frederick Smith. “Kleene algebra with tests: Completeness and decidability”. In:. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. CSL. Lec‐
ture Notes in Computer Science. 1997.

[7] Jana Wagemaker et al. “Partially Observable Concurrent Kleene Algebra”. In: . CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. CONCUR. LIPIcs. 2020. doi:
10.4230/LIPIcs.CONCUR.2020.20.

– 4 –

https://doi.org/10.48550/arXiv.2503.07130
https://doi.org/10.48550/arXiv.2503.07130
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://github.com/monstrencage/obs-alg-proofs/
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/978-3-030-45231-5_20
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.4230/LIPIcs.CONCUR.2019.41
https://doi.org/10.4230/LIPIcs.CONCUR.2020.20

	Introduction
	Syntax and semantics of observation algebra
	Tractable graphs
	A short example
	Future work
	References

