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Modal information logic (MIL), introduced by van Benthem [7], models information flow using
possible worlds semantics of modal logic by introducing additional modalities. Recently, Knud-
storp [4] axiomatized MIL with a supremum modality on poset frames, capturing the ‘fusion’ or
‘merge’ of information states. Since infima naturally represent the common refinement of such
states in posets, a natural question arises: Can the axiomatization of MIL be extended to a ver-
sion that includes both modalities—supremum and infimum—which we call tense information
logic (TIL)? And what axioms govern the relation between the two modalities [§]?

In this abstract there are two main results we will cover: First, following the outline and proofs
of [] we give an axiomatization of TIL on posets, surprisingly showing that the only axioms
needed for linking (sup) and (inf) are the standard tense-logic axioms. Second, we prove that TIL
enjoys the FMP w.r.t. a generalized class of frames, thereby establishing its decidability.

In related work, modal logics with supremum and infimum operators have been studied on
richer algebraic structures, such as lattices [I1IT2/3] and semilattices [6]. In particular, Wang &
Wang [TT12] obtain completeness over lattices for a hybrid language with supremum and infimum
operators as well as nominals.

1 Preliminaries

We begin by giving the definitions that are essential for our discussion of TTL:

Definition 1. Given a countable set of propositional letters P, we define the language L1 of tense
information logic using two binary modalities (sup) and {(inf) by the following BNF grammar:

pu=p|L]-@|eAY| (sup)py | (inf)ei

Definition 2. A (Kripke) poset model for L1 is a triple M = (W, <, V), where W is a set, < is
a partial order and V' is a valuation V : P — P(W).

Given a poset frame (F = (W, <)), we say that x is the supremum of {y, z} if = is an upper
bound of y and z and the least such. We say that x is the infimum of {y, z} if z is a lower bound
of y and z and the greatest such.

The interpretation of a formula ¢ at a state x € W is then defined recursively as follows:

M, x WL
Mal-p iff x€V(p)
M,z lF—p iff Mz
MzlFpAy iff M xl-pand M, xlFy
M, x Ik (sup)eyp iff there exist y,z € W such that M, y Ik o, M, 2 IF ¢ and = = sup{y, z}
M, x Ik (inf)ey iff there exist y,z € W such that M,y Ik o, M, 2 IF ¢ and = = inf{y, z}

Using these semantics, we can define the past- and forward-looking unary modalities of tem-
poral logic as Py := (sup)p T, Fy := (inf)oT, the dual H as =P— and G as —F— [14]. Validity
in a frame is defined in the usual way.

Definition 3. Let TIL be the frame-based logic of all L1 wvalidities on poset frames, i.e.

TIL := {p € L7 : for every poset model M = (W, <,V) and every x € W : M,z |- ¢}
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We extend the axiomatization of MIL given in [4] to define the following syntactically defined
logic:

Definition 4. Let TIL be the least normal modal logic in the language L1 containing the following
azrioms:

(Re.) (p A\ q— (sup)pg) A (p A g — (inf)pg)

(4) (PPp — Pp) A (FFp — Fp)

(Co.) ((sup)pg — (sup)qp) A ((inf)pg — (inf)qp)

(DE1) (p A (sup)qr) — (sup)pq

(Dk2) (p A (inf)qr) — (inf)pq

(Sy.) (p — GPp) A (p — HFp)

The only truly new axiom, that expresses the relation between (sup) and (inf), is the standard
temporal axiom (Sy.) [10]. That this axiom is to be included is expected, since the temporal
operators P, ', G and H are all definable.

Soundness of TIL with respect to TIL (i.e., TIL C TIL) follows by a standard argument.

2 Results

We now state our primary result, which confirms that our axiomatization correctly captures the
logic TIL:

Theorem 5 (Completeness). TIL is strongly complete w.r.t TIL.

In the canonical model, the preorder <,,. induced by the canonical relations Cl,, and Ciyf
does not form a poset in which these relations are the true supremum and infimum (see Remark
A.0.1 of [4]). Consequently, the canonical model lacks the properties required to establish the nec-
essary truth lemma for the completeness proof. To overcome this, we make use of the step-by-step
method (see [1]).

To prove that syntactic consistency implies satisfiability (and hence completeness), we recur-
sively construct a model by repairing so-called ‘defects’. We define a labeling function [ that assigns
to each point in our structure a maximally consistent set (MCS) of the canonical model. Since our
goal is to prove the truth lemma for the specific set of formulas we start with, we may and will
assign the same MCS to different points, to ensure that other points satisfy the formulas dictated
by their MCS-label.

As illustrated in the figures below, a defect can occur in one of four forms:

— x is labeled by the MCS I" and (sup)py € I = I(z), but « ¥ (sup)py, or (inf)pyp € I' =I(x),
but z ¥ (inf)pi.
— « is labeled by the MCS I' and —(sup)ptp € I = l(x), but x Ik (sup)pip, or ~(inf)ey € I' =

I(x), but z IF (inf)p.

We resolve these issues through four repair lemmas. Below, we graphically illustrate two of
these lemmas to provide intuition.

(sup)-repair lemma

(sup)—repair

. (sup)ey) € I(x) . (sup)py) € I(x)

¢ €Uy) Y e l(z)
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—(inf)-repair lemma

pE l(y) '(/) € l(Z) —(inf)—repair Y e l(y) (/NS Z(Z)
y e o2 = y e ® za
x o ~(infypy € l(x) T e o d
inflev i) Ud) = ()

Having established completeness of TIL on poset frames, we immediately obtain its complete-
ness with respect to a broader class of frames, namely preorders. 9 = (W, <, V) is a preorder
model if < is a preorder on W. In this case, suprema and infima need not be unique, but can come
in clusters. To account for this, we denote that z is a supremum or infimum of {y, z} by writing
x € sup{y,z} or x € inf{y, z}, respectively. The semantics of the modal operators are changed
accordingly.

Definition 6.
TIL,e = {p € Ly : for every preorder model M = (W, <, V) and every x € W : M,z I ¢}

Theorem 7. Tense information logic interpreted over preorders is the same as its interpretation
over posets. That is, TILp,.. = TIL = TIL.

Proof. Since every poset frame is also a preorder frame, TIL,.. C TIL. Furthermore, the soundness

proof of TIL for poset frames carries over to preorder frames without significant changes, implying
TIL C TIL,,..

This result provides yet another example of how modal information logics cannot differentiate
preorders from posets (see also [5]).

Building on our completeness result, we prove decidability of TIL, thus resolving an open
problem posed in [9].

Theorem 8. TIL is decidable

Since the logic does not have the finite model property (FMP) w.r.t. preorders, nor posets (see [4]
Proposition 1.7), we show that it has the FMP w.r.t. a generalized class of frames. In this setting,
a general frame is given by a tuple (W, Csyp, Ciny), where W is a set and Cj,, and Cyy,y are
arbitrary ternary relations on W.

Let C denote the class of general frames that satisfy the first order correspondents of the
axioms of TIL. Because poset frames are special cases of general frames and standard frame-
correspondence arguments give the equivalence

(W, Csup, Cing) IF TIL <= (W, Csup, Ciny) € C,
it follows that TIL is sound and strongly complete with respect to C, so that TIL = Log((f).

We then show by a filtration argument that any formula x ¢ TIL (i.e. invalid on some, possibly
infinite, é—frame) can be shown to be invalid on a finite C-frame. This implies that TIL has the
FMP w.r.t. this class of frames, i.e. TIL = Log(Cr).

Since TIL is a finitely axiomatisable normal modal logic that has the FMP, we conclude that
TIL is decidable. Note that from TIL = TIL,,., we immediately get the same result for T7L,,..
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