On expressibility of satisfiability in submodels and extensions, II

Nikolai L. Poliakov, Denis I. Saveliev

We study conditions under which certain modal operators associated with relations between first-order models are expressible in infinitary languages.

For a class K of models of a vocabulary τ , a binary relation R on K, and a sentence φ of a model-theoretic language \mathcal{L} (in the sense of [1]), let $\vartheta_{K,R}(\varphi)$ express the fact that for any model \mathfrak{A} in K there exists a model \mathfrak{B} in K such that $\mathfrak{A} R \mathfrak{B}$ and $\mathfrak{B} \models \varphi$. Such $\vartheta_{K,R}$, treated as modal operators, lead to modal logics, which were introduced and investigated in [5] (cf. also [6], §6). One of problems arising in the study of these logics is to determine languages \mathcal{L}' in which the resulting $\vartheta_{K,R}(\varphi)$ is expressible for a given φ in \mathcal{L} , and, in particular, to determine when it is expressible in \mathcal{L} itself.

For the case when R is the submodel relation, i.e., $\mathfrak{A} R \mathfrak{B}$ means that \mathfrak{B} is a submodel of \mathfrak{A} , and \mathcal{L} is an infinitary first-order language $\mathcal{L}_{\kappa,\lambda}$ (see [1, 2]) or its second-order counterpart $\mathcal{L}^2_{\kappa,\lambda}$, this problem was investigated in [4]. It was observed there that certain $\mathcal{L}_{\kappa,\lambda}$, in particular those with inaccessible κ , are closed under the submodel operator ϑ , unlike the finitary language $\mathcal{L}_{\omega,\omega}$, which does not share this property. Some necessary and sufficient conditions of a semantic nature were given that specify sentences φ such that $\vartheta(\varphi)$ belong to $\mathcal{L}_{\omega,\omega}$.

Here we continue these studies. First, we provide a syntactic criterion for sentences φ with this property, which implies, e.g., that all Σ_2^0 -sentences are such and that such sentences exist in Σ_n^0 for any n. Next, we consider the converse case when R is the extension relation, i.e., $\mathfrak{A} R \mathfrak{B}$ means that \mathfrak{A} is a submodel of \mathfrak{B} . Denoting the corresponding modal operator by ϑ^* , we observe that for φ in certain $\mathcal{L}_{\kappa,\lambda}$, in particular, with $\lambda = \omega$ or with inaccessible κ , $\vartheta^*(\varphi)$ on models of cardinality $\geqslant \kappa$ is expressible in $\mathcal{L}_{\kappa,\lambda}^2$. Then we show that for any φ in $\mathcal{L}_{\omega,\omega}$, $\vartheta^*(\varphi)$ is expressible by a Π_1^0 -theory in $\mathcal{L}_{\omega,\omega}$, in striking contrast to the case of submodels as there are φ with $\vartheta(\varphi)$ non-expressible in $\mathcal{L}_{\infty,\omega}$. Furthermore, $\vartheta^*(\varphi)$ is expressible by a single sentence if and only if there exists a strongest Π_1^0 -consequence of φ . This remains true for $\mathcal{L}_{\kappa,\lambda}$ with strongly compact κ and, moreover, for second-order languages $\mathcal{L}_{\kappa,\lambda}^2$ with extendible κ (for these cardinals see, e.g., [3]).

References

- [1] J. Barwise, S. Feferman (eds), *Model-theoretic logics*, Perspectives in Mathematical Logic 8, Springer-Verlag, New York, 1985.
- [2] M. A. Dickmann, *Large Infinitary Languages: Model Theory*, Studies in Logic and the Foundations of Mathematics, 83, North-Holland, Amsterdam—Oxford—New York, 1975.
- [3] A. Kanamori, The higher infinite: large cardinals in set theory from their beginnings, Springer-Verlag, Berlin-Heidelberg, second edition, 2003.
- [4] D. I. Saveliev, "On first-order expressibility of satisfiability in submodels", in: R. Iemhoff, M. Moortgat, R. de Queiroz (eds), *Logic, Language, Information, and Computation, WoLLIC 2019*, Lecture Notes in Computer Science, 11541 (2019), Springer, Berlin–Heidelberg, 584–593.
- [5] D. I. Saveliev, I. B. Shapirovsky, "On modal logics of model-theoretic relations", *Studia Logica*, 108 (2020), 989–1017.
- [6] D. I. Saveliev, I. B. Shapirovsky, "Medvedev's logic and products of converse well orders", *Advances in Modal Logic*, 14, College Publications, 2022, 681–696.