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1 Introduction

There were several proposals in the literature to introduce probability over Belnap-Dunn logic, which is an
implication-free core of relevant logics (see [5], [4], [7]). Considerably less attention has been paid to extend
probability to relevant implication in order to obtain probabilistic version of full relevant logic. The aim of this
paper is to fill this gap. We will propose various possibilities of introducing probability of a relevant conditional
and discuss motivations and properties of the proposed definitions with a particular attention on the problem
of conditional probability vs. probability of conditional.

2 Belnap-Dunn logic

One of the main motivations for Belnap-Dunn logic (BD) [2] was to introduce a logical

system that is able to deal with inconsistent / incomplete information in a non-trivial T

way. That requires, among other things, rejecting the classical principles Ex Falso

Quodlibet and the Law of Excluded Middle. While the language Zgp is built as / \
usual from a (countable) set At of propositional variables using connectives {A, V, =},

it extends the classical values T,F with new values B (Both true and false) and N N B
(Neither true nor false), the designated values are T, B (”at least true”). They form

the (de Morgan) lattice 4 also called Belnap-Dunn square (see the figure on the left).

Alternatively, the truth values can be represented as subsets of {T,F} : T = {T},F = F
{F},B={T,F},N=0.

Semantics of BD We will use semantics for BD based on the idea of independence
of positive and negative information. Formally a BD model M = (S,v™,v™) consists
of a set of states S and two (independent) valuation relations v, v~ : At — P(W).
v (p) denotes states containing information supporting p and analogously v~ (p) denotes states rejecting p. As
positive and negative valuation are independent, some states might be (with respect to some p € At) incomplete
(s & vt (p)Uv~(p)) or inconsistent (s € v (p)Nv~(p)) . The valuations extend to positive/negative satisfaction
relation. Fach satisfaction relation taken separately is in fact classical
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BD-probability The probabilistic extension of BD logic, as presented in [5], applies the principle of indepen-
dence to probabilistic positive and negative information. It works with two probability functions representing
positive (negative) support of a formula respectively.

Definition 2.1. Belnap-Dunn probability is a function p* : Zgp — [0, 1] which satisfies the following axioms:
(A1) normalization 0<pt(p) <1
(A2) monotonicity if ¢ Fpp ¥ then pt(p) < pT(v)
(A3) inclusion/exclusion  p* (o V) =pt () +pT () —pt (o A1)

The negative probability is defined by p~(¢) = p*T(—%). The main difference from the classical Kol-
mogorovian axioms is that the classical additivity axiom is replaced by weaker inclusion exclusion. We have
pt(—p) # 1 —pT(p), so the independence of positive and negative information is implemented; moreover, anal-
ogously to the propositional case, it allows for 0 < p* (¢ A —¢) (positive probability of classical inconsistency),
and pT(p V =) < 1 (classical tautologies are not certain).



3 Relevant logics

There are several systems called relevant logic (see, e.g. [8], [9] for an overview). Most of them build on the
conjunction/disjunction fragment of BD logic and differ with respect to defining negation and implication. From
the point of view of motivation we will have in mind the most well known system R, but from the technical
point of view we avoid choosing a particular relevant logic and build on a very weak framework of the full
commutative Lambek calculus (see [10]).

We present our framework semantically; we will in fact extend the frame semantics given in the previous
section. All relevant logics interpret the implication using a ternary relation R on a set of states S in the
following way:

¢ — 1 is supported in a state x € S iff y = ¢ implies z |9 for all y, z s. t. Rxyz.

Formally a (positive) relevant frame contains two more elements — a set L C S responsible for validity and
an information order < on S satisfying the following conditions:

Definition 3.1. Positive relevant frame is a quadruple F = (S, L, <, R), where S, L are a nonempty sets, R is
a ternary relation on S and

i) < is a partial order on S

i) Rryz and o’ < z,y’ < y,2’ > z implies Ra'y’2’,

iii) item L is a non-empty, upwards closed subset of (5, <), satisfying

y < z iff there is an « in L such that Rzxyz.

iv) if Rxyz then Ryxz,

Negation There are essentially two ways of treating negation in relevant logics. The first of them is based on
the notion of compatibility of states; two states are compatible if they not contradict each other with respect to
the support of some formula. Compatibility is formally represented as a binary relation on states. If we have
sC's’, then s supports truth of —¢ iff s’ doesn’t support ¢.

Definition 3.2. A compatibility frame is a tuple (S, L, <,C, R) such that (S, L, <, R) is a positive relevant
frame C' is a binary relation on S such that i) zCy implies yCz ii) zCy and 2’ < z,y’ < y then 2/Cy’. A
compatibility model is a compatibility frame plus a (single) valution v.

Another option is to extend BD models with two ternary relations Rj, Ro: the first one is responsible for
the truth of a conditional, the second one for its falsity:

—(¢ — 1) is supported in a state x € S iff y = ¢ and z [~ ¥ for some y, z s. t. Sxyz.

Definition 3.3. A Routley frame is a tuple (S, L, <, Ry, Ry) such that (S, L, <, R;) is a positive relevant frame
and Rs is a ternary relation on S satisfying Rxyz and z < 2’,y < 9/,2’ < z implies Rz'y’z’. A Routley model
is a Routley frame equipped with a positive and a negative valuation.

4 Probability and conditionals

The problem of defining the probability of a conditional in classical logic has been extensively discussed in the
literature. One of the central points of these discussions was the validity of the Adams thesis [1] claiming, that
probability of a conditional should be identified with the corresponding conditional probability. The infamous
triviality result by David Lewis [6] showed that the applicability of the Adams thesis is limited to a certain
fragment of the classical logic. We will discuss this question in the context of relevant frames.

Probability in relevant frames We assume that each state s in a relevant frame is equipped with a ”local”
probability function ps on implication-free formulas that satisfies the axioms (A1) to (A3) of BD-probability, we
call such a frame probabilistic. Depending on a particular way of treating negation there might be some more
conditions probability should satisfy. We can interpret ps(¢) either as a relative frequency of ¢ observed in the
state s or as a subjective probability of an observer who’s information state is s. In the rest of this section
we discuss various ways to extend the BD-probability to conditionals. One of the main difficulties here is to
connect the probability of implication, which is an intensional connective to the local probabilities dealing with
extensive connectives (conjunctions and disjunctions).

One straightforward way of defining the probability of a relevant conditional ¢ — % is to read the truth
conditions of implication probabilistically: consider all couples (y, z) connected to a state = via the relevance
relation R such that y = ¢ and check the proportion of those which support truth of ¢ — 1):



{(y,2)| Rryz,y = ¢,z = 9|
{(y, 2)| Reyz,y = o}

Intuitively, this definition tells us what is the probability of reaching a w-state in the third R coordinate
for a randomly chosen ¢-state in the second coordinate. The disadvantage of this solution is that it works
only for finite frames and for formulas, where the implication is the main connective. Moreover, it ignores the
information given by the local probability.

Pa(d — ) =

Alternatively, we might read the ternary relation in relevant frames dynamically as a process of composing
pieces of information from R-related states and assume that this relation is non-deterministic, i.e. R: S — [0,1]
and Y R(z,y,z) = 1 for every € S. The definition of probability would be given in a way similar to the
standard transition systems.

pa(p = 1) = Y Rayz-py,(¢)p=(¥)

y,z€S

This corresponds to the chance that my R relation takes me to a couple of states such that I observe ¢ in the
first state and 1 in the second. It is similar to the previous definition, but all steps are random here.

Previous proposals were attempting to represent probability of a conditional. Now we turn to the problem
of conditional probability. Having BD probabilities defined at every state we can always define it locally.
But conditional probability is a powerful tool of learning new information and we now consider this dynamic
reading. Imagine I want to predict from the point of view of a state x probability of ¢ in the state z connected
with z via the R relation on the condition that I learn probability p,(¢) at the second state y. I assume the
proportion between ¢- and -states remains constant during my gathering information hence I can use is my
local conditional probability p,(¢|¢) = e (VAP) e only additional input I need is the probability p,(¢) of ¢

Pz ()
observed at y. If I define conditional probability as the value of my prediction I obtain:

Pz (¥ A p)

Obviously, we need to prove that conditional probability defined in this way is indeed a probability function.
This requires imposing more constraints on the local probabilities regulating their interaction with the basic
structures of relevant frames. Also our prediction given by dynamic conditional probability matches the local
probability in the targeted state only if the local probabilities are in an appropriate relation with R.

We defined dynamic conditional probability only for triples (z,y, z) related by R. In order to define dynamic
conditional probability for a particular state x we need to take into account all such values for different y, z.
We do it in a way standard in many-valued modal logics, which gives us a lower bound of the predicted value:

Pz (Yl@) = inf{pay-(1|p)]y, z such that Rryz}

We proposed several ways of introducing probability to the relevant logic with a special attention to relevant
implication. We defined probability of a relevant conditional as well as dynamic conditional probability based
on relevant frames. Our proposals still have some drawbacks, namely the applicability to a limited class of
formulas, but this is also a drawback of some classical solutions. In the talk we discuss in a more depth the
properties and mutual relations of the definitions we introduced. We will also briefly comment on their relation
to the framework of relevant epistemic logic presented in [3].
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