### Büchi Games for the Unguarded Alternation-free $\mu$ -Calculus

#### **Daniel Hausmann**

University of Liverpool, UK

TbiLLC 2025, Kutaisi, September 11, 2025

# Logic in Computer Science





System / Model



Logical Specification

# Logic in Computer Science





Ħ



System / Model

Logical Specification

# **Logic in Computer Science**





 $\models$ 



System / Model

Logical Specification

#### **Central Problems:**

- ► Model Checking: does a given model satisfy a given specification?
- ► Satisfiability Checking: is there a model satisfying the specification?
- ► Synthesis: automatically construct system from a given specification!

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, . . .

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, . . . Formula  $\varphi$ : LTL / CTL, (probabilistic, graded)  $\mu$ -calculus, ATL, . . .

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, . . .

Formula  $\varphi$ : LTL / CTL, (probabilistic, graded)  $\mu$ -calculus, ATL, . . .

### Model Checking:

Does given model  $\mathcal M$  satisfy given specification  $\varphi$ ?

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, . . .

Formula  $\varphi$ : LTL / CTL, (probabilistic, graded)  $\mu$ -calculus, ATL, . . .

### **Model Checking:**

Does given model  ${\mathcal M}$  satisfy given specification  $\varphi$ ?





? ⊨



System / Model

Logical Specification

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, . . .

Formula  $\varphi$ : LTL / CTL, (probabilistic, graded)  $\mu$ -calculus, ATL, . . .

### Satisfiability Checking:

Does model satisfying given specification  $\varphi$  exist?

Model  $\mathcal{M}$ : Transition system, stochasticity, resource usage, agents, ...

Formula  $\varphi$ : LTL / CTL, (probabilistic, graded)  $\mu$ -calculus, ATL, . . .

### Satisfiability Checking:

Does model satisfying given specification  $\varphi$  exist?





∃ System / Model ?

Logical Specification









## Games on Graphs

$$G = (V_{\exists}, V_{\forall}, E, \alpha)$$



- ▶ two antagonistic players (∃, ∀)
- ▶ (positional)  $\exists$ -strategy: function  $s: V_{\exists} \to V$
- s is winning for player  $\exists$  iff plays $(s) \subseteq \alpha$
- determinacy: every node is won by exactly one player

standard objectives: reachability, Büchi, co-Büchi, parity

# Games on Graphs

$$G = (V_{\exists}, V_{\forall}, E, \alpha)$$



- ▶ two antagonistic players (∃, ∀)
- ▶ (positional)  $\exists$ -strategy: function  $s: V_{\exists} \to V$
- ▶ *s* is winning for player  $\exists$  iff plays(*s*)  $\subseteq \alpha$
- determinacy: every node is won by exactly one player

standard objectives: reachability, Büchi, co-Büchi, parity

## The $\mu$ -Calculus

Branching time logic, typically interpreted over transition systems

### **Syntax**

$$\varphi, \psi \coloneqq p \mid \neg p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond \varphi \mid \Box \varphi \mid X \mid \mu X. \varphi \mid \nu X. \varphi$$

 $p \in \mathsf{Prop}, X \in \mathsf{V}$ 

Examples: 
$$\mu X. p \vee \Box X$$

$$\mu X. p \vee \Box X$$
  $\nu X. \mu Y. (p \wedge \diamondsuit X) \vee \diamondsuit Y$ 

# The $\mu$ -Calculus

Branching time logic, typically interpreted over transition systems

### **Syntax**

$$\varphi, \psi \coloneqq p \mid \neg p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond \varphi \mid \Box \varphi \mid X \mid \mu X. \varphi \mid \nu X. \varphi$$

 $p \in \mathsf{Prop}, X \in \mathsf{V}$ 

Examples:

 $\mu X. p \vee \Box X$ 

$$\nu X. \mu Y. (p \land \Diamond X) \lor \Diamond Y$$

#### **Semantics**

Evaluate over transition system  $\mathcal{M} = (W, R, \tau)$  w.r.t.  $\sigma : V \to \mathcal{P}(W)$ 

$$[[\lozenge\varphi]]_{\sigma} = \{ v \in W \mid R(v) \cap [[\varphi]]_{\sigma} \neq \emptyset \}$$

$$[[\mu X.\varphi]]_{\sigma} = \bigcap \{Z \subseteq W \mid [[\varphi]]_{\sigma}(Z) \subseteq Z\}$$

$$[\![\Box\varphi]\!]_\sigma=\{v\in W\mid R(v)\subseteq[\![\varphi]\!]_\sigma\}$$

$$[[\nu X.\varphi]]_{\sigma} = \bigcup \{Z \subseteq W \mid Z \subseteq [[\varphi]]_{\sigma}(Z)\}$$

# The $\mu$ -Calculus

Branching time logic, typically interpreted over transition systems

### **Syntax**

$$\varphi, \psi \coloneqq p \mid \neg p \mid \varphi \land \psi \mid \varphi \lor \psi \mid \Diamond \varphi \mid \Box \varphi \mid X \mid \mu X. \varphi \mid \nu X. \varphi$$

 $p \in \mathsf{Prop}, X \in \mathsf{V}$ 

Examples:

$$\mu X. p \vee \Box X$$

$$\nu X. \mu Y. (p \land \Diamond X) \lor \Diamond Y$$

#### **Semantics**

Evaluate over transition system  $\mathcal{M} = (W, R, \tau)$  w.r.t.  $\sigma : V \to \mathcal{P}(W)$ 

$$[\![\diamondsuit\varphi]\!]_\sigma=\big\{v\in W\mid R(v)\cap[\![\varphi]\!]_\sigma\neq\emptyset\big\}$$

$$[[\mu X.\varphi]]_{\sigma} = \bigcap \{Z \subseteq W \mid [[\varphi]]_{\sigma}(Z) \subseteq Z\}$$

$$[\![\Box\varphi]\!]_\sigma = \{v \in W \mid R(v) \subseteq [\![\varphi]\!]_\sigma\}$$

$$[[\nu X.\varphi]]_{\sigma} = \bigcup \{Z \subseteq W \mid Z \subseteq [[\varphi]]_{\sigma}(Z)\}$$

alternation depth: number  $ad(\varphi)$  of alternating  $\mu$  and  $\nu$  operators in  $\varphi$  alternation-freeness:  $ad(\varphi)$  = 1

guardedness: every free occurrence of X in  $\mu X.\varphi$  and  $\nu X.\varphi$  is in scope of  $\Diamond$  or  $\Box$ 

$$\mathcal{M}: \overset{\bigcap}{\times} \overset{\bigcap}{y} p$$

$$\varphi = \mu X. p \vee \Box X$$
  $\mathcal{M}, x \vDash \varphi$ ?

$$A, x \vDash \varphi$$
?



 $y, p \vee \Box \varphi$ 

 $x, p \vee \Box \varphi$ 











# **Summary: Evaluation Games**

- Evaluation games  $G_{\mathcal{M}, \varphi}$  are parity games with  $|\mathcal{M}| \cdot |\varphi|$  nodes
- lacktriangle Game graph is product of model  ${\mathcal M}$  and subformulae of  ${arphi}$
- ▶ Priorities in game correspond to alternation depths of formulae

#### **Theorem**

 $x \in [\![\varphi]\!]_{\mathcal{M}} \Leftrightarrow \mathsf{player} \; \exists \; \mathsf{wins} \; \mathsf{node} \; (x, \varphi) \; \mathsf{in} \; \mathsf{evaluation} \; \mathsf{game} \; \mathcal{G}_{\mathcal{M}, \varphi}.$ 

## Corollary

Formula evaluation for the  $\mu$ -calculus is in  $NP \cap Co-NP$  and in QP, in P for a-f fragment.

Bound on runtime  $\mathcal{O}((|\mathcal{M}|\cdot|\varphi|)^{\operatorname{ad}(\varphi)})$  (with QP method:  $\mathcal{O}((|\mathcal{M}|\cdot|\varphi|)^{\operatorname{log}(\operatorname{ad}(\varphi))}))$ 

 $\sim$  Use parity game solvers (PGSolver, Oink) to evaluate formulae

# Satisfiability Games, $\mu$ -calculus

# Satisfiability Games, $\mu$ -calculus



#### **Theorem**

Formula  $\varphi$  is satisfiable if and only if player  $\exists$  wins  $G_{\varphi}$ .

$$|G_{\varphi}| \in \mathcal{O}(2^{|\varphi| \log |\varphi|})$$
, satisfiability problem is EXPTIME complete

 $\odot$  Determinization of Büchi automata via Safra construction (inefficient, blowup  $2^{|\varphi|\log|\varphi|}$ )

# Satisfiability Games, alternation-free, guarded



#### **Theorem**

Formula  $\varphi$  is satisfiable if and only if player  $\exists$  wins  $G_{\varphi}$ .

- $\odot$  Determinization of co-Büchi automata avoids Safra construction (efficient, blowup  $3^{|arphi|}$ )
- $|G_{\varphi}| \in \mathcal{O}(3^{|\varphi|})$ , satisfiability problem still EXPTIME complete
- © Requires guardedness!

# Satisfiability Games, alternation-free, possibly unguarded

Input: alternation-free formula  $\varphi$  Task:  $\exists \mathcal{M}. \mathcal{M} \vDash \varphi$ ?

- tracing automaton detects problematic global  $\mu$ -unfoldings (as before)
- local problematic  $\mu$ -unfoldings ruled out by restriction to admissible local strategies

# Satisfiability Games, alternation-free, possibly unguarded

Input: alternation-free formula  $\varphi$  Task:  $\exists \mathcal{M}. \mathcal{M} \vDash \varphi$ ?

- tracing automaton detects problematic global  $\mu$ -unfoldings (as before)
- local problematic  $\mu$ -unfoldings ruled out by restriction to admissible local strategies



- $\odot$  Determinization of co-Büchi automata avoids Safra construction (efficient, blowup  $3^{|\varphi|}$ )
- © Does not require guardedness!

# Satisfiability games without guardedness

Input formula  $\chi$ , Fisher-Ladner closure (FL) of  $\chi$ 

Local strategy  $s \in loc$ : function mapping all  $\psi_0 \lor \psi_1 \in FL$  to  $s(\psi_0 \lor \psi_1) \in \{0,1\}$ 

# **Tracing automaton for** $\chi$ **with** $\Sigma = loc \cup \{ \Diamond \varphi \mid \Diamond \varphi \in FL \}$

Nondeterministic co-Büchi automaton  $\mathcal{A}_{\chi} = (\Sigma, \mathsf{FL}, \delta, F)$  with  $F = \{ \varphi \in \mathsf{FL} \mid \varphi \neq \nu X. \psi \}$  and

$$\delta(\psi_0 \wedge \psi_1, s) = \{\psi_0, \psi_1\} \qquad \delta(\psi_0 \vee \psi_1, s) = \{\psi_{s(\psi_0 \vee \psi_1)}\} \qquad \delta(\eta X. \psi, s) = \{\psi[\eta X. \psi/X]\}$$
$$\delta(\diamondsuit \psi, \diamondsuit \psi) = \{\psi\} \qquad \delta(\Box \varphi, \diamondsuit \psi) = \{\varphi\}$$

In all other cases, put  $\delta(\psi, s) = \{\psi\}$  and  $\delta(\varphi, \diamondsuit\psi) = \varnothing$ .

Determinize  $A_{\chi}$  using Miyano-Hayashi construction to  $D_{\chi} = (\Sigma, S, \Delta, B)$ 

#### Results

Local strategy s admissible at  $q \in S$ : s does not induce  $\mu$ -trace at q in  $\mathcal{D}_{\chi} = (\Sigma, S, \Delta, B)$ 

Set H(q) of local strategies admissible at  $q \in S$ 

### Satisfiability game for $\chi$

Büchi game  $G_{\chi} = (S \times \{0,1\}, E, (S \setminus B) \times \{0,1\})$  with  $2 \cdot 3^n$  nodes:

| node   | owner     | moves to                                                    |
|--------|-----------|-------------------------------------------------------------|
| (q, 0) | 3         | $\{(\Delta(q,s^*),1) \mid s \in H(q)\}$                     |
| (q,1)  | $\forall$ | $\{(\Delta(q,\Diamond\varphi),0)\mid\Diamond\varphi\in q\}$ |

#### **Theorem**

Satisfiability checking for alternation-free, possibly unguarded  $\mu$ -calculus formula  $\varphi$  in time  $\mathcal{O}(3^{2|\varphi|})$ . Satisfiable formulas have models of size at most  $3^{|\varphi|}$ .

## **Summary**

### Take-away:

- The  $\mu$ -calculus: an expressive logic for specification of temporal properties over graphs
- Close relations between
  - $\mu$ -calculus and parity games
  - ightharpoonup alternation-free  $\mu$ -calculus and Büchi games
- Here: the latter correspondence does not hinge on guardedness of fixpoint variables by modal operators!