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Summary

1. A familiar chain of adjunctions between Heyting algebras and Boolean algebras.

2. How to study this adjunction using duality.
3. Regular Heyting algebras and Inquisitive logic.
4. Some connections with Medvedev’s logic.
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Heyting Algebras and Boolean
algebras



Heyting algebras, Boolean algebras

Definition
An algebra (H,∧,∨,→, 0, 1) is called a Heyting algebra if:

1. (H,∧,∨, 0, 1) is a (distributive) lattice.
2. The following law holds for all a, b, c ∈ H:

a ∧ c ≤ b ⇐⇒ c ≤ a→ b.

We write ¬a := a→ 0. It is called a Boolean algebra if it satisfies:

∀a ∈ H(a ∨ ¬a = 1) or ∀a ∈ H(¬¬a = a).

• HA – category of Heyting algebras with Heyting algebra homomorphisms.
• BA – (full sub)category of Boolean algebras with Boolean algebra
homomorphisms.
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Double Negation Translation

The double negation translation of classical logic into intuitionistic logic:

Definition
Given ϕ ∈ LCPC we define the double negation translation into LIPC , as follows:

1. K(p) = ¬¬p and K(⊥) = ⊥;
2. K(ϕ ∧ ψ) = K(ϕ) ∧ K(ψ);
3. K(¬ϕ) = ¬K(ϕ).

Theorem (Glivenko,1929)
For every formula ϕ, ϕ ∈ CPC if and only if K(ϕ) ∈ IPC.
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Functors, Translations and Adjunctions

Heyting algebras and Boolean algebras are connected in many ways:

1. Center : HA→ BA extracts from H the BA subalgebra {a : a ∨ ¬a = 1}.

2. I : BA→ HA is the inclusion;
3. Reg : HA→ BA extracts from H the BA homomorphic image {a : ¬¬a = a}.

Reg as a functor encapsulates the double negation translation.

Translations like the above correspond to adjunctions in the class of algebras; Reg is a
right adjoint to a functor F : BA→ HA.

But who is F?
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Free Heyting Extension

Tur and Vidal (2008) proved this functor to be fully faithful; in (A. 2023), this was
studied from the point of view of a theory of translations, where a different syntactic
proof was given. But the specific action of the functor was not described.

Our goal:

1. To use a step-by-step construction to show that this functor is connected with so
called “Regular Heyting Algebras”;

2. To derive from that some consequences for Inquisitive Logic and Medvedev’s
Logic.

No shocking results: mostly categorical housekeeping, with some logical
consequences.
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Heyting Extensions and
Esakiafication of Stone Spaces



Esakia Duality

Our main tool will be the duality between Heyting algebras and Esakia spaces:

Definition
An ordered topological space (X,≤, τ) is said to be a Priestley space if:

1. (X, τ) is compact;
2. Whenever x ≰ y there is a clopen upwards-closed set U such that x ∈ U and y /∈ U;

A Priestley space is called an Esakia space if:

3. Whenever U is a clopen set, ↓U = {x ∈ X : ∃y ∈ U, x ≤ y} is clopen.

A continuous map p : X→ Y between Esakia spaces is said to be a p-morphism if it is
order-preserving, and whenever p(x) ≤ y, there is some x′ ≥ x and p(x′) = y.

Theorem
There is a categorical equivalence between HAop and the category Esa of Esakia
spaces and p-morphisms, which restricts to the Stone duality of BAop and Stone.
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Dual Constructions

To describe F : BA→ HA, we can instead describe a dual functor M : Stone→ Esa
which is adjoint to Max : Esa→ Stone (the dual functor to Reg).

This amounts to the following:

max X Y

X M(Y)

f

f̃

Figure 1: Adjunction Property
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Example

• • • • •

• • •

•

Figure 2: Example of the Problem
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Inquisitive Extensions

Bezhanishvili, Grilleti and Holliday (2019) studied a similar situation, and they provide
an extension which is at least necessary.

Definition
Given a Priestley space (X,≤) let V(X) be the set of closed subsets with the Vietoris
topology.

Then:

Proposition
If (X,≤) is a Priestley space then:

1. (V(X),⊇) is an Esakia space;
2. If X is an Esakia space and Y is a Stone space, and f : max(X)→ Y is a continuous
map, there is a unique order-preserving map f̃ : X→ V(Y), a p-morphism on
maximal elements, which agrees on f.
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Back to the Example

• • • • •

• • • •

•

Figure 3: Back to the Example
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Obtaining Freeness

This does not give us an adjunction because f̃ need not be a p-morphism. But this
situation can be fixed, at a certain cost.

Definition
Given two Priestley spaces X, Y and a continuous and order-preserving map g : X→ Y
between them, we say that a subset S ⊆ X is g-open if it satisfies:

∀x ∈ S, y ∈ X(x ≤ y→ ∃z ∈ S(x ≤ z ∧ g(z) = g(y))).

We denote by Vg(X) the set of closed, rooted and g-open subsets of X.
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Obtaining Freeness (Cont.d)

Note that if Y = {•}, and g is the terminal map, Vg(X) is the set of all closed and
rooted subsets, which we denote by Vr(X). Recall that there is a map called the root
map r : Vg(X)→ X which is a surjective order preserving map.

Proposition
Let Y be a Stone space and let Vmax(Y) = {C ∈ Vr(V(Y)) : ∀D ∈ C, ∀x ∈ D, {x} ∈ C}.
Then Vmax(Y) is a Priestley space, and the restriction r : Vmax(Y)→ V(Y) is such that for
any map f : max X→ Y, and its unique lifting f̃ : X→ V(Y), there is a unique r-open
gf : X→ Vmax(Y) making the diagram commute.

12



Obtaining Freeness (Cont.d)

Note that if Y = {•}, and g is the terminal map, Vg(X) is the set of all closed and
rooted subsets, which we denote by Vr(X). Recall that there is a map called the root
map r : Vg(X)→ X which is a surjective order preserving map.

Proposition
Let Y be a Stone space and let Vmax(Y) = {C ∈ Vr(V(Y)) : ∀D ∈ C, ∀x ∈ D, {x} ∈ C}.
Then Vmax(Y) is a Priestley space, and the restriction r : Vmax(Y)→ V(Y) is such that for
any map f : max X→ Y, and its unique lifting f̃ : X→ V(Y), there is a unique r-open
gf : X→ Vmax(Y) making the diagram commute.

12



Obtaining Freeness (Cont.d)

Let M∞(Y) = VrG(Vmax(Y)). The latter is constructed as follows: we consider the
following sequence:

V(Y) r1←− Vmax(Y)
r2←− V2(Y)

r3←− ...

where Vn+1(Y) = Vrn (Vn(Y)), and rn+1 : Vn+1(Y)→ Vn(Y) is the root map. Then
VrG(Vmax(Y)) is the inverse limit of this sequence.

M∞(Y) is then an Esakia space, with the property that max(M∞(Y)) ∼= Y through a
natural isomorphism; moreover this assignment is functorial by using the functoriality
of V(−), Vmax(−) and VrG(−).

Proposition
The functor FreeM : Stone→ Esa assigning each Stone space X to M∞(X) is right
adjoint to max : Esa→ Stone.
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Inquisitive Logic and Regular
Heyting Algebras



Inquisitive Logic

Inquisitive Logic was introduced to study questions. In the work of Ciardelli, this has
been reveleated to have intimate ties to intuitionistic logic; in the view of
Bezhanishvili, Grilletti and Quadrellaro (2019), inquisitive logic can be seen as a
non-standard logic extending intuitionistic logic.

In the work above, algebraic semantics are given for inquisitive logic in the form of
regular Heyting algebras:

Definition
Let H be a Heyting algebra. We say that H is regular if H = ⟨Reg(H)⟩. We say that an
Esakia space X is regular, if its dual Heyting algebra is regular.
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Regular Heyting Algebras

Given a Boolean algebra B, and its Stone space XB , the algebra ClopUp(V(XB)) has
been studied as its inquisitive extension.

In Grilletti and Quadrellaro (2023) a study of regular Esakia spaces was carried out.
One of the questions left there is whether one can describe this class in some
categorically natural way. Our main result, following from the above analysis, gives an
answer:

Theorem
Given a Stone space X, M∞(X) is always a regular Esakia space, and moreover, regular
Esakia spaces are the algebras for the monad induced by this functor.

WARNING: Do not get confused: these are algebras on the dual side, and coalgebras
on the algebraic side.
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N-Universal Regular Models

The above categorical machinery makes it easy to adapt known tools to the study of
inquisitive logic:

Definition
Given n ∈ ω the n-universal regular model if the (unique) poset (Rn,≤) satisfying the
following:

1. max(P) contains 2n points.
2. For each antichain S ⊆ Rn where |S| ≥ 1, there is a unique point x ∈ P which
covers S.

Theorem
Inquisitive logic InqL is sound and complete with respect to the class {Rn : n ∈ ω}.
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N-Universal Regular Models and Categorical Considerations

There is a similar adjunction to the one here described between Set and ImFinPos the
category of image-finite posets with p-morphisms.

The functors in that case are:

1. Con : ImFinPos→ Set the connected components functor;
2. I : Set→ ImFinPos the discretization functor;
3. Max : ImFinPos→ Set the maximum functor;

The universal regular model as given provides the discrete analogue of the right
adjoint to Max.
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Scaling Regularity

Definition
Let n ∈ ω. We say that a Heyting algebra H is n-regular if H is generated from Reg(H)
by formulas of implication depth at most n.

Then we have the following (independently obtained by Bezhanishvili and Mendler,
2025, in a different setting):

Theorem
If H is a Heyting algebra, then H is 0-regular if and only if H is a homomorphic image
of an algebra ClopUp(V(X)) for X a Stone space. In the finite case, H is a homomorphic
image of the dual of Mn ∼= P(n)− {∅}.
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Medvedev’s Logic

We finally bring the discussion to Medevedev’s Logic.

Definition
Medvedev’s logic Med is the logic of the frames:

{V(X) : |X| = n, n ∈ ω}.

With some topological arguments, it is not difficult to show:

Theorem
The logic ML is precisely the logic of all the spaces V(X) for X a Stone space, and hence,
the logic of all 0-regular Heyting algebras.
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N-Regular Logics

It was shown by Grilletti and Quadrellaro (2023) that the logic of all n-regular algebras
for any n is simply IPC. This opens the door to study a hierarchy of n-regular logics:

Definition
We define Rn := Log({H : H is n-regular}).

One basic observation:

Proposition
The logic R1 ̸= R0 .

It would be interesting to know what the logics Rn yield.

20



N-Regular Logics

It was shown by Grilletti and Quadrellaro (2023) that the logic of all n-regular algebras
for any n is simply IPC. This opens the door to study a hierarchy of n-regular logics:

Definition
We define Rn := Log({H : H is n-regular}).

One basic observation:

Proposition
The logic R1 ̸= R0 .

It would be interesting to know what the logics Rn yield.

20



Thank you!
Questions?
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