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Epistemic logic: consequence relations over languages with epistemic modal
operators (knowledge, belief, evidence...)

Realistic?
X valid =⇒ □X valid, X entails Y =⇒ □X entails □Y ,

□X and □Y =⇒ □(X ∧ Y )

□Y =⇒ □(X → Y ), □X and □¬X =⇒ □Y

K / B as entailment by an “evidential state”? Interplay K-B-E?
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Goal:
i) Knowledge = true belief based on correct evidence

↱ prop. entailed by recognised evidence

ii) Weak closure principles ←− neigbourhoods + non-classical base

□⊤ no
□X ∧□Y =⇒ □(X ∧ Y) no
□(X ∧ Y) =⇒ □X yes
□Y =⇒ □(X → Y) no

Approach:
Distributive lattice logic with K and B in terms of neighbourhoods for two
kinds of E (add→ and ¬ you like).

Alternative? □K X := X ∧ ∃Y(□U(Y → X) ∧□rY ∧□cY). Undecidable.
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Frame: ⟨S,⩽,Nr ,Nc⟩ where ⟨S,⩽⟩ is a poset and, for N ∈ {Nr ,Nc},

N : U (S)→ U (S) Nc(X) ⊆ X

(that is, s ∈ N(X) and s ⩽ t only if t ∈ N(X)). We’ll use X ∈ N(s) and
s ∈ N(X) interchangeably.

Fix an agent.
s ∈ Nr(X) if the agent recognises X as evidence in s (according to info in
s...and all t ⩾ s)
s ∈ Nc(X) if X is correct evidence, in the context of s (...and all t ⩾ s:
correctness is indefeasible). Correct evidence is truthful, at least.
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We define three operators B,C,K : U (S)→ U (S)

B(X) = {s | ∃Y(Y ⊆ X & s ∈ Nr(Y))}
C(X) = {s | ∃Y(Y ⊆ X & s ∈ Nc(Y))}
K(X) = {s | ∃Y(Y ⊆ X & s ∈ Nr(Y) ∩ Nc(Y))}

i.e. belief = support by recognised evidence, knowledge = support by
recognised correct evidence.

Example (a Gettier case). Alice and Berta are in the library. Daniel sees
Alice, but not Berta, and he thinks that Alice is Camille’s sister. In fact, Berta is
Camille’s sister.
Daniel recognises evidence “Alice is in the library and Alice is Camille’s sister”
for “Camille’s sister is in the library”, but this evidence is not correct.
Daniel doesn’t know that Camille’s sister is in the library.
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Completeness?

Representation of algebras!

Let A = ⟨A,∧,∨,□B,□C,□K⟩ be a distributive lattice with unary operators
□B,□C,□K such that

□K a ≤ □Ba ∧□Ca □Ca ≤ a □(a ∧ b) ≤ □a ∧□b

for □ ∈ {□B,□C,□K}.

Example. Complex algebra F+ = ⟨U (S),∩,∪,B,K⟩ of frame F .
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Let i ∈ {0, 1} and let PFi(A) be the set of pairs ⟨p, i⟩ where p is a prime filter
on A. We denote as pi(a) the set of ⟨p, i⟩ where a ∈ p.
We’ll write a ∈ ⟨p, i⟩ for a ∈ p. Addition is modulo 1 (1 + 1 = 0).

Prime filter frame A+ =
〈 ⋃
i∈{0,1}

PFi(A), ⩽A, NA
r , NA

c
〉

⟨p, i⟩ ⩽ ⟨p′, i ′⟩ iff p ⊆ p′ and i = i ′

NA
r (si) = {pi+1(a) | □Ba ∈ si} ∪ {p0(a) ∪ p1(a) | □K a ∈ si}

NA
c (si) = {pi(a) | □Ca ∈ si} ∪ {p0(a) ∪ p1(a) | □K a ∈ si}

Key Fact. NA
rc(si) =df NA

r (si) ∩ NA
c (si) = {p0(a) ∪ p1(a) | □K a ∈ si}.

Frame Lemma.
a) NA

c and NA
r are monotone along ⩽A.

b) X ∈ NA
c (si) implies si ∈ X .
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Theorem. A embeds into (A+)
+.

Proof. Let â =
⋃

i pi(a). We have

si ∈ □̂Ba iff □Ba ∈ si iff pi+1(a) ∈ NA
r (si). Then si ∈ B(â) since pi+1(a) ⊆ â.

Conversely, if ∃X ⊆ â s.t. X ∈ NA
r (si), then X = pi+1(x) for □Bx ∈ si or

X = p0(x) ∪ p1(x) for □K x ∈ si . In both cases □Bx ∈ si (by □B-mono and
□K x ≤ □Bx). Hence, □̂Ba = B(â).

si ∈ □̂K a iff □K a ∈ si iff p0(a) ∪ p1(a) ∈ NA
rc(si) by Key Fact iff ∃X ⊆ â s.t.

X ∈ NA
rc(si) by □K -mono iff si ∈ K(â).

si ∈ □̂Ca implies pi(a) ∈ NA
c (si) implies ∃X ⊆ â s.t. X ∈ NA

c (si). Conversely,
∃X ⊆ â s.t. X ∈ NA

c (si) only if X = pi(x) for □Cx ∈ si or X = p0(x) ∪ p1(x) for
□K x ∈ si . In both cases □Cx ∈ si (by □C-mono and □K x ≤ □Cx). Hence,
□̂Ca = C(â).

Hence, ·̂ is hom. It is injective by the Prime Filter Theorem.
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X ∈ NA
rc(si) by □K -mono iff si ∈ K(â).
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si ∈ □̂K a iff □K a ∈ si iff p0(a) ∪ p1(a) ∈ NA
rc(si) by Key Fact iff ∃X ⊆ â s.t.
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⋃

i pi(a). We have

si ∈ □̂Ba iff □Ba ∈ si iff pi+1(a) ∈ NA
r (si). Then si ∈ B(â) since pi+1(a) ⊆ â.
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Extensions?

Theorem. If A satisfies Equation, then A+ satisfies Frame Property. If F
satisfies Frame Property, then F+ satisfies Equation:

Equation Frame Property
□a ∧□b ≤ □(a ∧ b) □-regularity X ,Y ∈ N□(s)⇒ X ∩ Y ∈ N□(s)

⊤ ≤ □⊤ □-normality N□(s) ̸= ∅

Stalnaker’s axioms □Ba ≤ □K□Ba (positive introspection) and □Ba ≤ □B□K a
(strong belief) require modifications (e.g. generalised frames).
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Done:
template for (non-classical) epistemic logics of K-B-E
representation / completeness

To do:
decidability
multi-agent (easy), group epistemic notions (common and distributed
knowledge, “common evidence”)
variations (e.g. degrees of belief)

Thank you!
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